linux/linux-5.4.31/drivers/net/wireless/mediatek/mt76/mt76x0/phy.c

1216 lines
29 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* (c) Copyright 2002-2010, Ralink Technology, Inc.
* Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
* Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
*/
#include <linux/kernel.h>
#include <linux/etherdevice.h>
#include "mt76x0.h"
#include "mcu.h"
#include "eeprom.h"
#include "phy.h"
#include "initvals.h"
#include "initvals_phy.h"
#include "../mt76x02_phy.h"
static int
mt76x0_rf_csr_wr(struct mt76x02_dev *dev, u32 offset, u8 value)
{
int ret = 0;
u8 bank, reg;
if (test_bit(MT76_REMOVED, &dev->mt76.state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8))
return -EINVAL;
mutex_lock(&dev->phy_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100)) {
ret = -ETIMEDOUT;
goto out;
}
mt76_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_DATA, value) |
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_WR |
MT_RF_CSR_CFG_KICK);
out:
mutex_unlock(&dev->phy_mutex);
if (ret < 0)
dev_err(dev->mt76.dev, "Error: RF write %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int mt76x0_rf_csr_rr(struct mt76x02_dev *dev, u32 offset)
{
int ret = -ETIMEDOUT;
u32 val;
u8 bank, reg;
if (test_bit(MT76_REMOVED, &dev->mt76.state))
return -ENODEV;
bank = MT_RF_BANK(offset);
reg = MT_RF_REG(offset);
if (WARN_ON_ONCE(reg > 127) || WARN_ON_ONCE(bank > 8))
return -EINVAL;
mutex_lock(&dev->phy_mutex);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
mt76_wr(dev, MT_RF_CSR_CFG,
FIELD_PREP(MT_RF_CSR_CFG_REG_BANK, bank) |
FIELD_PREP(MT_RF_CSR_CFG_REG_ID, reg) |
MT_RF_CSR_CFG_KICK);
if (!mt76_poll(dev, MT_RF_CSR_CFG, MT_RF_CSR_CFG_KICK, 0, 100))
goto out;
val = mt76_rr(dev, MT_RF_CSR_CFG);
if (FIELD_GET(MT_RF_CSR_CFG_REG_ID, val) == reg &&
FIELD_GET(MT_RF_CSR_CFG_REG_BANK, val) == bank)
ret = FIELD_GET(MT_RF_CSR_CFG_DATA, val);
out:
mutex_unlock(&dev->phy_mutex);
if (ret < 0)
dev_err(dev->mt76.dev, "Error: RF read %d:%d failed:%d!!\n",
bank, reg, ret);
return ret;
}
static int
mt76x0_rf_wr(struct mt76x02_dev *dev, u32 offset, u8 val)
{
if (mt76_is_usb(dev)) {
struct mt76_reg_pair pair = {
.reg = offset,
.value = val,
};
WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING,
&dev->mt76.state));
return mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1);
} else {
return mt76x0_rf_csr_wr(dev, offset, val);
}
}
static int mt76x0_rf_rr(struct mt76x02_dev *dev, u32 offset)
{
int ret;
u32 val;
if (mt76_is_usb(dev)) {
struct mt76_reg_pair pair = {
.reg = offset,
};
WARN_ON_ONCE(!test_bit(MT76_STATE_MCU_RUNNING,
&dev->mt76.state));
ret = mt76_rd_rp(dev, MT_MCU_MEMMAP_RF, &pair, 1);
val = pair.value;
} else {
ret = val = mt76x0_rf_csr_rr(dev, offset);
}
return (ret < 0) ? ret : val;
}
static int
mt76x0_rf_rmw(struct mt76x02_dev *dev, u32 offset, u8 mask, u8 val)
{
int ret;
ret = mt76x0_rf_rr(dev, offset);
if (ret < 0)
return ret;
val |= ret & ~mask;
ret = mt76x0_rf_wr(dev, offset, val);
return ret ? ret : val;
}
static int
mt76x0_rf_set(struct mt76x02_dev *dev, u32 offset, u8 val)
{
return mt76x0_rf_rmw(dev, offset, 0, val);
}
static int
mt76x0_rf_clear(struct mt76x02_dev *dev, u32 offset, u8 mask)
{
return mt76x0_rf_rmw(dev, offset, mask, 0);
}
static void
mt76x0_phy_rf_csr_wr_rp(struct mt76x02_dev *dev,
const struct mt76_reg_pair *data,
int n)
{
while (n-- > 0) {
mt76x0_rf_csr_wr(dev, data->reg, data->value);
data++;
}
}
#define RF_RANDOM_WRITE(dev, tab) do { \
if (mt76_is_mmio(dev)) \
mt76x0_phy_rf_csr_wr_rp(dev, tab, ARRAY_SIZE(tab)); \
else \
mt76_wr_rp(dev, MT_MCU_MEMMAP_RF, tab, ARRAY_SIZE(tab));\
} while (0)
int mt76x0_phy_wait_bbp_ready(struct mt76x02_dev *dev)
{
int i = 20;
u32 val;
do {
val = mt76_rr(dev, MT_BBP(CORE, 0));
if (val && ~val)
break;
} while (--i);
if (!i) {
dev_err(dev->mt76.dev, "Error: BBP is not ready\n");
return -EIO;
}
dev_dbg(dev->mt76.dev, "BBP version %08x\n", val);
return 0;
}
static void
mt76x0_phy_set_band(struct mt76x02_dev *dev, enum nl80211_band band)
{
switch (band) {
case NL80211_BAND_2GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_2g_channel_0_tab);
mt76x0_rf_wr(dev, MT_RF(5, 0), 0x45);
mt76x0_rf_wr(dev, MT_RF(6, 0), 0x44);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00050007);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x003E0002);
break;
case NL80211_BAND_5GHZ:
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
mt76x0_rf_wr(dev, MT_RF(5, 0), 0x44);
mt76x0_rf_wr(dev, MT_RF(6, 0), 0x45);
mt76_wr(dev, MT_TX_ALC_VGA3, 0x00000005);
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x01010102);
break;
default:
break;
}
}
static void
mt76x0_phy_set_chan_rf_params(struct mt76x02_dev *dev, u8 channel,
u16 rf_bw_band)
{
const struct mt76x0_freq_item *freq_item;
u16 rf_band = rf_bw_band & 0xff00;
u16 rf_bw = rf_bw_band & 0x00ff;
enum nl80211_band band;
bool b_sdm = false;
u32 mac_reg;
int i;
for (i = 0; i < ARRAY_SIZE(mt76x0_sdm_channel); i++) {
if (channel == mt76x0_sdm_channel[i]) {
b_sdm = true;
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_frequency_plan); i++) {
if (channel == mt76x0_frequency_plan[i].channel) {
rf_band = mt76x0_frequency_plan[i].band;
if (b_sdm)
freq_item = &mt76x0_sdm_frequency_plan[i];
else
freq_item = &mt76x0_frequency_plan[i];
mt76x0_rf_wr(dev, MT_RF(0, 37), freq_item->pllR37);
mt76x0_rf_wr(dev, MT_RF(0, 36), freq_item->pllR36);
mt76x0_rf_wr(dev, MT_RF(0, 35), freq_item->pllR35);
mt76x0_rf_wr(dev, MT_RF(0, 34), freq_item->pllR34);
mt76x0_rf_wr(dev, MT_RF(0, 33), freq_item->pllR33);
mt76x0_rf_rmw(dev, MT_RF(0, 32), 0xe0,
freq_item->pllR32_b7b5);
/* R32<4:0> pll_den: (Denomina - 8) */
mt76x0_rf_rmw(dev, MT_RF(0, 32), MT_RF_PLL_DEN_MASK,
freq_item->pllR32_b4b0);
/* R31<7:5> */
mt76x0_rf_rmw(dev, MT_RF(0, 31), 0xe0,
freq_item->pllR31_b7b5);
/* R31<4:0> pll_k(Nominator) */
mt76x0_rf_rmw(dev, MT_RF(0, 31), MT_RF_PLL_K_MASK,
freq_item->pllR31_b4b0);
/* R30<7> sdm_reset_n */
if (b_sdm) {
mt76x0_rf_clear(dev, MT_RF(0, 30),
MT_RF_SDM_RESET_MASK);
mt76x0_rf_set(dev, MT_RF(0, 30),
MT_RF_SDM_RESET_MASK);
} else {
mt76x0_rf_rmw(dev, MT_RF(0, 30),
MT_RF_SDM_RESET_MASK,
freq_item->pllR30_b7);
}
/* R30<6:2> sdmmash_prbs,sin */
mt76x0_rf_rmw(dev, MT_RF(0, 30),
MT_RF_SDM_MASH_PRBS_MASK,
freq_item->pllR30_b6b2);
/* R30<1> sdm_bp */
mt76x0_rf_rmw(dev, MT_RF(0, 30), MT_RF_SDM_BP_MASK,
freq_item->pllR30_b1 << 1);
/* R30<0> R29<7:0> (hex) pll_n */
mt76x0_rf_wr(dev, MT_RF(0, 29),
freq_item->pll_n & 0xff);
mt76x0_rf_rmw(dev, MT_RF(0, 30), 0x1,
(freq_item->pll_n >> 8) & 0x1);
/* R28<7:6> isi_iso */
mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_ISI_ISO_MASK,
freq_item->pllR28_b7b6);
/* R28<5:4> pfd_dly */
mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_PFD_DLY_MASK,
freq_item->pllR28_b5b4);
/* R28<3:2> clksel option */
mt76x0_rf_rmw(dev, MT_RF(0, 28), MT_RF_CLK_SEL_MASK,
freq_item->pllR28_b3b2);
/* R28<1:0> R27<7:0> R26<7:0> (hex) sdm_k */
mt76x0_rf_wr(dev, MT_RF(0, 26),
freq_item->pll_sdm_k & 0xff);
mt76x0_rf_wr(dev, MT_RF(0, 27),
(freq_item->pll_sdm_k >> 8) & 0xff);
mt76x0_rf_rmw(dev, MT_RF(0, 28), 0x3,
(freq_item->pll_sdm_k >> 16) & 0x3);
/* R24<1:0> xo_div */
mt76x0_rf_rmw(dev, MT_RF(0, 24), MT_RF_XO_DIV_MASK,
freq_item->pllR24_b1b0);
break;
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
if (rf_bw == mt76x0_rf_bw_switch_tab[i].bw_band) {
mt76x0_rf_wr(dev,
mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
} else if ((rf_bw == (mt76x0_rf_bw_switch_tab[i].bw_band & 0xFF)) &&
(rf_band & mt76x0_rf_bw_switch_tab[i].bw_band)) {
mt76x0_rf_wr(dev,
mt76x0_rf_bw_switch_tab[i].rf_bank_reg,
mt76x0_rf_bw_switch_tab[i].value);
}
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & rf_band) {
mt76x0_rf_wr(dev,
mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
mt76_clear(dev, MT_RF_MISC, 0xc);
band = (rf_band & RF_G_BAND) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
if (mt76x02_ext_pa_enabled(dev, band)) {
/* MT_RF_MISC (offset: 0x0518)
* [2]1'b1: enable external A band PA
* 1'b0: disable external A band PA
* [3]1'b1: enable external G band PA
* 1'b0: disable external G band PA
*/
if (rf_band & RF_A_BAND)
mt76_set(dev, MT_RF_MISC, BIT(2));
else
mt76_set(dev, MT_RF_MISC, BIT(3));
/* External PA */
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_ext_pa_tab); i++)
if (mt76x0_rf_ext_pa_tab[i].bw_band & rf_band)
mt76x0_rf_wr(dev,
mt76x0_rf_ext_pa_tab[i].rf_bank_reg,
mt76x0_rf_ext_pa_tab[i].value);
}
if (rf_band & RF_G_BAND) {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x63707400);
/* Set Atten mode = 2 For G band, Disable Tx Inc dcoc. */
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x896400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
} else {
mt76_wr(dev, MT_TX0_RF_GAIN_ATTEN, 0x686A7800);
/* Set Atten mode = 0
* For Ext A band, Disable Tx Inc dcoc Cal.
*/
mac_reg = mt76_rr(dev, MT_TX_ALC_CFG_1);
mac_reg &= 0x890400FF;
mt76_wr(dev, MT_TX_ALC_CFG_1, mac_reg);
}
}
static void
mt76x0_phy_set_chan_bbp_params(struct mt76x02_dev *dev, u16 rf_bw_band)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt76x0_bbp_switch_tab); i++) {
const struct mt76x0_bbp_switch_item *item = &mt76x0_bbp_switch_tab[i];
const struct mt76_reg_pair *pair = &item->reg_pair;
if ((rf_bw_band & item->bw_band) != rf_bw_band)
continue;
if (pair->reg == MT_BBP(AGC, 8)) {
u32 val = pair->value;
u8 gain;
gain = FIELD_GET(MT_BBP_AGC_GAIN, val);
gain -= dev->cal.rx.lna_gain * 2;
val &= ~MT_BBP_AGC_GAIN;
val |= FIELD_PREP(MT_BBP_AGC_GAIN, gain);
mt76_wr(dev, pair->reg, val);
} else {
mt76_wr(dev, pair->reg, pair->value);
}
}
}
static void mt76x0_phy_ant_select(struct mt76x02_dev *dev)
{
u16 ee_ant = mt76x02_eeprom_get(dev, MT_EE_ANTENNA);
u16 ee_cfg1 = mt76x02_eeprom_get(dev, MT_EE_CFG1_INIT);
u16 nic_conf2 = mt76x02_eeprom_get(dev, MT_EE_NIC_CONF_2);
u32 wlan, coex3;
bool ant_div;
wlan = mt76_rr(dev, MT_WLAN_FUN_CTRL);
coex3 = mt76_rr(dev, MT_COEXCFG3);
ee_ant &= ~(BIT(14) | BIT(12));
wlan &= ~(BIT(6) | BIT(5));
coex3 &= ~GENMASK(5, 2);
if (ee_ant & MT_EE_ANTENNA_DUAL) {
/* dual antenna mode */
ant_div = !(nic_conf2 & MT_EE_NIC_CONF_2_ANT_OPT) &&
(nic_conf2 & MT_EE_NIC_CONF_2_ANT_DIV);
if (ant_div)
ee_ant |= BIT(12);
else
coex3 |= BIT(4);
coex3 |= BIT(3);
if (dev->mt76.cap.has_2ghz)
wlan |= BIT(6);
} else {
/* sigle antenna mode */
if (dev->mt76.cap.has_5ghz) {
coex3 |= BIT(3) | BIT(4);
} else {
wlan |= BIT(6);
coex3 |= BIT(1);
}
}
if (is_mt7630(dev))
ee_ant |= BIT(14) | BIT(11);
mt76_wr(dev, MT_WLAN_FUN_CTRL, wlan);
mt76_rmw(dev, MT_CMB_CTRL, GENMASK(15, 0), ee_ant);
mt76_rmw(dev, MT_CSR_EE_CFG1, GENMASK(15, 0), ee_cfg1);
mt76_clear(dev, MT_COEXCFG0, BIT(2));
mt76_wr(dev, MT_COEXCFG3, coex3);
}
static void
mt76x0_phy_bbp_set_bw(struct mt76x02_dev *dev, enum nl80211_chan_width width)
{
enum { BW_20 = 0, BW_40 = 1, BW_80 = 2, BW_10 = 4};
int bw;
switch (width) {
default:
case NL80211_CHAN_WIDTH_20_NOHT:
case NL80211_CHAN_WIDTH_20:
bw = BW_20;
break;
case NL80211_CHAN_WIDTH_40:
bw = BW_40;
break;
case NL80211_CHAN_WIDTH_80:
bw = BW_80;
break;
case NL80211_CHAN_WIDTH_10:
bw = BW_10;
break;
case NL80211_CHAN_WIDTH_80P80:
case NL80211_CHAN_WIDTH_160:
case NL80211_CHAN_WIDTH_5:
/* TODO error */
return;
}
mt76x02_mcu_function_select(dev, BW_SETTING, bw);
}
static void mt76x0_phy_tssi_dc_calibrate(struct mt76x02_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
u32 val;
if (chan->band == NL80211_BAND_5GHZ)
mt76x0_rf_clear(dev, MT_RF(0, 67), 0xf);
/* bypass ADDA control */
mt76_wr(dev, MT_RF_SETTING_0, 0x60002237);
mt76_wr(dev, MT_RF_BYPASS_0, 0xffffffff);
/* bbp sw reset */
mt76_set(dev, MT_BBP(CORE, 4), BIT(0));
usleep_range(500, 1000);
mt76_clear(dev, MT_BBP(CORE, 4), BIT(0));
val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050;
mt76_wr(dev, MT_BBP(CORE, 34), val);
/* enable TX with DAC0 input */
mt76_wr(dev, MT_BBP(TXBE, 6), BIT(31));
mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200);
dev->cal.tssi_dc = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
/* stop bypass ADDA */
mt76_wr(dev, MT_RF_BYPASS_0, 0);
/* stop TX */
mt76_wr(dev, MT_BBP(TXBE, 6), 0);
/* bbp sw reset */
mt76_set(dev, MT_BBP(CORE, 4), BIT(0));
usleep_range(500, 1000);
mt76_clear(dev, MT_BBP(CORE, 4), BIT(0));
if (chan->band == NL80211_BAND_5GHZ)
mt76x0_rf_rmw(dev, MT_RF(0, 67), 0xf, 0x4);
}
static int
mt76x0_phy_tssi_adc_calibrate(struct mt76x02_dev *dev, s16 *ltssi,
u8 *info)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
u32 val;
val = (chan->band == NL80211_BAND_5GHZ) ? 0x80055 : 0x80050;
mt76_wr(dev, MT_BBP(CORE, 34), val);
if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) {
mt76_clear(dev, MT_BBP(CORE, 34), BIT(4));
return -ETIMEDOUT;
}
*ltssi = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
if (chan->band == NL80211_BAND_5GHZ)
*ltssi += 128;
/* set packet info#1 mode */
mt76_wr(dev, MT_BBP(CORE, 34), 0x80041);
info[0] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
/* set packet info#2 mode */
mt76_wr(dev, MT_BBP(CORE, 34), 0x80042);
info[1] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
/* set packet info#3 mode */
mt76_wr(dev, MT_BBP(CORE, 34), 0x80043);
info[2] = mt76_rr(dev, MT_BBP(CORE, 35)) & 0xff;
return 0;
}
static u8 mt76x0_phy_get_rf_pa_mode(struct mt76x02_dev *dev,
int index, u8 tx_rate)
{
u32 val, reg;
reg = (index == 1) ? MT_RF_PA_MODE_CFG1 : MT_RF_PA_MODE_CFG0;
val = mt76_rr(dev, reg);
return (val & (3 << (tx_rate * 2))) >> (tx_rate * 2);
}
static int
mt76x0_phy_get_target_power(struct mt76x02_dev *dev, u8 tx_mode,
u8 *info, s8 *target_power,
s8 *target_pa_power)
{
u8 tx_rate, cur_power;
cur_power = mt76_rr(dev, MT_TX_ALC_CFG_0) & MT_TX_ALC_CFG_0_CH_INIT_0;
switch (tx_mode) {
case 0:
/* cck rates */
tx_rate = (info[0] & 0x60) >> 5;
if (tx_rate > 3)
return -EINVAL;
*target_power = cur_power + dev->mt76.rate_power.cck[tx_rate];
*target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, tx_rate);
break;
case 1: {
u8 index;
/* ofdm rates */
tx_rate = (info[0] & 0xf0) >> 4;
switch (tx_rate) {
case 0xb:
index = 0;
break;
case 0xf:
index = 1;
break;
case 0xa:
index = 2;
break;
case 0xe:
index = 3;
break;
case 0x9:
index = 4;
break;
case 0xd:
index = 5;
break;
case 0x8:
index = 6;
break;
case 0xc:
index = 7;
break;
default:
return -EINVAL;
}
*target_power = cur_power + dev->mt76.rate_power.ofdm[index];
*target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 0, index + 4);
break;
}
case 4:
/* vht rates */
tx_rate = info[1] & 0xf;
if (tx_rate > 9)
return -EINVAL;
*target_power = cur_power + dev->mt76.rate_power.vht[tx_rate];
*target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate);
break;
default:
/* ht rates */
tx_rate = info[1] & 0x7f;
if (tx_rate > 9)
return -EINVAL;
*target_power = cur_power + dev->mt76.rate_power.ht[tx_rate];
*target_pa_power = mt76x0_phy_get_rf_pa_mode(dev, 1, tx_rate);
break;
}
return 0;
}
static s16 mt76x0_phy_lin2db(u16 val)
{
u32 mantissa = val << 4;
int ret, data;
s16 exp = -4;
while (mantissa < BIT(15)) {
mantissa <<= 1;
if (--exp < -20)
return -10000;
}
while (mantissa > 0xffff) {
mantissa >>= 1;
if (++exp > 20)
return -10000;
}
/* s(15,0) */
if (mantissa <= 47104)
data = mantissa + (mantissa >> 3) + (mantissa >> 4) - 38400;
else
data = mantissa - (mantissa >> 3) - (mantissa >> 6) - 23040;
data = max_t(int, 0, data);
ret = ((15 + exp) << 15) + data;
ret = (ret << 2) + (ret << 1) + (ret >> 6) + (ret >> 7);
return ret >> 10;
}
static int
mt76x0_phy_get_delta_power(struct mt76x02_dev *dev, u8 tx_mode,
s8 target_power, s8 target_pa_power,
s16 ltssi)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
int tssi_target = target_power << 12, tssi_slope;
int tssi_offset, tssi_db, ret;
u32 data;
u16 val;
if (chan->band == NL80211_BAND_5GHZ) {
u8 bound[7];
int i, err;
err = mt76x02_eeprom_copy(dev, MT_EE_TSSI_BOUND1, bound,
sizeof(bound));
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(bound); i++) {
if (chan->hw_value <= bound[i] || !bound[i])
break;
}
val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_5G + i * 2);
tssi_offset = val >> 8;
if ((tssi_offset >= 64 && tssi_offset <= 127) ||
(tssi_offset & BIT(7)))
tssi_offset -= BIT(8);
} else {
val = mt76x02_eeprom_get(dev, MT_EE_TSSI_SLOPE_2G);
tssi_offset = val >> 8;
if (tssi_offset & BIT(7))
tssi_offset -= BIT(8);
}
tssi_slope = val & 0xff;
switch (target_pa_power) {
case 1:
if (chan->band == NL80211_BAND_2GHZ)
tssi_target += 29491; /* 3.6 * 8192 */
/* fall through */
case 0:
break;
default:
tssi_target += 4424; /* 0.54 * 8192 */
break;
}
if (!tx_mode) {
data = mt76_rr(dev, MT_BBP(CORE, 1));
if (is_mt7630(dev) && mt76_is_mmio(dev)) {
int offset;
/* 2.3 * 8192 or 1.5 * 8192 */
offset = (data & BIT(5)) ? 18841 : 12288;
tssi_target += offset;
} else if (data & BIT(5)) {
/* 0.8 * 8192 */
tssi_target += 6554;
}
}
data = mt76_rr(dev, MT_BBP(TXBE, 4));
switch (data & 0x3) {
case 1:
tssi_target -= 49152; /* -6db * 8192 */
break;
case 2:
tssi_target -= 98304; /* -12db * 8192 */
break;
case 3:
tssi_target += 49152; /* 6db * 8192 */
break;
default:
break;
}
tssi_db = mt76x0_phy_lin2db(ltssi - dev->cal.tssi_dc) * tssi_slope;
if (chan->band == NL80211_BAND_5GHZ) {
tssi_db += ((tssi_offset - 50) << 10); /* offset s4.3 */
tssi_target -= tssi_db;
if (ltssi > 254 && tssi_target > 0) {
/* upper saturate */
tssi_target = 0;
}
} else {
tssi_db += (tssi_offset << 9); /* offset s3.4 */
tssi_target -= tssi_db;
/* upper-lower saturate */
if ((ltssi > 126 && tssi_target > 0) ||
((ltssi - dev->cal.tssi_dc) < 1 && tssi_target < 0)) {
tssi_target = 0;
}
}
if ((dev->cal.tssi_target ^ tssi_target) < 0 &&
dev->cal.tssi_target > -4096 && dev->cal.tssi_target < 4096 &&
tssi_target > -4096 && tssi_target < 4096) {
if ((tssi_target < 0 &&
tssi_target + dev->cal.tssi_target > 0) ||
(tssi_target > 0 &&
tssi_target + dev->cal.tssi_target <= 0))
tssi_target = 0;
else
dev->cal.tssi_target = tssi_target;
} else {
dev->cal.tssi_target = tssi_target;
}
/* make the compensate value to the nearest compensate code */
if (tssi_target > 0)
tssi_target += 2048;
else
tssi_target -= 2048;
tssi_target >>= 12;
ret = mt76_get_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP);
if (ret & BIT(5))
ret -= BIT(6);
ret += tssi_target;
ret = min_t(int, 31, ret);
return max_t(int, -32, ret);
}
static void mt76x0_phy_tssi_calibrate(struct mt76x02_dev *dev)
{
s8 target_power, target_pa_power;
u8 tssi_info[3], tx_mode;
s16 ltssi;
s8 val;
if (mt76x0_phy_tssi_adc_calibrate(dev, &ltssi, tssi_info) < 0)
return;
tx_mode = tssi_info[0] & 0x7;
if (mt76x0_phy_get_target_power(dev, tx_mode, tssi_info,
&target_power, &target_pa_power) < 0)
return;
val = mt76x0_phy_get_delta_power(dev, tx_mode, target_power,
target_pa_power, ltssi);
mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP, val);
}
void mt76x0_phy_set_txpower(struct mt76x02_dev *dev)
{
struct mt76_rate_power *t = &dev->mt76.rate_power;
s8 info;
mt76x0_get_tx_power_per_rate(dev, dev->mt76.chandef.chan, t);
mt76x0_get_power_info(dev, dev->mt76.chandef.chan, &info);
mt76x02_add_rate_power_offset(t, info);
mt76x02_limit_rate_power(t, dev->mt76.txpower_conf);
dev->mt76.txpower_cur = mt76x02_get_max_rate_power(t);
mt76x02_add_rate_power_offset(t, -info);
dev->target_power = info;
mt76x02_phy_set_txpower(dev, info, info);
}
void mt76x0_phy_calibrate(struct mt76x02_dev *dev, bool power_on)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
int is_5ghz = (chan->band == NL80211_BAND_5GHZ) ? 1 : 0;
u32 val, tx_alc, reg_val;
if (is_mt7630(dev))
return;
if (power_on) {
mt76x02_mcu_calibrate(dev, MCU_CAL_R, 0);
mt76x02_mcu_calibrate(dev, MCU_CAL_VCO, chan->hw_value);
usleep_range(10, 20);
if (mt76x0_tssi_enabled(dev)) {
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_RX);
mt76x0_phy_tssi_dc_calibrate(dev);
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
}
}
tx_alc = mt76_rr(dev, MT_TX_ALC_CFG_0);
mt76_wr(dev, MT_TX_ALC_CFG_0, 0);
usleep_range(500, 700);
reg_val = mt76_rr(dev, MT_BBP(IBI, 9));
mt76_wr(dev, MT_BBP(IBI, 9), 0xffffff7e);
if (is_5ghz) {
if (chan->hw_value < 100)
val = 0x701;
else if (chan->hw_value < 140)
val = 0x801;
else
val = 0x901;
} else {
val = 0x600;
}
mt76x02_mcu_calibrate(dev, MCU_CAL_FULL, val);
msleep(350);
mt76x02_mcu_calibrate(dev, MCU_CAL_LC, is_5ghz);
usleep_range(15000, 20000);
mt76_wr(dev, MT_BBP(IBI, 9), reg_val);
mt76_wr(dev, MT_TX_ALC_CFG_0, tx_alc);
mt76x02_mcu_calibrate(dev, MCU_CAL_RXDCOC, 1);
}
EXPORT_SYMBOL_GPL(mt76x0_phy_calibrate);
void mt76x0_phy_set_channel(struct mt76x02_dev *dev,
struct cfg80211_chan_def *chandef)
{
u32 ext_cca_chan[4] = {
[0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)),
[1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)),
[2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)),
[3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)),
};
bool scan = test_bit(MT76_SCANNING, &dev->mt76.state);
int ch_group_index, freq, freq1;
u8 channel;
u32 val;
u16 rf_bw_band;
freq = chandef->chan->center_freq;
freq1 = chandef->center_freq1;
channel = chandef->chan->hw_value;
rf_bw_band = (channel <= 14) ? RF_G_BAND : RF_A_BAND;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_40:
if (freq1 > freq)
ch_group_index = 0;
else
ch_group_index = 1;
channel += 2 - ch_group_index * 4;
rf_bw_band |= RF_BW_40;
break;
case NL80211_CHAN_WIDTH_80:
ch_group_index = (freq - freq1 + 30) / 20;
if (WARN_ON(ch_group_index < 0 || ch_group_index > 3))
ch_group_index = 0;
channel += 6 - ch_group_index * 4;
rf_bw_band |= RF_BW_80;
break;
default:
ch_group_index = 0;
rf_bw_band |= RF_BW_20;
break;
}
if (mt76_is_usb(dev)) {
mt76x0_phy_bbp_set_bw(dev, chandef->width);
} else {
if (chandef->width == NL80211_CHAN_WIDTH_80 ||
chandef->width == NL80211_CHAN_WIDTH_40)
val = 0x201;
else
val = 0x601;
mt76_wr(dev, MT_TX_SW_CFG0, val);
}
mt76x02_phy_set_bw(dev, chandef->width, ch_group_index);
mt76x02_phy_set_band(dev, chandef->chan->band,
ch_group_index & 1);
mt76_rmw(dev, MT_EXT_CCA_CFG,
(MT_EXT_CCA_CFG_CCA0 |
MT_EXT_CCA_CFG_CCA1 |
MT_EXT_CCA_CFG_CCA2 |
MT_EXT_CCA_CFG_CCA3 |
MT_EXT_CCA_CFG_CCA_MASK),
ext_cca_chan[ch_group_index]);
mt76x0_phy_set_band(dev, chandef->chan->band);
mt76x0_phy_set_chan_rf_params(dev, channel, rf_bw_band);
/* set Japan Tx filter at channel 14 */
if (channel == 14)
mt76_set(dev, MT_BBP(CORE, 1), 0x20);
else
mt76_clear(dev, MT_BBP(CORE, 1), 0x20);
mt76x0_read_rx_gain(dev);
mt76x0_phy_set_chan_bbp_params(dev, rf_bw_band);
/* enable vco */
mt76x0_rf_set(dev, MT_RF(0, 4), BIT(7));
if (scan)
return;
mt76x02_init_agc_gain(dev);
mt76x0_phy_calibrate(dev, false);
mt76x0_phy_set_txpower(dev);
ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work,
MT_CALIBRATE_INTERVAL);
}
static void mt76x0_phy_temp_sensor(struct mt76x02_dev *dev)
{
u8 rf_b7_73, rf_b0_66, rf_b0_67;
s8 val;
rf_b7_73 = mt76x0_rf_rr(dev, MT_RF(7, 73));
rf_b0_66 = mt76x0_rf_rr(dev, MT_RF(0, 66));
rf_b0_67 = mt76x0_rf_rr(dev, MT_RF(0, 67));
mt76x0_rf_wr(dev, MT_RF(7, 73), 0x02);
mt76x0_rf_wr(dev, MT_RF(0, 66), 0x23);
mt76x0_rf_wr(dev, MT_RF(0, 67), 0x01);
mt76_wr(dev, MT_BBP(CORE, 34), 0x00080055);
if (!mt76_poll_msec(dev, MT_BBP(CORE, 34), BIT(4), 0, 200)) {
mt76_clear(dev, MT_BBP(CORE, 34), BIT(4));
goto done;
}
val = mt76_rr(dev, MT_BBP(CORE, 35));
val = (35 * (val - dev->cal.rx.temp_offset)) / 10 + 25;
if (abs(val - dev->cal.temp_vco) > 20) {
mt76x02_mcu_calibrate(dev, MCU_CAL_VCO,
dev->mt76.chandef.chan->hw_value);
dev->cal.temp_vco = val;
}
if (abs(val - dev->cal.temp) > 30) {
mt76x0_phy_calibrate(dev, false);
dev->cal.temp = val;
}
done:
mt76x0_rf_wr(dev, MT_RF(7, 73), rf_b7_73);
mt76x0_rf_wr(dev, MT_RF(0, 66), rf_b0_66);
mt76x0_rf_wr(dev, MT_RF(0, 67), rf_b0_67);
}
static void mt76x0_phy_set_gain_val(struct mt76x02_dev *dev)
{
u8 gain = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust;
mt76_rmw_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN, gain);
if ((dev->mt76.chandef.chan->flags & IEEE80211_CHAN_RADAR) &&
!is_mt7630(dev))
mt76x02_phy_dfs_adjust_agc(dev);
}
static void
mt76x0_phy_update_channel_gain(struct mt76x02_dev *dev)
{
bool gain_change;
u8 gain_delta;
int low_gain;
dev->cal.avg_rssi_all = mt76_get_min_avg_rssi(&dev->mt76);
if (!dev->cal.avg_rssi_all)
dev->cal.avg_rssi_all = -75;
low_gain = (dev->cal.avg_rssi_all > mt76x02_get_rssi_gain_thresh(dev)) +
(dev->cal.avg_rssi_all > mt76x02_get_low_rssi_gain_thresh(dev));
gain_change = dev->cal.low_gain < 0 ||
(dev->cal.low_gain & 2) ^ (low_gain & 2);
dev->cal.low_gain = low_gain;
if (!gain_change) {
if (mt76x02_phy_adjust_vga_gain(dev))
mt76x0_phy_set_gain_val(dev);
return;
}
dev->cal.agc_gain_adjust = (low_gain == 2) ? 0 : 10;
gain_delta = (low_gain == 2) ? 10 : 0;
dev->cal.agc_gain_cur[0] = dev->cal.agc_gain_init[0] - gain_delta;
mt76x0_phy_set_gain_val(dev);
/* clear false CCA counters */
mt76_rr(dev, MT_RX_STAT_1);
}
static void mt76x0_phy_calibration_work(struct work_struct *work)
{
struct mt76x02_dev *dev = container_of(work, struct mt76x02_dev,
cal_work.work);
mt76x0_phy_update_channel_gain(dev);
if (mt76x0_tssi_enabled(dev))
mt76x0_phy_tssi_calibrate(dev);
else
mt76x0_phy_temp_sensor(dev);
ieee80211_queue_delayed_work(dev->mt76.hw, &dev->cal_work,
4 * MT_CALIBRATE_INTERVAL);
}
static void mt76x0_rf_patch_reg_array(struct mt76x02_dev *dev,
const struct mt76_reg_pair *rp, int len)
{
int i;
for (i = 0; i < len; i++) {
u32 reg = rp[i].reg;
u8 val = rp[i].value;
switch (reg) {
case MT_RF(0, 3):
if (mt76_is_mmio(dev)) {
if (is_mt7630(dev))
val = 0x70;
else
val = 0x63;
} else {
val = 0x73;
}
break;
case MT_RF(0, 21):
if (is_mt7610e(dev))
val = 0x10;
else
val = 0x12;
break;
case MT_RF(5, 2):
if (is_mt7630(dev))
val = 0x1d;
else if (is_mt7610e(dev))
val = 0x00;
else
val = 0x0c;
break;
default:
break;
}
mt76x0_rf_wr(dev, reg, val);
}
}
static void mt76x0_phy_rf_init(struct mt76x02_dev *dev)
{
int i;
u8 val;
mt76x0_rf_patch_reg_array(dev, mt76x0_rf_central_tab,
ARRAY_SIZE(mt76x0_rf_central_tab));
mt76x0_rf_patch_reg_array(dev, mt76x0_rf_2g_channel_0_tab,
ARRAY_SIZE(mt76x0_rf_2g_channel_0_tab));
RF_RANDOM_WRITE(dev, mt76x0_rf_5g_channel_0_tab);
RF_RANDOM_WRITE(dev, mt76x0_rf_vga_channel_0_tab);
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_bw_switch_tab); i++) {
const struct mt76x0_rf_switch_item *item = &mt76x0_rf_bw_switch_tab[i];
if (item->bw_band == RF_BW_20)
mt76x0_rf_wr(dev, item->rf_bank_reg, item->value);
else if (((RF_G_BAND | RF_BW_20) & item->bw_band) ==
(RF_G_BAND | RF_BW_20))
mt76x0_rf_wr(dev, item->rf_bank_reg, item->value);
}
for (i = 0; i < ARRAY_SIZE(mt76x0_rf_band_switch_tab); i++) {
if (mt76x0_rf_band_switch_tab[i].bw_band & RF_G_BAND) {
mt76x0_rf_wr(dev,
mt76x0_rf_band_switch_tab[i].rf_bank_reg,
mt76x0_rf_band_switch_tab[i].value);
}
}
/* Frequency calibration
* E1: B0.R22<6:0>: xo_cxo<6:0>
* E2: B0.R21<0>: xo_cxo<0>, B0.R22<7:0>: xo_cxo<8:1>
*/
mt76x0_rf_wr(dev, MT_RF(0, 22),
min_t(u8, dev->cal.rx.freq_offset, 0xbf));
val = mt76x0_rf_rr(dev, MT_RF(0, 22));
/* Reset procedure DAC during power-up:
* - set B0.R73<7>
* - clear B0.R73<7>
* - set B0.R73<7>
*/
mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7));
mt76x0_rf_clear(dev, MT_RF(0, 73), BIT(7));
mt76x0_rf_set(dev, MT_RF(0, 73), BIT(7));
/* vcocal_en: initiate VCO calibration (reset after completion)) */
mt76x0_rf_set(dev, MT_RF(0, 4), 0x80);
}
void mt76x0_phy_init(struct mt76x02_dev *dev)
{
INIT_DELAYED_WORK(&dev->cal_work, mt76x0_phy_calibration_work);
mt76x0_phy_ant_select(dev);
mt76x0_phy_rf_init(dev);
mt76x02_phy_set_rxpath(dev);
mt76x02_phy_set_txdac(dev);
}