2507 lines
70 KiB
C
2507 lines
70 KiB
C
|
/******************************************************************************
|
||
|
*
|
||
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
||
|
* redistributing this file, you may do so under either license.
|
||
|
*
|
||
|
* GPL LICENSE SUMMARY
|
||
|
*
|
||
|
* Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
|
||
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
||
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
||
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of version 2 of the GNU General Public License as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
* more details.
|
||
|
*
|
||
|
* The full GNU General Public License is included in this distribution in the
|
||
|
* file called COPYING.
|
||
|
*
|
||
|
* Contact Information:
|
||
|
* Intel Linux Wireless <linuxwifi@intel.com>
|
||
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
*
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
|
||
|
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
|
||
|
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
|
||
|
* Copyright(c) 2018 - 2019 Intel Corporation
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
#include <linux/etherdevice.h>
|
||
|
#include <linux/ieee80211.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <net/ip6_checksum.h>
|
||
|
#include <net/tso.h>
|
||
|
|
||
|
#include "iwl-debug.h"
|
||
|
#include "iwl-csr.h"
|
||
|
#include "iwl-prph.h"
|
||
|
#include "iwl-io.h"
|
||
|
#include "iwl-scd.h"
|
||
|
#include "iwl-op-mode.h"
|
||
|
#include "internal.h"
|
||
|
#include "fw/api/tx.h"
|
||
|
|
||
|
#define IWL_TX_CRC_SIZE 4
|
||
|
#define IWL_TX_DELIMITER_SIZE 4
|
||
|
|
||
|
/*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
|
||
|
* DMA services
|
||
|
*
|
||
|
* Theory of operation
|
||
|
*
|
||
|
* A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
|
||
|
* of buffer descriptors, each of which points to one or more data buffers for
|
||
|
* the device to read from or fill. Driver and device exchange status of each
|
||
|
* queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
|
||
|
* entries in each circular buffer, to protect against confusing empty and full
|
||
|
* queue states.
|
||
|
*
|
||
|
* The device reads or writes the data in the queues via the device's several
|
||
|
* DMA/FIFO channels. Each queue is mapped to a single DMA channel.
|
||
|
*
|
||
|
* For Tx queue, there are low mark and high mark limits. If, after queuing
|
||
|
* the packet for Tx, free space become < low mark, Tx queue stopped. When
|
||
|
* reclaiming packets (on 'tx done IRQ), if free space become > high mark,
|
||
|
* Tx queue resumed.
|
||
|
*
|
||
|
***************************************************/
|
||
|
|
||
|
int iwl_queue_space(struct iwl_trans *trans, const struct iwl_txq *q)
|
||
|
{
|
||
|
unsigned int max;
|
||
|
unsigned int used;
|
||
|
|
||
|
/*
|
||
|
* To avoid ambiguity between empty and completely full queues, there
|
||
|
* should always be less than max_tfd_queue_size elements in the queue.
|
||
|
* If q->n_window is smaller than max_tfd_queue_size, there is no need
|
||
|
* to reserve any queue entries for this purpose.
|
||
|
*/
|
||
|
if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size)
|
||
|
max = q->n_window;
|
||
|
else
|
||
|
max = trans->trans_cfg->base_params->max_tfd_queue_size - 1;
|
||
|
|
||
|
/*
|
||
|
* max_tfd_queue_size is a power of 2, so the following is equivalent to
|
||
|
* modulo by max_tfd_queue_size and is well defined.
|
||
|
*/
|
||
|
used = (q->write_ptr - q->read_ptr) &
|
||
|
(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
|
||
|
|
||
|
if (WARN_ON(used > max))
|
||
|
return 0;
|
||
|
|
||
|
return max - used;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_queue_init - Initialize queue's high/low-water and read/write indexes
|
||
|
*/
|
||
|
static int iwl_queue_init(struct iwl_txq *q, int slots_num)
|
||
|
{
|
||
|
q->n_window = slots_num;
|
||
|
|
||
|
/* slots_num must be power-of-two size, otherwise
|
||
|
* iwl_pcie_get_cmd_index is broken. */
|
||
|
if (WARN_ON(!is_power_of_2(slots_num)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
q->low_mark = q->n_window / 4;
|
||
|
if (q->low_mark < 4)
|
||
|
q->low_mark = 4;
|
||
|
|
||
|
q->high_mark = q->n_window / 8;
|
||
|
if (q->high_mark < 2)
|
||
|
q->high_mark = 2;
|
||
|
|
||
|
q->write_ptr = 0;
|
||
|
q->read_ptr = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans,
|
||
|
struct iwl_dma_ptr *ptr, size_t size)
|
||
|
{
|
||
|
if (WARN_ON(ptr->addr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
ptr->addr = dma_alloc_coherent(trans->dev, size,
|
||
|
&ptr->dma, GFP_KERNEL);
|
||
|
if (!ptr->addr)
|
||
|
return -ENOMEM;
|
||
|
ptr->size = size;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr)
|
||
|
{
|
||
|
if (unlikely(!ptr->addr))
|
||
|
return;
|
||
|
|
||
|
dma_free_coherent(trans->dev, ptr->size, ptr->addr, ptr->dma);
|
||
|
memset(ptr, 0, sizeof(*ptr));
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_txq_stuck_timer(struct timer_list *t)
|
||
|
{
|
||
|
struct iwl_txq *txq = from_timer(txq, t, stuck_timer);
|
||
|
struct iwl_trans_pcie *trans_pcie = txq->trans_pcie;
|
||
|
struct iwl_trans *trans = iwl_trans_pcie_get_trans(trans_pcie);
|
||
|
|
||
|
spin_lock(&txq->lock);
|
||
|
/* check if triggered erroneously */
|
||
|
if (txq->read_ptr == txq->write_ptr) {
|
||
|
spin_unlock(&txq->lock);
|
||
|
return;
|
||
|
}
|
||
|
spin_unlock(&txq->lock);
|
||
|
|
||
|
iwl_trans_pcie_log_scd_error(trans, txq);
|
||
|
|
||
|
iwl_force_nmi(trans);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array
|
||
|
*/
|
||
|
static void iwl_pcie_txq_update_byte_cnt_tbl(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq, u16 byte_cnt,
|
||
|
int num_tbs)
|
||
|
{
|
||
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl;
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int write_ptr = txq->write_ptr;
|
||
|
int txq_id = txq->id;
|
||
|
u8 sec_ctl = 0;
|
||
|
u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
|
||
|
__le16 bc_ent;
|
||
|
struct iwl_device_tx_cmd *dev_cmd = txq->entries[txq->write_ptr].cmd;
|
||
|
struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload;
|
||
|
u8 sta_id = tx_cmd->sta_id;
|
||
|
|
||
|
scd_bc_tbl = trans_pcie->scd_bc_tbls.addr;
|
||
|
|
||
|
sec_ctl = tx_cmd->sec_ctl;
|
||
|
|
||
|
switch (sec_ctl & TX_CMD_SEC_MSK) {
|
||
|
case TX_CMD_SEC_CCM:
|
||
|
len += IEEE80211_CCMP_MIC_LEN;
|
||
|
break;
|
||
|
case TX_CMD_SEC_TKIP:
|
||
|
len += IEEE80211_TKIP_ICV_LEN;
|
||
|
break;
|
||
|
case TX_CMD_SEC_WEP:
|
||
|
len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN;
|
||
|
break;
|
||
|
}
|
||
|
if (trans_pcie->bc_table_dword)
|
||
|
len = DIV_ROUND_UP(len, 4);
|
||
|
|
||
|
if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX))
|
||
|
return;
|
||
|
|
||
|
bc_ent = cpu_to_le16(len | (sta_id << 12));
|
||
|
|
||
|
scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
|
||
|
|
||
|
if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
|
||
|
scd_bc_tbl[txq_id].
|
||
|
tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent;
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_txq_inval_byte_cnt_tbl(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie =
|
||
|
IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans_pcie->scd_bc_tbls.addr;
|
||
|
int txq_id = txq->id;
|
||
|
int read_ptr = txq->read_ptr;
|
||
|
u8 sta_id = 0;
|
||
|
__le16 bc_ent;
|
||
|
struct iwl_device_tx_cmd *dev_cmd = txq->entries[read_ptr].cmd;
|
||
|
struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload;
|
||
|
|
||
|
WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX);
|
||
|
|
||
|
if (txq_id != trans_pcie->cmd_queue)
|
||
|
sta_id = tx_cmd->sta_id;
|
||
|
|
||
|
bc_ent = cpu_to_le16(1 | (sta_id << 12));
|
||
|
|
||
|
scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent;
|
||
|
|
||
|
if (read_ptr < TFD_QUEUE_SIZE_BC_DUP)
|
||
|
scd_bc_tbl[txq_id].
|
||
|
tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_inc_wr_ptr - Send new write index to hardware
|
||
|
*/
|
||
|
static void iwl_pcie_txq_inc_wr_ptr(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 reg = 0;
|
||
|
int txq_id = txq->id;
|
||
|
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
/*
|
||
|
* explicitly wake up the NIC if:
|
||
|
* 1. shadow registers aren't enabled
|
||
|
* 2. NIC is woken up for CMD regardless of shadow outside this function
|
||
|
* 3. there is a chance that the NIC is asleep
|
||
|
*/
|
||
|
if (!trans->trans_cfg->base_params->shadow_reg_enable &&
|
||
|
txq_id != trans_pcie->cmd_queue &&
|
||
|
test_bit(STATUS_TPOWER_PMI, &trans->status)) {
|
||
|
/*
|
||
|
* wake up nic if it's powered down ...
|
||
|
* uCode will wake up, and interrupt us again, so next
|
||
|
* time we'll skip this part.
|
||
|
*/
|
||
|
reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
|
||
|
|
||
|
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
|
||
|
IWL_DEBUG_INFO(trans, "Tx queue %d requesting wakeup, GP1 = 0x%x\n",
|
||
|
txq_id, reg);
|
||
|
iwl_set_bit(trans, CSR_GP_CNTRL,
|
||
|
BIT(trans->trans_cfg->csr->flag_mac_access_req));
|
||
|
txq->need_update = true;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* if not in power-save mode, uCode will never sleep when we're
|
||
|
* trying to tx (during RFKILL, we're not trying to tx).
|
||
|
*/
|
||
|
IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq_id, txq->write_ptr);
|
||
|
if (!txq->block)
|
||
|
iwl_write32(trans, HBUS_TARG_WRPTR,
|
||
|
txq->write_ptr | (txq_id << 8));
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
|
||
|
struct iwl_txq *txq = trans_pcie->txq[i];
|
||
|
|
||
|
if (!test_bit(i, trans_pcie->queue_used))
|
||
|
continue;
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
if (txq->need_update) {
|
||
|
iwl_pcie_txq_inc_wr_ptr(trans, txq);
|
||
|
txq->need_update = false;
|
||
|
}
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline dma_addr_t iwl_pcie_tfd_tb_get_addr(struct iwl_trans *trans,
|
||
|
void *_tfd, u8 idx)
|
||
|
{
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
struct iwl_tfh_tfd *tfd = _tfd;
|
||
|
struct iwl_tfh_tb *tb = &tfd->tbs[idx];
|
||
|
|
||
|
return (dma_addr_t)(le64_to_cpu(tb->addr));
|
||
|
} else {
|
||
|
struct iwl_tfd *tfd = _tfd;
|
||
|
struct iwl_tfd_tb *tb = &tfd->tbs[idx];
|
||
|
dma_addr_t addr = get_unaligned_le32(&tb->lo);
|
||
|
dma_addr_t hi_len;
|
||
|
|
||
|
if (sizeof(dma_addr_t) <= sizeof(u32))
|
||
|
return addr;
|
||
|
|
||
|
hi_len = le16_to_cpu(tb->hi_n_len) & 0xF;
|
||
|
|
||
|
/*
|
||
|
* shift by 16 twice to avoid warnings on 32-bit
|
||
|
* (where this code never runs anyway due to the
|
||
|
* if statement above)
|
||
|
*/
|
||
|
return addr | ((hi_len << 16) << 16);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void iwl_pcie_tfd_set_tb(struct iwl_trans *trans, void *tfd,
|
||
|
u8 idx, dma_addr_t addr, u16 len)
|
||
|
{
|
||
|
struct iwl_tfd *tfd_fh = (void *)tfd;
|
||
|
struct iwl_tfd_tb *tb = &tfd_fh->tbs[idx];
|
||
|
|
||
|
u16 hi_n_len = len << 4;
|
||
|
|
||
|
put_unaligned_le32(addr, &tb->lo);
|
||
|
hi_n_len |= iwl_get_dma_hi_addr(addr);
|
||
|
|
||
|
tb->hi_n_len = cpu_to_le16(hi_n_len);
|
||
|
|
||
|
tfd_fh->num_tbs = idx + 1;
|
||
|
}
|
||
|
|
||
|
static inline u8 iwl_pcie_tfd_get_num_tbs(struct iwl_trans *trans, void *_tfd)
|
||
|
{
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
struct iwl_tfh_tfd *tfd = _tfd;
|
||
|
|
||
|
return le16_to_cpu(tfd->num_tbs) & 0x1f;
|
||
|
} else {
|
||
|
struct iwl_tfd *tfd = _tfd;
|
||
|
|
||
|
return tfd->num_tbs & 0x1f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_tfd_unmap(struct iwl_trans *trans,
|
||
|
struct iwl_cmd_meta *meta,
|
||
|
struct iwl_txq *txq, int index)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int i, num_tbs;
|
||
|
void *tfd = iwl_pcie_get_tfd(trans, txq, index);
|
||
|
|
||
|
/* Sanity check on number of chunks */
|
||
|
num_tbs = iwl_pcie_tfd_get_num_tbs(trans, tfd);
|
||
|
|
||
|
if (num_tbs > trans_pcie->max_tbs) {
|
||
|
IWL_ERR(trans, "Too many chunks: %i\n", num_tbs);
|
||
|
/* @todo issue fatal error, it is quite serious situation */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* first TB is never freed - it's the bidirectional DMA data */
|
||
|
|
||
|
for (i = 1; i < num_tbs; i++) {
|
||
|
if (meta->tbs & BIT(i))
|
||
|
dma_unmap_page(trans->dev,
|
||
|
iwl_pcie_tfd_tb_get_addr(trans, tfd, i),
|
||
|
iwl_pcie_tfd_tb_get_len(trans, tfd, i),
|
||
|
DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_single(trans->dev,
|
||
|
iwl_pcie_tfd_tb_get_addr(trans, tfd,
|
||
|
i),
|
||
|
iwl_pcie_tfd_tb_get_len(trans, tfd,
|
||
|
i),
|
||
|
DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
meta->tbs = 0;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
struct iwl_tfh_tfd *tfd_fh = (void *)tfd;
|
||
|
|
||
|
tfd_fh->num_tbs = 0;
|
||
|
} else {
|
||
|
struct iwl_tfd *tfd_fh = (void *)tfd;
|
||
|
|
||
|
tfd_fh->num_tbs = 0;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr]
|
||
|
* @trans - transport private data
|
||
|
* @txq - tx queue
|
||
|
* @dma_dir - the direction of the DMA mapping
|
||
|
*
|
||
|
* Does NOT advance any TFD circular buffer read/write indexes
|
||
|
* Does NOT free the TFD itself (which is within circular buffer)
|
||
|
*/
|
||
|
void iwl_pcie_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq)
|
||
|
{
|
||
|
/* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and
|
||
|
* idx is bounded by n_window
|
||
|
*/
|
||
|
int rd_ptr = txq->read_ptr;
|
||
|
int idx = iwl_pcie_get_cmd_index(txq, rd_ptr);
|
||
|
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
/* We have only q->n_window txq->entries, but we use
|
||
|
* TFD_QUEUE_SIZE_MAX tfds
|
||
|
*/
|
||
|
iwl_pcie_tfd_unmap(trans, &txq->entries[idx].meta, txq, rd_ptr);
|
||
|
|
||
|
/* free SKB */
|
||
|
if (txq->entries) {
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
skb = txq->entries[idx].skb;
|
||
|
|
||
|
/* Can be called from irqs-disabled context
|
||
|
* If skb is not NULL, it means that the whole queue is being
|
||
|
* freed and that the queue is not empty - free the skb
|
||
|
*/
|
||
|
if (skb) {
|
||
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
||
|
txq->entries[idx].skb = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_txq_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq,
|
||
|
dma_addr_t addr, u16 len, bool reset)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
void *tfd;
|
||
|
u32 num_tbs;
|
||
|
|
||
|
tfd = txq->tfds + trans_pcie->tfd_size * txq->write_ptr;
|
||
|
|
||
|
if (reset)
|
||
|
memset(tfd, 0, trans_pcie->tfd_size);
|
||
|
|
||
|
num_tbs = iwl_pcie_tfd_get_num_tbs(trans, tfd);
|
||
|
|
||
|
/* Each TFD can point to a maximum max_tbs Tx buffers */
|
||
|
if (num_tbs >= trans_pcie->max_tbs) {
|
||
|
IWL_ERR(trans, "Error can not send more than %d chunks\n",
|
||
|
trans_pcie->max_tbs);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (WARN(addr & ~IWL_TX_DMA_MASK,
|
||
|
"Unaligned address = %llx\n", (unsigned long long)addr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
iwl_pcie_tfd_set_tb(trans, tfd, num_tbs, addr, len);
|
||
|
|
||
|
return num_tbs;
|
||
|
}
|
||
|
|
||
|
int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq,
|
||
|
int slots_num, bool cmd_queue)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
size_t tfd_sz = trans_pcie->tfd_size *
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size;
|
||
|
size_t tb0_buf_sz;
|
||
|
int i;
|
||
|
|
||
|
if (WARN_ON(txq->entries || txq->tfds))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh)
|
||
|
tfd_sz = trans_pcie->tfd_size * slots_num;
|
||
|
|
||
|
timer_setup(&txq->stuck_timer, iwl_pcie_txq_stuck_timer, 0);
|
||
|
txq->trans_pcie = trans_pcie;
|
||
|
|
||
|
txq->n_window = slots_num;
|
||
|
|
||
|
txq->entries = kcalloc(slots_num,
|
||
|
sizeof(struct iwl_pcie_txq_entry),
|
||
|
GFP_KERNEL);
|
||
|
|
||
|
if (!txq->entries)
|
||
|
goto error;
|
||
|
|
||
|
if (cmd_queue)
|
||
|
for (i = 0; i < slots_num; i++) {
|
||
|
txq->entries[i].cmd =
|
||
|
kmalloc(sizeof(struct iwl_device_cmd),
|
||
|
GFP_KERNEL);
|
||
|
if (!txq->entries[i].cmd)
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Circular buffer of transmit frame descriptors (TFDs),
|
||
|
* shared with device */
|
||
|
txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz,
|
||
|
&txq->dma_addr, GFP_KERNEL);
|
||
|
if (!txq->tfds)
|
||
|
goto error;
|
||
|
|
||
|
BUILD_BUG_ON(IWL_FIRST_TB_SIZE_ALIGN != sizeof(*txq->first_tb_bufs));
|
||
|
|
||
|
tb0_buf_sz = sizeof(*txq->first_tb_bufs) * slots_num;
|
||
|
|
||
|
txq->first_tb_bufs = dma_alloc_coherent(trans->dev, tb0_buf_sz,
|
||
|
&txq->first_tb_dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!txq->first_tb_bufs)
|
||
|
goto err_free_tfds;
|
||
|
|
||
|
return 0;
|
||
|
err_free_tfds:
|
||
|
dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->dma_addr);
|
||
|
error:
|
||
|
if (txq->entries && cmd_queue)
|
||
|
for (i = 0; i < slots_num; i++)
|
||
|
kfree(txq->entries[i].cmd);
|
||
|
kfree(txq->entries);
|
||
|
txq->entries = NULL;
|
||
|
|
||
|
return -ENOMEM;
|
||
|
|
||
|
}
|
||
|
|
||
|
int iwl_pcie_txq_init(struct iwl_trans *trans, struct iwl_txq *txq,
|
||
|
int slots_num, bool cmd_queue)
|
||
|
{
|
||
|
int ret;
|
||
|
u32 tfd_queue_max_size =
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size;
|
||
|
|
||
|
txq->need_update = false;
|
||
|
|
||
|
/* max_tfd_queue_size must be power-of-two size, otherwise
|
||
|
* iwl_queue_inc_wrap and iwl_queue_dec_wrap are broken. */
|
||
|
if (WARN_ONCE(tfd_queue_max_size & (tfd_queue_max_size - 1),
|
||
|
"Max tfd queue size must be a power of two, but is %d",
|
||
|
tfd_queue_max_size))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Initialize queue's high/low-water marks, and head/tail indexes */
|
||
|
ret = iwl_queue_init(txq, slots_num);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
spin_lock_init(&txq->lock);
|
||
|
|
||
|
if (cmd_queue) {
|
||
|
static struct lock_class_key iwl_pcie_cmd_queue_lock_class;
|
||
|
|
||
|
lockdep_set_class(&txq->lock, &iwl_pcie_cmd_queue_lock_class);
|
||
|
}
|
||
|
|
||
|
__skb_queue_head_init(&txq->overflow_q);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_free_tso_page(struct iwl_trans_pcie *trans_pcie,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct page **page_ptr;
|
||
|
|
||
|
page_ptr = (void *)((u8 *)skb->cb + trans_pcie->page_offs);
|
||
|
|
||
|
if (*page_ptr) {
|
||
|
__free_page(*page_ptr);
|
||
|
*page_ptr = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_clear_cmd_in_flight(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
|
||
|
lockdep_assert_held(&trans_pcie->reg_lock);
|
||
|
|
||
|
if (!trans->trans_cfg->base_params->apmg_wake_up_wa)
|
||
|
return;
|
||
|
if (WARN_ON(!trans_pcie->cmd_hold_nic_awake))
|
||
|
return;
|
||
|
|
||
|
trans_pcie->cmd_hold_nic_awake = false;
|
||
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
||
|
BIT(trans->trans_cfg->csr->flag_mac_access_req));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_unmap - Unmap any remaining DMA mappings and free skb's
|
||
|
*/
|
||
|
static void iwl_pcie_txq_unmap(struct iwl_trans *trans, int txq_id)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
while (txq->write_ptr != txq->read_ptr) {
|
||
|
IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n",
|
||
|
txq_id, txq->read_ptr);
|
||
|
|
||
|
if (txq_id != trans_pcie->cmd_queue) {
|
||
|
struct sk_buff *skb = txq->entries[txq->read_ptr].skb;
|
||
|
|
||
|
if (WARN_ON_ONCE(!skb))
|
||
|
continue;
|
||
|
|
||
|
iwl_pcie_free_tso_page(trans_pcie, skb);
|
||
|
}
|
||
|
iwl_pcie_txq_free_tfd(trans, txq);
|
||
|
txq->read_ptr = iwl_queue_inc_wrap(trans, txq->read_ptr);
|
||
|
|
||
|
if (txq->read_ptr == txq->write_ptr) {
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
||
|
if (txq_id == trans_pcie->cmd_queue)
|
||
|
iwl_pcie_clear_cmd_in_flight(trans);
|
||
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (!skb_queue_empty(&txq->overflow_q)) {
|
||
|
struct sk_buff *skb = __skb_dequeue(&txq->overflow_q);
|
||
|
|
||
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
||
|
}
|
||
|
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
|
||
|
/* just in case - this queue may have been stopped */
|
||
|
iwl_wake_queue(trans, txq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_free - Deallocate DMA queue.
|
||
|
* @txq: Transmit queue to deallocate.
|
||
|
*
|
||
|
* Empty queue by removing and destroying all BD's.
|
||
|
* Free all buffers.
|
||
|
* 0-fill, but do not free "txq" descriptor structure.
|
||
|
*/
|
||
|
static void iwl_pcie_txq_free(struct iwl_trans *trans, int txq_id)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
struct device *dev = trans->dev;
|
||
|
int i;
|
||
|
|
||
|
if (WARN_ON(!txq))
|
||
|
return;
|
||
|
|
||
|
iwl_pcie_txq_unmap(trans, txq_id);
|
||
|
|
||
|
/* De-alloc array of command/tx buffers */
|
||
|
if (txq_id == trans_pcie->cmd_queue)
|
||
|
for (i = 0; i < txq->n_window; i++) {
|
||
|
kzfree(txq->entries[i].cmd);
|
||
|
kzfree(txq->entries[i].free_buf);
|
||
|
}
|
||
|
|
||
|
/* De-alloc circular buffer of TFDs */
|
||
|
if (txq->tfds) {
|
||
|
dma_free_coherent(dev,
|
||
|
trans_pcie->tfd_size *
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size,
|
||
|
txq->tfds, txq->dma_addr);
|
||
|
txq->dma_addr = 0;
|
||
|
txq->tfds = NULL;
|
||
|
|
||
|
dma_free_coherent(dev,
|
||
|
sizeof(*txq->first_tb_bufs) * txq->n_window,
|
||
|
txq->first_tb_bufs, txq->first_tb_dma);
|
||
|
}
|
||
|
|
||
|
kfree(txq->entries);
|
||
|
txq->entries = NULL;
|
||
|
|
||
|
del_timer_sync(&txq->stuck_timer);
|
||
|
|
||
|
/* 0-fill queue descriptor structure */
|
||
|
memset(txq, 0, sizeof(*txq));
|
||
|
}
|
||
|
|
||
|
void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int nq = trans->trans_cfg->base_params->num_of_queues;
|
||
|
int chan;
|
||
|
u32 reg_val;
|
||
|
int clear_dwords = (SCD_TRANS_TBL_OFFSET_QUEUE(nq) -
|
||
|
SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(u32);
|
||
|
|
||
|
/* make sure all queue are not stopped/used */
|
||
|
memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped));
|
||
|
memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used));
|
||
|
|
||
|
trans_pcie->scd_base_addr =
|
||
|
iwl_read_prph(trans, SCD_SRAM_BASE_ADDR);
|
||
|
|
||
|
WARN_ON(scd_base_addr != 0 &&
|
||
|
scd_base_addr != trans_pcie->scd_base_addr);
|
||
|
|
||
|
/* reset context data, TX status and translation data */
|
||
|
iwl_trans_write_mem(trans, trans_pcie->scd_base_addr +
|
||
|
SCD_CONTEXT_MEM_LOWER_BOUND,
|
||
|
NULL, clear_dwords);
|
||
|
|
||
|
iwl_write_prph(trans, SCD_DRAM_BASE_ADDR,
|
||
|
trans_pcie->scd_bc_tbls.dma >> 10);
|
||
|
|
||
|
/* The chain extension of the SCD doesn't work well. This feature is
|
||
|
* enabled by default by the HW, so we need to disable it manually.
|
||
|
*/
|
||
|
if (trans->trans_cfg->base_params->scd_chain_ext_wa)
|
||
|
iwl_write_prph(trans, SCD_CHAINEXT_EN, 0);
|
||
|
|
||
|
iwl_trans_ac_txq_enable(trans, trans_pcie->cmd_queue,
|
||
|
trans_pcie->cmd_fifo,
|
||
|
trans_pcie->cmd_q_wdg_timeout);
|
||
|
|
||
|
/* Activate all Tx DMA/FIFO channels */
|
||
|
iwl_scd_activate_fifos(trans);
|
||
|
|
||
|
/* Enable DMA channel */
|
||
|
for (chan = 0; chan < FH_TCSR_CHNL_NUM; chan++)
|
||
|
iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(chan),
|
||
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
|
||
|
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
|
||
|
|
||
|
/* Update FH chicken bits */
|
||
|
reg_val = iwl_read_direct32(trans, FH_TX_CHICKEN_BITS_REG);
|
||
|
iwl_write_direct32(trans, FH_TX_CHICKEN_BITS_REG,
|
||
|
reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
|
||
|
|
||
|
/* Enable L1-Active */
|
||
|
if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_8000)
|
||
|
iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG,
|
||
|
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
|
||
|
}
|
||
|
|
||
|
void iwl_trans_pcie_tx_reset(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int txq_id;
|
||
|
|
||
|
/*
|
||
|
* we should never get here in gen2 trans mode return early to avoid
|
||
|
* having invalid accesses
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(trans->trans_cfg->gen2))
|
||
|
return;
|
||
|
|
||
|
for (txq_id = 0; txq_id < trans->trans_cfg->base_params->num_of_queues;
|
||
|
txq_id++) {
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
if (trans->trans_cfg->use_tfh)
|
||
|
iwl_write_direct64(trans,
|
||
|
FH_MEM_CBBC_QUEUE(trans, txq_id),
|
||
|
txq->dma_addr);
|
||
|
else
|
||
|
iwl_write_direct32(trans,
|
||
|
FH_MEM_CBBC_QUEUE(trans, txq_id),
|
||
|
txq->dma_addr >> 8);
|
||
|
iwl_pcie_txq_unmap(trans, txq_id);
|
||
|
txq->read_ptr = 0;
|
||
|
txq->write_ptr = 0;
|
||
|
}
|
||
|
|
||
|
/* Tell NIC where to find the "keep warm" buffer */
|
||
|
iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG,
|
||
|
trans_pcie->kw.dma >> 4);
|
||
|
|
||
|
/*
|
||
|
* Send 0 as the scd_base_addr since the device may have be reset
|
||
|
* while we were in WoWLAN in which case SCD_SRAM_BASE_ADDR will
|
||
|
* contain garbage.
|
||
|
*/
|
||
|
iwl_pcie_tx_start(trans, 0);
|
||
|
}
|
||
|
|
||
|
static void iwl_pcie_tx_stop_fh(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
unsigned long flags;
|
||
|
int ch, ret;
|
||
|
u32 mask = 0;
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
|
||
|
if (!iwl_trans_grab_nic_access(trans, &flags))
|
||
|
goto out;
|
||
|
|
||
|
/* Stop each Tx DMA channel */
|
||
|
for (ch = 0; ch < FH_TCSR_CHNL_NUM; ch++) {
|
||
|
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(ch), 0x0);
|
||
|
mask |= FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ch);
|
||
|
}
|
||
|
|
||
|
/* Wait for DMA channels to be idle */
|
||
|
ret = iwl_poll_bit(trans, FH_TSSR_TX_STATUS_REG, mask, mask, 5000);
|
||
|
if (ret < 0)
|
||
|
IWL_ERR(trans,
|
||
|
"Failing on timeout while stopping DMA channel %d [0x%08x]\n",
|
||
|
ch, iwl_read32(trans, FH_TSSR_TX_STATUS_REG));
|
||
|
|
||
|
iwl_trans_release_nic_access(trans, &flags);
|
||
|
|
||
|
out:
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_tx_stop - Stop all Tx DMA channels
|
||
|
*/
|
||
|
int iwl_pcie_tx_stop(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int txq_id;
|
||
|
|
||
|
/* Turn off all Tx DMA fifos */
|
||
|
iwl_scd_deactivate_fifos(trans);
|
||
|
|
||
|
/* Turn off all Tx DMA channels */
|
||
|
iwl_pcie_tx_stop_fh(trans);
|
||
|
|
||
|
/*
|
||
|
* This function can be called before the op_mode disabled the
|
||
|
* queues. This happens when we have an rfkill interrupt.
|
||
|
* Since we stop Tx altogether - mark the queues as stopped.
|
||
|
*/
|
||
|
memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped));
|
||
|
memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used));
|
||
|
|
||
|
/* This can happen: start_hw, stop_device */
|
||
|
if (!trans_pcie->txq_memory)
|
||
|
return 0;
|
||
|
|
||
|
/* Unmap DMA from host system and free skb's */
|
||
|
for (txq_id = 0; txq_id < trans->trans_cfg->base_params->num_of_queues;
|
||
|
txq_id++)
|
||
|
iwl_pcie_txq_unmap(trans, txq_id);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_trans_tx_free - Free TXQ Context
|
||
|
*
|
||
|
* Destroy all TX DMA queues and structures
|
||
|
*/
|
||
|
void iwl_pcie_tx_free(struct iwl_trans *trans)
|
||
|
{
|
||
|
int txq_id;
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
|
||
|
memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used));
|
||
|
|
||
|
/* Tx queues */
|
||
|
if (trans_pcie->txq_memory) {
|
||
|
for (txq_id = 0;
|
||
|
txq_id < trans->trans_cfg->base_params->num_of_queues;
|
||
|
txq_id++) {
|
||
|
iwl_pcie_txq_free(trans, txq_id);
|
||
|
trans_pcie->txq[txq_id] = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
kfree(trans_pcie->txq_memory);
|
||
|
trans_pcie->txq_memory = NULL;
|
||
|
|
||
|
iwl_pcie_free_dma_ptr(trans, &trans_pcie->kw);
|
||
|
|
||
|
iwl_pcie_free_dma_ptr(trans, &trans_pcie->scd_bc_tbls);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_tx_alloc - allocate TX context
|
||
|
* Allocate all Tx DMA structures and initialize them
|
||
|
*/
|
||
|
static int iwl_pcie_tx_alloc(struct iwl_trans *trans)
|
||
|
{
|
||
|
int ret;
|
||
|
int txq_id, slots_num;
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u16 bc_tbls_size = trans->trans_cfg->base_params->num_of_queues;
|
||
|
|
||
|
bc_tbls_size *= (trans->trans_cfg->device_family >=
|
||
|
IWL_DEVICE_FAMILY_22560) ?
|
||
|
sizeof(struct iwl_gen3_bc_tbl) :
|
||
|
sizeof(struct iwlagn_scd_bc_tbl);
|
||
|
|
||
|
/*It is not allowed to alloc twice, so warn when this happens.
|
||
|
* We cannot rely on the previous allocation, so free and fail */
|
||
|
if (WARN_ON(trans_pcie->txq_memory)) {
|
||
|
ret = -EINVAL;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->scd_bc_tbls,
|
||
|
bc_tbls_size);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Scheduler BC Table allocation failed\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Alloc keep-warm buffer */
|
||
|
ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->kw, IWL_KW_SIZE);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Keep Warm allocation failed\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
trans_pcie->txq_memory =
|
||
|
kcalloc(trans->trans_cfg->base_params->num_of_queues,
|
||
|
sizeof(struct iwl_txq), GFP_KERNEL);
|
||
|
if (!trans_pcie->txq_memory) {
|
||
|
IWL_ERR(trans, "Not enough memory for txq\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Alloc and init all Tx queues, including the command queue (#4/#9) */
|
||
|
for (txq_id = 0; txq_id < trans->trans_cfg->base_params->num_of_queues;
|
||
|
txq_id++) {
|
||
|
bool cmd_queue = (txq_id == trans_pcie->cmd_queue);
|
||
|
|
||
|
if (cmd_queue)
|
||
|
slots_num = max_t(u32, IWL_CMD_QUEUE_SIZE,
|
||
|
trans->cfg->min_txq_size);
|
||
|
else
|
||
|
slots_num = max_t(u32, IWL_DEFAULT_QUEUE_SIZE,
|
||
|
trans->cfg->min_256_ba_txq_size);
|
||
|
trans_pcie->txq[txq_id] = &trans_pcie->txq_memory[txq_id];
|
||
|
ret = iwl_pcie_txq_alloc(trans, trans_pcie->txq[txq_id],
|
||
|
slots_num, cmd_queue);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id);
|
||
|
goto error;
|
||
|
}
|
||
|
trans_pcie->txq[txq_id]->id = txq_id;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error:
|
||
|
iwl_pcie_tx_free(trans);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int iwl_pcie_tx_init(struct iwl_trans *trans)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int ret;
|
||
|
int txq_id, slots_num;
|
||
|
bool alloc = false;
|
||
|
|
||
|
if (!trans_pcie->txq_memory) {
|
||
|
ret = iwl_pcie_tx_alloc(trans);
|
||
|
if (ret)
|
||
|
goto error;
|
||
|
alloc = true;
|
||
|
}
|
||
|
|
||
|
spin_lock(&trans_pcie->irq_lock);
|
||
|
|
||
|
/* Turn off all Tx DMA fifos */
|
||
|
iwl_scd_deactivate_fifos(trans);
|
||
|
|
||
|
/* Tell NIC where to find the "keep warm" buffer */
|
||
|
iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG,
|
||
|
trans_pcie->kw.dma >> 4);
|
||
|
|
||
|
spin_unlock(&trans_pcie->irq_lock);
|
||
|
|
||
|
/* Alloc and init all Tx queues, including the command queue (#4/#9) */
|
||
|
for (txq_id = 0; txq_id < trans->trans_cfg->base_params->num_of_queues;
|
||
|
txq_id++) {
|
||
|
bool cmd_queue = (txq_id == trans_pcie->cmd_queue);
|
||
|
|
||
|
if (cmd_queue)
|
||
|
slots_num = max_t(u32, IWL_CMD_QUEUE_SIZE,
|
||
|
trans->cfg->min_txq_size);
|
||
|
else
|
||
|
slots_num = max_t(u32, IWL_DEFAULT_QUEUE_SIZE,
|
||
|
trans->cfg->min_256_ba_txq_size);
|
||
|
ret = iwl_pcie_txq_init(trans, trans_pcie->txq[txq_id],
|
||
|
slots_num, cmd_queue);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx %d queue init failed\n", txq_id);
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Tell nic where to find circular buffer of TFDs for a
|
||
|
* given Tx queue, and enable the DMA channel used for that
|
||
|
* queue.
|
||
|
* Circular buffer (TFD queue in DRAM) physical base address
|
||
|
*/
|
||
|
iwl_write_direct32(trans, FH_MEM_CBBC_QUEUE(trans, txq_id),
|
||
|
trans_pcie->txq[txq_id]->dma_addr >> 8);
|
||
|
}
|
||
|
|
||
|
iwl_set_bits_prph(trans, SCD_GP_CTRL, SCD_GP_CTRL_AUTO_ACTIVE_MODE);
|
||
|
if (trans->trans_cfg->base_params->num_of_queues > 20)
|
||
|
iwl_set_bits_prph(trans, SCD_GP_CTRL,
|
||
|
SCD_GP_CTRL_ENABLE_31_QUEUES);
|
||
|
|
||
|
return 0;
|
||
|
error:
|
||
|
/*Upon error, free only if we allocated something */
|
||
|
if (alloc)
|
||
|
iwl_pcie_tx_free(trans);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline void iwl_pcie_txq_progress(struct iwl_txq *txq)
|
||
|
{
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
if (!txq->wd_timeout)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* station is asleep and we send data - that must
|
||
|
* be uAPSD or PS-Poll. Don't rearm the timer.
|
||
|
*/
|
||
|
if (txq->frozen)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* if empty delete timer, otherwise move timer forward
|
||
|
* since we're making progress on this queue
|
||
|
*/
|
||
|
if (txq->read_ptr == txq->write_ptr)
|
||
|
del_timer(&txq->stuck_timer);
|
||
|
else
|
||
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
||
|
}
|
||
|
|
||
|
/* Frees buffers until index _not_ inclusive */
|
||
|
void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
|
||
|
struct sk_buff_head *skbs)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
int tfd_num = iwl_pcie_get_cmd_index(txq, ssn);
|
||
|
int read_ptr = iwl_pcie_get_cmd_index(txq, txq->read_ptr);
|
||
|
int last_to_free;
|
||
|
|
||
|
/* This function is not meant to release cmd queue*/
|
||
|
if (WARN_ON(txq_id == trans_pcie->cmd_queue))
|
||
|
return;
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
if (!test_bit(txq_id, trans_pcie->queue_used)) {
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n",
|
||
|
txq_id, ssn);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (read_ptr == tfd_num)
|
||
|
goto out;
|
||
|
|
||
|
IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d -> %d (%d)\n",
|
||
|
txq_id, txq->read_ptr, tfd_num, ssn);
|
||
|
|
||
|
/*Since we free until index _not_ inclusive, the one before index is
|
||
|
* the last we will free. This one must be used */
|
||
|
last_to_free = iwl_queue_dec_wrap(trans, tfd_num);
|
||
|
|
||
|
if (!iwl_queue_used(txq, last_to_free)) {
|
||
|
IWL_ERR(trans,
|
||
|
"%s: Read index for txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n",
|
||
|
__func__, txq_id, last_to_free,
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size,
|
||
|
txq->write_ptr, txq->read_ptr);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(!skb_queue_empty(skbs)))
|
||
|
goto out;
|
||
|
|
||
|
for (;
|
||
|
read_ptr != tfd_num;
|
||
|
txq->read_ptr = iwl_queue_inc_wrap(trans, txq->read_ptr),
|
||
|
read_ptr = iwl_pcie_get_cmd_index(txq, txq->read_ptr)) {
|
||
|
struct sk_buff *skb = txq->entries[read_ptr].skb;
|
||
|
|
||
|
if (WARN_ON_ONCE(!skb))
|
||
|
continue;
|
||
|
|
||
|
iwl_pcie_free_tso_page(trans_pcie, skb);
|
||
|
|
||
|
__skb_queue_tail(skbs, skb);
|
||
|
|
||
|
txq->entries[read_ptr].skb = NULL;
|
||
|
|
||
|
if (!trans->trans_cfg->use_tfh)
|
||
|
iwl_pcie_txq_inval_byte_cnt_tbl(trans, txq);
|
||
|
|
||
|
iwl_pcie_txq_free_tfd(trans, txq);
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_progress(txq);
|
||
|
|
||
|
if (iwl_queue_space(trans, txq) > txq->low_mark &&
|
||
|
test_bit(txq_id, trans_pcie->queue_stopped)) {
|
||
|
struct sk_buff_head overflow_skbs;
|
||
|
|
||
|
__skb_queue_head_init(&overflow_skbs);
|
||
|
skb_queue_splice_init(&txq->overflow_q, &overflow_skbs);
|
||
|
|
||
|
/*
|
||
|
* We are going to transmit from the overflow queue.
|
||
|
* Remember this state so that wait_for_txq_empty will know we
|
||
|
* are adding more packets to the TFD queue. It cannot rely on
|
||
|
* the state of &txq->overflow_q, as we just emptied it, but
|
||
|
* haven't TXed the content yet.
|
||
|
*/
|
||
|
txq->overflow_tx = true;
|
||
|
|
||
|
/*
|
||
|
* This is tricky: we are in reclaim path which is non
|
||
|
* re-entrant, so noone will try to take the access the
|
||
|
* txq data from that path. We stopped tx, so we can't
|
||
|
* have tx as well. Bottom line, we can unlock and re-lock
|
||
|
* later.
|
||
|
*/
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
|
||
|
while (!skb_queue_empty(&overflow_skbs)) {
|
||
|
struct sk_buff *skb = __skb_dequeue(&overflow_skbs);
|
||
|
struct iwl_device_tx_cmd *dev_cmd_ptr;
|
||
|
|
||
|
dev_cmd_ptr = *(void **)((u8 *)skb->cb +
|
||
|
trans_pcie->dev_cmd_offs);
|
||
|
|
||
|
/*
|
||
|
* Note that we can very well be overflowing again.
|
||
|
* In that case, iwl_queue_space will be small again
|
||
|
* and we won't wake mac80211's queue.
|
||
|
*/
|
||
|
iwl_trans_tx(trans, skb, dev_cmd_ptr, txq_id);
|
||
|
}
|
||
|
|
||
|
if (iwl_queue_space(trans, txq) > txq->low_mark)
|
||
|
iwl_wake_queue(trans, txq);
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
txq->overflow_tx = false;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
|
||
|
/* Set wr_ptr of specific device and txq */
|
||
|
void iwl_trans_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
txq->write_ptr = ptr;
|
||
|
txq->read_ptr = txq->write_ptr;
|
||
|
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_set_cmd_in_flight(struct iwl_trans *trans,
|
||
|
const struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
int ret;
|
||
|
|
||
|
lockdep_assert_held(&trans_pcie->reg_lock);
|
||
|
|
||
|
/* Make sure the NIC is still alive in the bus */
|
||
|
if (test_bit(STATUS_TRANS_DEAD, &trans->status))
|
||
|
return -ENODEV;
|
||
|
|
||
|
/*
|
||
|
* wake up the NIC to make sure that the firmware will see the host
|
||
|
* command - we will let the NIC sleep once all the host commands
|
||
|
* returned. This needs to be done only on NICs that have
|
||
|
* apmg_wake_up_wa set.
|
||
|
*/
|
||
|
if (trans->trans_cfg->base_params->apmg_wake_up_wa &&
|
||
|
!trans_pcie->cmd_hold_nic_awake) {
|
||
|
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL,
|
||
|
BIT(trans->trans_cfg->csr->flag_mac_access_req));
|
||
|
|
||
|
ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
|
||
|
BIT(trans->trans_cfg->csr->flag_val_mac_access_en),
|
||
|
(BIT(trans->trans_cfg->csr->flag_mac_clock_ready) |
|
||
|
CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP),
|
||
|
15000);
|
||
|
if (ret < 0) {
|
||
|
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL,
|
||
|
BIT(trans->trans_cfg->csr->flag_mac_access_req));
|
||
|
IWL_ERR(trans, "Failed to wake NIC for hcmd\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
trans_pcie->cmd_hold_nic_awake = true;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_cmdq_reclaim - Reclaim TX command queue entries already Tx'd
|
||
|
*
|
||
|
* When FW advances 'R' index, all entries between old and new 'R' index
|
||
|
* need to be reclaimed. As result, some free space forms. If there is
|
||
|
* enough free space (> low mark), wake the stack that feeds us.
|
||
|
*/
|
||
|
void iwl_pcie_cmdq_reclaim(struct iwl_trans *trans, int txq_id, int idx)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
unsigned long flags;
|
||
|
int nfreed = 0;
|
||
|
u16 r;
|
||
|
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
idx = iwl_pcie_get_cmd_index(txq, idx);
|
||
|
r = iwl_pcie_get_cmd_index(txq, txq->read_ptr);
|
||
|
|
||
|
if (idx >= trans->trans_cfg->base_params->max_tfd_queue_size ||
|
||
|
(!iwl_queue_used(txq, idx))) {
|
||
|
WARN_ONCE(test_bit(txq_id, trans_pcie->queue_used),
|
||
|
"%s: Read index for DMA queue txq id (%d), index %d is out of range [0-%d] %d %d.\n",
|
||
|
__func__, txq_id, idx,
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size,
|
||
|
txq->write_ptr, txq->read_ptr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for (idx = iwl_queue_inc_wrap(trans, idx); r != idx;
|
||
|
r = iwl_queue_inc_wrap(trans, r)) {
|
||
|
txq->read_ptr = iwl_queue_inc_wrap(trans, txq->read_ptr);
|
||
|
|
||
|
if (nfreed++ > 0) {
|
||
|
IWL_ERR(trans, "HCMD skipped: index (%d) %d %d\n",
|
||
|
idx, txq->write_ptr, r);
|
||
|
iwl_force_nmi(trans);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (txq->read_ptr == txq->write_ptr) {
|
||
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
||
|
iwl_pcie_clear_cmd_in_flight(trans);
|
||
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_progress(txq);
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_txq_set_ratid_map(struct iwl_trans *trans, u16 ra_tid,
|
||
|
u16 txq_id)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 tbl_dw_addr;
|
||
|
u32 tbl_dw;
|
||
|
u16 scd_q2ratid;
|
||
|
|
||
|
scd_q2ratid = ra_tid & SCD_QUEUE_RA_TID_MAP_RATID_MSK;
|
||
|
|
||
|
tbl_dw_addr = trans_pcie->scd_base_addr +
|
||
|
SCD_TRANS_TBL_OFFSET_QUEUE(txq_id);
|
||
|
|
||
|
tbl_dw = iwl_trans_read_mem32(trans, tbl_dw_addr);
|
||
|
|
||
|
if (txq_id & 0x1)
|
||
|
tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
|
||
|
else
|
||
|
tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
|
||
|
|
||
|
iwl_trans_write_mem32(trans, tbl_dw_addr, tbl_dw);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Receiver address (actually, Rx station's index into station table),
|
||
|
* combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
|
||
|
#define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
|
||
|
|
||
|
bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int txq_id, u16 ssn,
|
||
|
const struct iwl_trans_txq_scd_cfg *cfg,
|
||
|
unsigned int wdg_timeout)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
int fifo = -1;
|
||
|
bool scd_bug = false;
|
||
|
|
||
|
if (test_and_set_bit(txq_id, trans_pcie->queue_used))
|
||
|
WARN_ONCE(1, "queue %d already used - expect issues", txq_id);
|
||
|
|
||
|
txq->wd_timeout = msecs_to_jiffies(wdg_timeout);
|
||
|
|
||
|
if (cfg) {
|
||
|
fifo = cfg->fifo;
|
||
|
|
||
|
/* Disable the scheduler prior configuring the cmd queue */
|
||
|
if (txq_id == trans_pcie->cmd_queue &&
|
||
|
trans_pcie->scd_set_active)
|
||
|
iwl_scd_enable_set_active(trans, 0);
|
||
|
|
||
|
/* Stop this Tx queue before configuring it */
|
||
|
iwl_scd_txq_set_inactive(trans, txq_id);
|
||
|
|
||
|
/* Set this queue as a chain-building queue unless it is CMD */
|
||
|
if (txq_id != trans_pcie->cmd_queue)
|
||
|
iwl_scd_txq_set_chain(trans, txq_id);
|
||
|
|
||
|
if (cfg->aggregate) {
|
||
|
u16 ra_tid = BUILD_RAxTID(cfg->sta_id, cfg->tid);
|
||
|
|
||
|
/* Map receiver-address / traffic-ID to this queue */
|
||
|
iwl_pcie_txq_set_ratid_map(trans, ra_tid, txq_id);
|
||
|
|
||
|
/* enable aggregations for the queue */
|
||
|
iwl_scd_txq_enable_agg(trans, txq_id);
|
||
|
txq->ampdu = true;
|
||
|
} else {
|
||
|
/*
|
||
|
* disable aggregations for the queue, this will also
|
||
|
* make the ra_tid mapping configuration irrelevant
|
||
|
* since it is now a non-AGG queue.
|
||
|
*/
|
||
|
iwl_scd_txq_disable_agg(trans, txq_id);
|
||
|
|
||
|
ssn = txq->read_ptr;
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* If we need to move the SCD write pointer by steps of
|
||
|
* 0x40, 0x80 or 0xc0, it gets stuck. Avoids this and let
|
||
|
* the op_mode know by returning true later.
|
||
|
* Do this only in case cfg is NULL since this trick can
|
||
|
* be done only if we have DQA enabled which is true for mvm
|
||
|
* only. And mvm never sets a cfg pointer.
|
||
|
* This is really ugly, but this is the easiest way out for
|
||
|
* this sad hardware issue.
|
||
|
* This bug has been fixed on devices 9000 and up.
|
||
|
*/
|
||
|
scd_bug = !trans->trans_cfg->mq_rx_supported &&
|
||
|
!((ssn - txq->write_ptr) & 0x3f) &&
|
||
|
(ssn != txq->write_ptr);
|
||
|
if (scd_bug)
|
||
|
ssn++;
|
||
|
}
|
||
|
|
||
|
/* Place first TFD at index corresponding to start sequence number.
|
||
|
* Assumes that ssn_idx is valid (!= 0xFFF) */
|
||
|
txq->read_ptr = (ssn & 0xff);
|
||
|
txq->write_ptr = (ssn & 0xff);
|
||
|
iwl_write_direct32(trans, HBUS_TARG_WRPTR,
|
||
|
(ssn & 0xff) | (txq_id << 8));
|
||
|
|
||
|
if (cfg) {
|
||
|
u8 frame_limit = cfg->frame_limit;
|
||
|
|
||
|
iwl_write_prph(trans, SCD_QUEUE_RDPTR(txq_id), ssn);
|
||
|
|
||
|
/* Set up Tx window size and frame limit for this queue */
|
||
|
iwl_trans_write_mem32(trans, trans_pcie->scd_base_addr +
|
||
|
SCD_CONTEXT_QUEUE_OFFSET(txq_id), 0);
|
||
|
iwl_trans_write_mem32(trans,
|
||
|
trans_pcie->scd_base_addr +
|
||
|
SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32),
|
||
|
SCD_QUEUE_CTX_REG2_VAL(WIN_SIZE, frame_limit) |
|
||
|
SCD_QUEUE_CTX_REG2_VAL(FRAME_LIMIT, frame_limit));
|
||
|
|
||
|
/* Set up status area in SRAM, map to Tx DMA/FIFO, activate */
|
||
|
iwl_write_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id),
|
||
|
(1 << SCD_QUEUE_STTS_REG_POS_ACTIVE) |
|
||
|
(cfg->fifo << SCD_QUEUE_STTS_REG_POS_TXF) |
|
||
|
(1 << SCD_QUEUE_STTS_REG_POS_WSL) |
|
||
|
SCD_QUEUE_STTS_REG_MSK);
|
||
|
|
||
|
/* enable the scheduler for this queue (only) */
|
||
|
if (txq_id == trans_pcie->cmd_queue &&
|
||
|
trans_pcie->scd_set_active)
|
||
|
iwl_scd_enable_set_active(trans, BIT(txq_id));
|
||
|
|
||
|
IWL_DEBUG_TX_QUEUES(trans,
|
||
|
"Activate queue %d on FIFO %d WrPtr: %d\n",
|
||
|
txq_id, fifo, ssn & 0xff);
|
||
|
} else {
|
||
|
IWL_DEBUG_TX_QUEUES(trans,
|
||
|
"Activate queue %d WrPtr: %d\n",
|
||
|
txq_id, ssn & 0xff);
|
||
|
}
|
||
|
|
||
|
return scd_bug;
|
||
|
}
|
||
|
|
||
|
void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id,
|
||
|
bool shared_mode)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[txq_id];
|
||
|
|
||
|
txq->ampdu = !shared_mode;
|
||
|
}
|
||
|
|
||
|
void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int txq_id,
|
||
|
bool configure_scd)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
u32 stts_addr = trans_pcie->scd_base_addr +
|
||
|
SCD_TX_STTS_QUEUE_OFFSET(txq_id);
|
||
|
static const u32 zero_val[4] = {};
|
||
|
|
||
|
trans_pcie->txq[txq_id]->frozen_expiry_remainder = 0;
|
||
|
trans_pcie->txq[txq_id]->frozen = false;
|
||
|
|
||
|
/*
|
||
|
* Upon HW Rfkill - we stop the device, and then stop the queues
|
||
|
* in the op_mode. Just for the sake of the simplicity of the op_mode,
|
||
|
* allow the op_mode to call txq_disable after it already called
|
||
|
* stop_device.
|
||
|
*/
|
||
|
if (!test_and_clear_bit(txq_id, trans_pcie->queue_used)) {
|
||
|
WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status),
|
||
|
"queue %d not used", txq_id);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (configure_scd) {
|
||
|
iwl_scd_txq_set_inactive(trans, txq_id);
|
||
|
|
||
|
iwl_trans_write_mem(trans, stts_addr, (void *)zero_val,
|
||
|
ARRAY_SIZE(zero_val));
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_unmap(trans, txq_id);
|
||
|
trans_pcie->txq[txq_id]->ampdu = false;
|
||
|
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", txq_id);
|
||
|
}
|
||
|
|
||
|
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_enqueue_hcmd - enqueue a uCode command
|
||
|
* @priv: device private data point
|
||
|
* @cmd: a pointer to the ucode command structure
|
||
|
*
|
||
|
* The function returns < 0 values to indicate the operation
|
||
|
* failed. On success, it returns the index (>= 0) of command in the
|
||
|
* command queue.
|
||
|
*/
|
||
|
static int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans,
|
||
|
struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
|
||
|
struct iwl_device_cmd *out_cmd;
|
||
|
struct iwl_cmd_meta *out_meta;
|
||
|
unsigned long flags;
|
||
|
void *dup_buf = NULL;
|
||
|
dma_addr_t phys_addr;
|
||
|
int idx;
|
||
|
u16 copy_size, cmd_size, tb0_size;
|
||
|
bool had_nocopy = false;
|
||
|
u8 group_id = iwl_cmd_groupid(cmd->id);
|
||
|
int i, ret;
|
||
|
u32 cmd_pos;
|
||
|
const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD];
|
||
|
u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD];
|
||
|
|
||
|
if (WARN(!trans->wide_cmd_header &&
|
||
|
group_id > IWL_ALWAYS_LONG_GROUP,
|
||
|
"unsupported wide command %#x\n", cmd->id))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (group_id != 0) {
|
||
|
copy_size = sizeof(struct iwl_cmd_header_wide);
|
||
|
cmd_size = sizeof(struct iwl_cmd_header_wide);
|
||
|
} else {
|
||
|
copy_size = sizeof(struct iwl_cmd_header);
|
||
|
cmd_size = sizeof(struct iwl_cmd_header);
|
||
|
}
|
||
|
|
||
|
/* need one for the header if the first is NOCOPY */
|
||
|
BUILD_BUG_ON(IWL_MAX_CMD_TBS_PER_TFD > IWL_NUM_OF_TBS - 1);
|
||
|
|
||
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
||
|
cmddata[i] = cmd->data[i];
|
||
|
cmdlen[i] = cmd->len[i];
|
||
|
|
||
|
if (!cmd->len[i])
|
||
|
continue;
|
||
|
|
||
|
/* need at least IWL_FIRST_TB_SIZE copied */
|
||
|
if (copy_size < IWL_FIRST_TB_SIZE) {
|
||
|
int copy = IWL_FIRST_TB_SIZE - copy_size;
|
||
|
|
||
|
if (copy > cmdlen[i])
|
||
|
copy = cmdlen[i];
|
||
|
cmdlen[i] -= copy;
|
||
|
cmddata[i] += copy;
|
||
|
copy_size += copy;
|
||
|
}
|
||
|
|
||
|
if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) {
|
||
|
had_nocopy = true;
|
||
|
if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) {
|
||
|
idx = -EINVAL;
|
||
|
goto free_dup_buf;
|
||
|
}
|
||
|
} else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) {
|
||
|
/*
|
||
|
* This is also a chunk that isn't copied
|
||
|
* to the static buffer so set had_nocopy.
|
||
|
*/
|
||
|
had_nocopy = true;
|
||
|
|
||
|
/* only allowed once */
|
||
|
if (WARN_ON(dup_buf)) {
|
||
|
idx = -EINVAL;
|
||
|
goto free_dup_buf;
|
||
|
}
|
||
|
|
||
|
dup_buf = kmemdup(cmddata[i], cmdlen[i],
|
||
|
GFP_ATOMIC);
|
||
|
if (!dup_buf)
|
||
|
return -ENOMEM;
|
||
|
} else {
|
||
|
/* NOCOPY must not be followed by normal! */
|
||
|
if (WARN_ON(had_nocopy)) {
|
||
|
idx = -EINVAL;
|
||
|
goto free_dup_buf;
|
||
|
}
|
||
|
copy_size += cmdlen[i];
|
||
|
}
|
||
|
cmd_size += cmd->len[i];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If any of the command structures end up being larger than
|
||
|
* the TFD_MAX_PAYLOAD_SIZE and they aren't dynamically
|
||
|
* allocated into separate TFDs, then we will need to
|
||
|
* increase the size of the buffers.
|
||
|
*/
|
||
|
if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE,
|
||
|
"Command %s (%#x) is too large (%d bytes)\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id),
|
||
|
cmd->id, copy_size)) {
|
||
|
idx = -EINVAL;
|
||
|
goto free_dup_buf;
|
||
|
}
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
if (iwl_queue_space(trans, txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
|
||
|
IWL_ERR(trans, "No space in command queue\n");
|
||
|
iwl_op_mode_cmd_queue_full(trans->op_mode);
|
||
|
idx = -ENOSPC;
|
||
|
goto free_dup_buf;
|
||
|
}
|
||
|
|
||
|
idx = iwl_pcie_get_cmd_index(txq, txq->write_ptr);
|
||
|
out_cmd = txq->entries[idx].cmd;
|
||
|
out_meta = &txq->entries[idx].meta;
|
||
|
|
||
|
memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
|
||
|
if (cmd->flags & CMD_WANT_SKB)
|
||
|
out_meta->source = cmd;
|
||
|
|
||
|
/* set up the header */
|
||
|
if (group_id != 0) {
|
||
|
out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id);
|
||
|
out_cmd->hdr_wide.group_id = group_id;
|
||
|
out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id);
|
||
|
out_cmd->hdr_wide.length =
|
||
|
cpu_to_le16(cmd_size -
|
||
|
sizeof(struct iwl_cmd_header_wide));
|
||
|
out_cmd->hdr_wide.reserved = 0;
|
||
|
out_cmd->hdr_wide.sequence =
|
||
|
cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) |
|
||
|
INDEX_TO_SEQ(txq->write_ptr));
|
||
|
|
||
|
cmd_pos = sizeof(struct iwl_cmd_header_wide);
|
||
|
copy_size = sizeof(struct iwl_cmd_header_wide);
|
||
|
} else {
|
||
|
out_cmd->hdr.cmd = iwl_cmd_opcode(cmd->id);
|
||
|
out_cmd->hdr.sequence =
|
||
|
cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) |
|
||
|
INDEX_TO_SEQ(txq->write_ptr));
|
||
|
out_cmd->hdr.group_id = 0;
|
||
|
|
||
|
cmd_pos = sizeof(struct iwl_cmd_header);
|
||
|
copy_size = sizeof(struct iwl_cmd_header);
|
||
|
}
|
||
|
|
||
|
/* and copy the data that needs to be copied */
|
||
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
||
|
int copy;
|
||
|
|
||
|
if (!cmd->len[i])
|
||
|
continue;
|
||
|
|
||
|
/* copy everything if not nocopy/dup */
|
||
|
if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY |
|
||
|
IWL_HCMD_DFL_DUP))) {
|
||
|
copy = cmd->len[i];
|
||
|
|
||
|
memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy);
|
||
|
cmd_pos += copy;
|
||
|
copy_size += copy;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Otherwise we need at least IWL_FIRST_TB_SIZE copied
|
||
|
* in total (for bi-directional DMA), but copy up to what
|
||
|
* we can fit into the payload for debug dump purposes.
|
||
|
*/
|
||
|
copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]);
|
||
|
|
||
|
memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy);
|
||
|
cmd_pos += copy;
|
||
|
|
||
|
/* However, treat copy_size the proper way, we need it below */
|
||
|
if (copy_size < IWL_FIRST_TB_SIZE) {
|
||
|
copy = IWL_FIRST_TB_SIZE - copy_size;
|
||
|
|
||
|
if (copy > cmd->len[i])
|
||
|
copy = cmd->len[i];
|
||
|
copy_size += copy;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
IWL_DEBUG_HC(trans,
|
||
|
"Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id),
|
||
|
group_id, out_cmd->hdr.cmd,
|
||
|
le16_to_cpu(out_cmd->hdr.sequence),
|
||
|
cmd_size, txq->write_ptr, idx, trans_pcie->cmd_queue);
|
||
|
|
||
|
/* start the TFD with the minimum copy bytes */
|
||
|
tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE);
|
||
|
memcpy(&txq->first_tb_bufs[idx], &out_cmd->hdr, tb0_size);
|
||
|
iwl_pcie_txq_build_tfd(trans, txq,
|
||
|
iwl_pcie_get_first_tb_dma(txq, idx),
|
||
|
tb0_size, true);
|
||
|
|
||
|
/* map first command fragment, if any remains */
|
||
|
if (copy_size > tb0_size) {
|
||
|
phys_addr = dma_map_single(trans->dev,
|
||
|
((u8 *)&out_cmd->hdr) + tb0_size,
|
||
|
copy_size - tb0_size,
|
||
|
DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(trans->dev, phys_addr)) {
|
||
|
iwl_pcie_tfd_unmap(trans, out_meta, txq,
|
||
|
txq->write_ptr);
|
||
|
idx = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, phys_addr,
|
||
|
copy_size - tb0_size, false);
|
||
|
}
|
||
|
|
||
|
/* map the remaining (adjusted) nocopy/dup fragments */
|
||
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
||
|
const void *data = cmddata[i];
|
||
|
|
||
|
if (!cmdlen[i])
|
||
|
continue;
|
||
|
if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY |
|
||
|
IWL_HCMD_DFL_DUP)))
|
||
|
continue;
|
||
|
if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP)
|
||
|
data = dup_buf;
|
||
|
phys_addr = dma_map_single(trans->dev, (void *)data,
|
||
|
cmdlen[i], DMA_TO_DEVICE);
|
||
|
if (dma_mapping_error(trans->dev, phys_addr)) {
|
||
|
iwl_pcie_tfd_unmap(trans, out_meta, txq,
|
||
|
txq->write_ptr);
|
||
|
idx = -ENOMEM;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, phys_addr, cmdlen[i], false);
|
||
|
}
|
||
|
|
||
|
BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE);
|
||
|
out_meta->flags = cmd->flags;
|
||
|
if (WARN_ON_ONCE(txq->entries[idx].free_buf))
|
||
|
kzfree(txq->entries[idx].free_buf);
|
||
|
txq->entries[idx].free_buf = dup_buf;
|
||
|
|
||
|
trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide);
|
||
|
|
||
|
/* start timer if queue currently empty */
|
||
|
if (txq->read_ptr == txq->write_ptr && txq->wd_timeout)
|
||
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
||
|
|
||
|
spin_lock_irqsave(&trans_pcie->reg_lock, flags);
|
||
|
ret = iwl_pcie_set_cmd_in_flight(trans, cmd);
|
||
|
if (ret < 0) {
|
||
|
idx = ret;
|
||
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Increment and update queue's write index */
|
||
|
txq->write_ptr = iwl_queue_inc_wrap(trans, txq->write_ptr);
|
||
|
iwl_pcie_txq_inc_wr_ptr(trans, txq);
|
||
|
|
||
|
spin_unlock_irqrestore(&trans_pcie->reg_lock, flags);
|
||
|
|
||
|
out:
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
free_dup_buf:
|
||
|
if (idx < 0)
|
||
|
kfree(dup_buf);
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_hcmd_complete - Pull unused buffers off the queue and reclaim them
|
||
|
* @rxb: Rx buffer to reclaim
|
||
|
*/
|
||
|
void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
|
||
|
struct iwl_rx_cmd_buffer *rxb)
|
||
|
{
|
||
|
struct iwl_rx_packet *pkt = rxb_addr(rxb);
|
||
|
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
|
||
|
u8 group_id;
|
||
|
u32 cmd_id;
|
||
|
int txq_id = SEQ_TO_QUEUE(sequence);
|
||
|
int index = SEQ_TO_INDEX(sequence);
|
||
|
int cmd_index;
|
||
|
struct iwl_device_cmd *cmd;
|
||
|
struct iwl_cmd_meta *meta;
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
|
||
|
|
||
|
/* If a Tx command is being handled and it isn't in the actual
|
||
|
* command queue then there a command routing bug has been introduced
|
||
|
* in the queue management code. */
|
||
|
if (WARN(txq_id != trans_pcie->cmd_queue,
|
||
|
"wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
|
||
|
txq_id, trans_pcie->cmd_queue, sequence, txq->read_ptr,
|
||
|
txq->write_ptr)) {
|
||
|
iwl_print_hex_error(trans, pkt, 32);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
cmd_index = iwl_pcie_get_cmd_index(txq, index);
|
||
|
cmd = txq->entries[cmd_index].cmd;
|
||
|
meta = &txq->entries[cmd_index].meta;
|
||
|
group_id = cmd->hdr.group_id;
|
||
|
cmd_id = iwl_cmd_id(cmd->hdr.cmd, group_id, 0);
|
||
|
|
||
|
iwl_pcie_tfd_unmap(trans, meta, txq, index);
|
||
|
|
||
|
/* Input error checking is done when commands are added to queue. */
|
||
|
if (meta->flags & CMD_WANT_SKB) {
|
||
|
struct page *p = rxb_steal_page(rxb);
|
||
|
|
||
|
meta->source->resp_pkt = pkt;
|
||
|
meta->source->_rx_page_addr = (unsigned long)page_address(p);
|
||
|
meta->source->_rx_page_order = trans_pcie->rx_page_order;
|
||
|
}
|
||
|
|
||
|
if (meta->flags & CMD_WANT_ASYNC_CALLBACK)
|
||
|
iwl_op_mode_async_cb(trans->op_mode, cmd);
|
||
|
|
||
|
iwl_pcie_cmdq_reclaim(trans, txq_id, index);
|
||
|
|
||
|
if (!(meta->flags & CMD_ASYNC)) {
|
||
|
if (!test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status)) {
|
||
|
IWL_WARN(trans,
|
||
|
"HCMD_ACTIVE already clear for command %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd_id));
|
||
|
}
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd_id));
|
||
|
wake_up(&trans_pcie->wait_command_queue);
|
||
|
}
|
||
|
|
||
|
meta->flags = 0;
|
||
|
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
|
||
|
#define HOST_COMPLETE_TIMEOUT (2 * HZ)
|
||
|
|
||
|
static int iwl_pcie_send_hcmd_async(struct iwl_trans *trans,
|
||
|
struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/* An asynchronous command can not expect an SKB to be set. */
|
||
|
if (WARN_ON(cmd->flags & CMD_WANT_SKB))
|
||
|
return -EINVAL;
|
||
|
|
||
|
ret = iwl_pcie_enqueue_hcmd(trans, cmd);
|
||
|
if (ret < 0) {
|
||
|
IWL_ERR(trans,
|
||
|
"Error sending %s: enqueue_hcmd failed: %d\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id), ret);
|
||
|
return ret;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int iwl_pcie_send_hcmd_sync(struct iwl_trans *trans,
|
||
|
struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
|
||
|
int cmd_idx;
|
||
|
int ret;
|
||
|
|
||
|
IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id));
|
||
|
|
||
|
if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status),
|
||
|
"Command %s: a command is already active!\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id)))
|
||
|
return -EIO;
|
||
|
|
||
|
IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id));
|
||
|
|
||
|
cmd_idx = iwl_pcie_enqueue_hcmd(trans, cmd);
|
||
|
if (cmd_idx < 0) {
|
||
|
ret = cmd_idx;
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
IWL_ERR(trans,
|
||
|
"Error sending %s: enqueue_hcmd failed: %d\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id), ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = wait_event_timeout(trans_pcie->wait_command_queue,
|
||
|
!test_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status),
|
||
|
HOST_COMPLETE_TIMEOUT);
|
||
|
if (!ret) {
|
||
|
IWL_ERR(trans, "Error sending %s: time out after %dms.\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id),
|
||
|
jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
|
||
|
|
||
|
IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n",
|
||
|
txq->read_ptr, txq->write_ptr);
|
||
|
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id));
|
||
|
ret = -ETIMEDOUT;
|
||
|
|
||
|
iwl_trans_pcie_sync_nmi(trans);
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if (test_bit(STATUS_FW_ERROR, &trans->status)) {
|
||
|
iwl_trans_pcie_dump_regs(trans);
|
||
|
IWL_ERR(trans, "FW error in SYNC CMD %s\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id));
|
||
|
dump_stack();
|
||
|
ret = -EIO;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if (!(cmd->flags & CMD_SEND_IN_RFKILL) &&
|
||
|
test_bit(STATUS_RFKILL_OPMODE, &trans->status)) {
|
||
|
IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n");
|
||
|
ret = -ERFKILL;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) {
|
||
|
IWL_ERR(trans, "Error: Response NULL in '%s'\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id));
|
||
|
ret = -EIO;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
cancel:
|
||
|
if (cmd->flags & CMD_WANT_SKB) {
|
||
|
/*
|
||
|
* Cancel the CMD_WANT_SKB flag for the cmd in the
|
||
|
* TX cmd queue. Otherwise in case the cmd comes
|
||
|
* in later, it will possibly set an invalid
|
||
|
* address (cmd->meta.source).
|
||
|
*/
|
||
|
txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB;
|
||
|
}
|
||
|
|
||
|
if (cmd->resp_pkt) {
|
||
|
iwl_free_resp(cmd);
|
||
|
cmd->resp_pkt = NULL;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
/* Make sure the NIC is still alive in the bus */
|
||
|
if (test_bit(STATUS_TRANS_DEAD, &trans->status))
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (!(cmd->flags & CMD_SEND_IN_RFKILL) &&
|
||
|
test_bit(STATUS_RFKILL_OPMODE, &trans->status)) {
|
||
|
IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n",
|
||
|
cmd->id);
|
||
|
return -ERFKILL;
|
||
|
}
|
||
|
|
||
|
if (cmd->flags & CMD_ASYNC)
|
||
|
return iwl_pcie_send_hcmd_async(trans, cmd);
|
||
|
|
||
|
/* We still can fail on RFKILL that can be asserted while we wait */
|
||
|
return iwl_pcie_send_hcmd_sync(trans, cmd);
|
||
|
}
|
||
|
|
||
|
static int iwl_fill_data_tbs(struct iwl_trans *trans, struct sk_buff *skb,
|
||
|
struct iwl_txq *txq, u8 hdr_len,
|
||
|
struct iwl_cmd_meta *out_meta)
|
||
|
{
|
||
|
u16 head_tb_len;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Set up TFD's third entry to point directly to remainder
|
||
|
* of skb's head, if any
|
||
|
*/
|
||
|
head_tb_len = skb_headlen(skb) - hdr_len;
|
||
|
|
||
|
if (head_tb_len > 0) {
|
||
|
dma_addr_t tb_phys = dma_map_single(trans->dev,
|
||
|
skb->data + hdr_len,
|
||
|
head_tb_len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
||
|
return -EINVAL;
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb,
|
||
|
skb->data + hdr_len,
|
||
|
head_tb_len);
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, tb_phys, head_tb_len, false);
|
||
|
}
|
||
|
|
||
|
/* set up the remaining entries to point to the data */
|
||
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
||
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
||
|
dma_addr_t tb_phys;
|
||
|
int tb_idx;
|
||
|
|
||
|
if (!skb_frag_size(frag))
|
||
|
continue;
|
||
|
|
||
|
tb_phys = skb_frag_dma_map(trans->dev, frag, 0,
|
||
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
||
|
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
||
|
return -EINVAL;
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb,
|
||
|
skb_frag_address(frag),
|
||
|
skb_frag_size(frag));
|
||
|
tb_idx = iwl_pcie_txq_build_tfd(trans, txq, tb_phys,
|
||
|
skb_frag_size(frag), false);
|
||
|
if (tb_idx < 0)
|
||
|
return tb_idx;
|
||
|
|
||
|
out_meta->tbs |= BIT(tb_idx);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_INET
|
||
|
struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct iwl_tso_hdr_page *p = this_cpu_ptr(trans_pcie->tso_hdr_page);
|
||
|
|
||
|
if (!p->page)
|
||
|
goto alloc;
|
||
|
|
||
|
/* enough room on this page */
|
||
|
if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE)
|
||
|
return p;
|
||
|
|
||
|
/* We don't have enough room on this page, get a new one. */
|
||
|
__free_page(p->page);
|
||
|
|
||
|
alloc:
|
||
|
p->page = alloc_page(GFP_ATOMIC);
|
||
|
if (!p->page)
|
||
|
return NULL;
|
||
|
p->pos = page_address(p->page);
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
static void iwl_compute_pseudo_hdr_csum(void *iph, struct tcphdr *tcph,
|
||
|
bool ipv6, unsigned int len)
|
||
|
{
|
||
|
if (ipv6) {
|
||
|
struct ipv6hdr *iphv6 = iph;
|
||
|
|
||
|
tcph->check = ~csum_ipv6_magic(&iphv6->saddr, &iphv6->daddr,
|
||
|
len + tcph->doff * 4,
|
||
|
IPPROTO_TCP, 0);
|
||
|
} else {
|
||
|
struct iphdr *iphv4 = iph;
|
||
|
|
||
|
ip_send_check(iphv4);
|
||
|
tcph->check = ~csum_tcpudp_magic(iphv4->saddr, iphv4->daddr,
|
||
|
len + tcph->doff * 4,
|
||
|
IPPROTO_TCP, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb,
|
||
|
struct iwl_txq *txq, u8 hdr_len,
|
||
|
struct iwl_cmd_meta *out_meta,
|
||
|
struct iwl_device_tx_cmd *dev_cmd,
|
||
|
u16 tb1_len)
|
||
|
{
|
||
|
struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload;
|
||
|
struct iwl_trans_pcie *trans_pcie = txq->trans_pcie;
|
||
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
||
|
unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room;
|
||
|
unsigned int mss = skb_shinfo(skb)->gso_size;
|
||
|
u16 length, iv_len, amsdu_pad;
|
||
|
u8 *start_hdr;
|
||
|
struct iwl_tso_hdr_page *hdr_page;
|
||
|
struct page **page_ptr;
|
||
|
struct tso_t tso;
|
||
|
|
||
|
/* if the packet is protected, then it must be CCMP or GCMP */
|
||
|
BUILD_BUG_ON(IEEE80211_CCMP_HDR_LEN != IEEE80211_GCMP_HDR_LEN);
|
||
|
iv_len = ieee80211_has_protected(hdr->frame_control) ?
|
||
|
IEEE80211_CCMP_HDR_LEN : 0;
|
||
|
|
||
|
trace_iwlwifi_dev_tx(trans->dev, skb,
|
||
|
iwl_pcie_get_tfd(trans, txq, txq->write_ptr),
|
||
|
trans_pcie->tfd_size,
|
||
|
&dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, 0);
|
||
|
|
||
|
ip_hdrlen = skb_transport_header(skb) - skb_network_header(skb);
|
||
|
snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb);
|
||
|
total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len - iv_len;
|
||
|
amsdu_pad = 0;
|
||
|
|
||
|
/* total amount of header we may need for this A-MSDU */
|
||
|
hdr_room = DIV_ROUND_UP(total_len, mss) *
|
||
|
(3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)) + iv_len;
|
||
|
|
||
|
/* Our device supports 9 segments at most, it will fit in 1 page */
|
||
|
hdr_page = get_page_hdr(trans, hdr_room);
|
||
|
if (!hdr_page)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
get_page(hdr_page->page);
|
||
|
start_hdr = hdr_page->pos;
|
||
|
page_ptr = (void *)((u8 *)skb->cb + trans_pcie->page_offs);
|
||
|
*page_ptr = hdr_page->page;
|
||
|
memcpy(hdr_page->pos, skb->data + hdr_len, iv_len);
|
||
|
hdr_page->pos += iv_len;
|
||
|
|
||
|
/*
|
||
|
* Pull the ieee80211 header + IV to be able to use TSO core,
|
||
|
* we will restore it for the tx_status flow.
|
||
|
*/
|
||
|
skb_pull(skb, hdr_len + iv_len);
|
||
|
|
||
|
/*
|
||
|
* Remove the length of all the headers that we don't actually
|
||
|
* have in the MPDU by themselves, but that we duplicate into
|
||
|
* all the different MSDUs inside the A-MSDU.
|
||
|
*/
|
||
|
le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen);
|
||
|
|
||
|
tso_start(skb, &tso);
|
||
|
|
||
|
while (total_len) {
|
||
|
/* this is the data left for this subframe */
|
||
|
unsigned int data_left =
|
||
|
min_t(unsigned int, mss, total_len);
|
||
|
struct sk_buff *csum_skb = NULL;
|
||
|
unsigned int hdr_tb_len;
|
||
|
dma_addr_t hdr_tb_phys;
|
||
|
struct tcphdr *tcph;
|
||
|
u8 *iph, *subf_hdrs_start = hdr_page->pos;
|
||
|
|
||
|
total_len -= data_left;
|
||
|
|
||
|
memset(hdr_page->pos, 0, amsdu_pad);
|
||
|
hdr_page->pos += amsdu_pad;
|
||
|
amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen +
|
||
|
data_left)) & 0x3;
|
||
|
ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr));
|
||
|
hdr_page->pos += ETH_ALEN;
|
||
|
ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr));
|
||
|
hdr_page->pos += ETH_ALEN;
|
||
|
|
||
|
length = snap_ip_tcp_hdrlen + data_left;
|
||
|
*((__be16 *)hdr_page->pos) = cpu_to_be16(length);
|
||
|
hdr_page->pos += sizeof(length);
|
||
|
|
||
|
/*
|
||
|
* This will copy the SNAP as well which will be considered
|
||
|
* as MAC header.
|
||
|
*/
|
||
|
tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len);
|
||
|
iph = hdr_page->pos + 8;
|
||
|
tcph = (void *)(iph + ip_hdrlen);
|
||
|
|
||
|
/* For testing on current hardware only */
|
||
|
if (trans_pcie->sw_csum_tx) {
|
||
|
csum_skb = alloc_skb(data_left + tcp_hdrlen(skb),
|
||
|
GFP_ATOMIC);
|
||
|
if (!csum_skb)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
iwl_compute_pseudo_hdr_csum(iph, tcph,
|
||
|
skb->protocol ==
|
||
|
htons(ETH_P_IPV6),
|
||
|
data_left);
|
||
|
|
||
|
skb_put_data(csum_skb, tcph, tcp_hdrlen(skb));
|
||
|
skb_reset_transport_header(csum_skb);
|
||
|
csum_skb->csum_start =
|
||
|
(unsigned char *)tcp_hdr(csum_skb) -
|
||
|
csum_skb->head;
|
||
|
}
|
||
|
|
||
|
hdr_page->pos += snap_ip_tcp_hdrlen;
|
||
|
|
||
|
hdr_tb_len = hdr_page->pos - start_hdr;
|
||
|
hdr_tb_phys = dma_map_single(trans->dev, start_hdr,
|
||
|
hdr_tb_len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, hdr_tb_phys))) {
|
||
|
dev_kfree_skb(csum_skb);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, hdr_tb_phys,
|
||
|
hdr_tb_len, false);
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr,
|
||
|
hdr_tb_len);
|
||
|
/* add this subframe's headers' length to the tx_cmd */
|
||
|
le16_add_cpu(&tx_cmd->len, hdr_page->pos - subf_hdrs_start);
|
||
|
|
||
|
/* prepare the start_hdr for the next subframe */
|
||
|
start_hdr = hdr_page->pos;
|
||
|
|
||
|
/* put the payload */
|
||
|
while (data_left) {
|
||
|
unsigned int size = min_t(unsigned int, tso.size,
|
||
|
data_left);
|
||
|
dma_addr_t tb_phys;
|
||
|
|
||
|
if (trans_pcie->sw_csum_tx)
|
||
|
skb_put_data(csum_skb, tso.data, size);
|
||
|
|
||
|
tb_phys = dma_map_single(trans->dev, tso.data,
|
||
|
size, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys))) {
|
||
|
dev_kfree_skb(csum_skb);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, tb_phys,
|
||
|
size, false);
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, tso.data,
|
||
|
size);
|
||
|
|
||
|
data_left -= size;
|
||
|
tso_build_data(skb, &tso, size);
|
||
|
}
|
||
|
|
||
|
/* For testing on early hardware only */
|
||
|
if (trans_pcie->sw_csum_tx) {
|
||
|
__wsum csum;
|
||
|
|
||
|
csum = skb_checksum(csum_skb,
|
||
|
skb_checksum_start_offset(csum_skb),
|
||
|
csum_skb->len -
|
||
|
skb_checksum_start_offset(csum_skb),
|
||
|
0);
|
||
|
dev_kfree_skb(csum_skb);
|
||
|
dma_sync_single_for_cpu(trans->dev, hdr_tb_phys,
|
||
|
hdr_tb_len, DMA_TO_DEVICE);
|
||
|
tcph->check = csum_fold(csum);
|
||
|
dma_sync_single_for_device(trans->dev, hdr_tb_phys,
|
||
|
hdr_tb_len, DMA_TO_DEVICE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* re -add the WiFi header and IV */
|
||
|
skb_push(skb, hdr_len + iv_len);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#else /* CONFIG_INET */
|
||
|
static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb,
|
||
|
struct iwl_txq *txq, u8 hdr_len,
|
||
|
struct iwl_cmd_meta *out_meta,
|
||
|
struct iwl_device_tx_cmd *dev_cmd,
|
||
|
u16 tb1_len)
|
||
|
{
|
||
|
/* No A-MSDU without CONFIG_INET */
|
||
|
WARN_ON(1);
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
#endif /* CONFIG_INET */
|
||
|
|
||
|
int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
|
||
|
struct iwl_device_tx_cmd *dev_cmd, int txq_id)
|
||
|
{
|
||
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
||
|
struct ieee80211_hdr *hdr;
|
||
|
struct iwl_tx_cmd *tx_cmd = (struct iwl_tx_cmd *)dev_cmd->payload;
|
||
|
struct iwl_cmd_meta *out_meta;
|
||
|
struct iwl_txq *txq;
|
||
|
dma_addr_t tb0_phys, tb1_phys, scratch_phys;
|
||
|
void *tb1_addr;
|
||
|
void *tfd;
|
||
|
u16 len, tb1_len;
|
||
|
bool wait_write_ptr;
|
||
|
__le16 fc;
|
||
|
u8 hdr_len;
|
||
|
u16 wifi_seq;
|
||
|
bool amsdu;
|
||
|
|
||
|
txq = trans_pcie->txq[txq_id];
|
||
|
|
||
|
if (WARN_ONCE(!test_bit(txq_id, trans_pcie->queue_used),
|
||
|
"TX on unused queue %d\n", txq_id))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (unlikely(trans_pcie->sw_csum_tx &&
|
||
|
skb->ip_summed == CHECKSUM_PARTIAL)) {
|
||
|
int offs = skb_checksum_start_offset(skb);
|
||
|
int csum_offs = offs + skb->csum_offset;
|
||
|
__wsum csum;
|
||
|
|
||
|
if (skb_ensure_writable(skb, csum_offs + sizeof(__sum16)))
|
||
|
return -1;
|
||
|
|
||
|
csum = skb_checksum(skb, offs, skb->len - offs, 0);
|
||
|
*(__sum16 *)(skb->data + csum_offs) = csum_fold(csum);
|
||
|
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
}
|
||
|
|
||
|
if (skb_is_nonlinear(skb) &&
|
||
|
skb_shinfo(skb)->nr_frags > IWL_PCIE_MAX_FRAGS(trans_pcie) &&
|
||
|
__skb_linearize(skb))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* mac80211 always puts the full header into the SKB's head,
|
||
|
* so there's no need to check if it's readable there
|
||
|
*/
|
||
|
hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
fc = hdr->frame_control;
|
||
|
hdr_len = ieee80211_hdrlen(fc);
|
||
|
|
||
|
spin_lock(&txq->lock);
|
||
|
|
||
|
if (iwl_queue_space(trans, txq) < txq->high_mark) {
|
||
|
iwl_stop_queue(trans, txq);
|
||
|
|
||
|
/* don't put the packet on the ring, if there is no room */
|
||
|
if (unlikely(iwl_queue_space(trans, txq) < 3)) {
|
||
|
struct iwl_device_tx_cmd **dev_cmd_ptr;
|
||
|
|
||
|
dev_cmd_ptr = (void *)((u8 *)skb->cb +
|
||
|
trans_pcie->dev_cmd_offs);
|
||
|
|
||
|
*dev_cmd_ptr = dev_cmd;
|
||
|
__skb_queue_tail(&txq->overflow_q, skb);
|
||
|
|
||
|
spin_unlock(&txq->lock);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* In AGG mode, the index in the ring must correspond to the WiFi
|
||
|
* sequence number. This is a HW requirements to help the SCD to parse
|
||
|
* the BA.
|
||
|
* Check here that the packets are in the right place on the ring.
|
||
|
*/
|
||
|
wifi_seq = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl));
|
||
|
WARN_ONCE(txq->ampdu &&
|
||
|
(wifi_seq & 0xff) != txq->write_ptr,
|
||
|
"Q: %d WiFi Seq %d tfdNum %d",
|
||
|
txq_id, wifi_seq, txq->write_ptr);
|
||
|
|
||
|
/* Set up driver data for this TFD */
|
||
|
txq->entries[txq->write_ptr].skb = skb;
|
||
|
txq->entries[txq->write_ptr].cmd = dev_cmd;
|
||
|
|
||
|
dev_cmd->hdr.sequence =
|
||
|
cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) |
|
||
|
INDEX_TO_SEQ(txq->write_ptr)));
|
||
|
|
||
|
tb0_phys = iwl_pcie_get_first_tb_dma(txq, txq->write_ptr);
|
||
|
scratch_phys = tb0_phys + sizeof(struct iwl_cmd_header) +
|
||
|
offsetof(struct iwl_tx_cmd, scratch);
|
||
|
|
||
|
tx_cmd->dram_lsb_ptr = cpu_to_le32(scratch_phys);
|
||
|
tx_cmd->dram_msb_ptr = iwl_get_dma_hi_addr(scratch_phys);
|
||
|
|
||
|
/* Set up first empty entry in queue's array of Tx/cmd buffers */
|
||
|
out_meta = &txq->entries[txq->write_ptr].meta;
|
||
|
out_meta->flags = 0;
|
||
|
|
||
|
/*
|
||
|
* The second TB (tb1) points to the remainder of the TX command
|
||
|
* and the 802.11 header - dword aligned size
|
||
|
* (This calculation modifies the TX command, so do it before the
|
||
|
* setup of the first TB)
|
||
|
*/
|
||
|
len = sizeof(struct iwl_tx_cmd) + sizeof(struct iwl_cmd_header) +
|
||
|
hdr_len - IWL_FIRST_TB_SIZE;
|
||
|
/* do not align A-MSDU to dword as the subframe header aligns it */
|
||
|
amsdu = ieee80211_is_data_qos(fc) &&
|
||
|
(*ieee80211_get_qos_ctl(hdr) &
|
||
|
IEEE80211_QOS_CTL_A_MSDU_PRESENT);
|
||
|
if (trans_pcie->sw_csum_tx || !amsdu) {
|
||
|
tb1_len = ALIGN(len, 4);
|
||
|
/* Tell NIC about any 2-byte padding after MAC header */
|
||
|
if (tb1_len != len)
|
||
|
tx_cmd->tx_flags |= cpu_to_le32(TX_CMD_FLG_MH_PAD);
|
||
|
} else {
|
||
|
tb1_len = len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The first TB points to bi-directional DMA data, we'll
|
||
|
* memcpy the data into it later.
|
||
|
*/
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, tb0_phys,
|
||
|
IWL_FIRST_TB_SIZE, true);
|
||
|
|
||
|
/* there must be data left over for TB1 or this code must be changed */
|
||
|
BUILD_BUG_ON(sizeof(struct iwl_tx_cmd) < IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
/* map the data for TB1 */
|
||
|
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
|
||
|
tb1_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb1_phys)))
|
||
|
goto out_err;
|
||
|
iwl_pcie_txq_build_tfd(trans, txq, tb1_phys, tb1_len, false);
|
||
|
|
||
|
trace_iwlwifi_dev_tx(trans->dev, skb,
|
||
|
iwl_pcie_get_tfd(trans, txq,
|
||
|
txq->write_ptr),
|
||
|
trans_pcie->tfd_size,
|
||
|
&dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len,
|
||
|
hdr_len);
|
||
|
|
||
|
/*
|
||
|
* If gso_size wasn't set, don't give the frame "amsdu treatment"
|
||
|
* (adding subframes, etc.).
|
||
|
* This can happen in some testing flows when the amsdu was already
|
||
|
* pre-built, and we just need to send the resulting skb.
|
||
|
*/
|
||
|
if (amsdu && skb_shinfo(skb)->gso_size) {
|
||
|
if (unlikely(iwl_fill_data_tbs_amsdu(trans, skb, txq, hdr_len,
|
||
|
out_meta, dev_cmd,
|
||
|
tb1_len)))
|
||
|
goto out_err;
|
||
|
} else {
|
||
|
struct sk_buff *frag;
|
||
|
|
||
|
if (unlikely(iwl_fill_data_tbs(trans, skb, txq, hdr_len,
|
||
|
out_meta)))
|
||
|
goto out_err;
|
||
|
|
||
|
skb_walk_frags(skb, frag) {
|
||
|
if (unlikely(iwl_fill_data_tbs(trans, frag, txq, 0,
|
||
|
out_meta)))
|
||
|
goto out_err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* building the A-MSDU might have changed this data, so memcpy it now */
|
||
|
memcpy(&txq->first_tb_bufs[txq->write_ptr], dev_cmd, IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
tfd = iwl_pcie_get_tfd(trans, txq, txq->write_ptr);
|
||
|
/* Set up entry for this TFD in Tx byte-count array */
|
||
|
iwl_pcie_txq_update_byte_cnt_tbl(trans, txq, le16_to_cpu(tx_cmd->len),
|
||
|
iwl_pcie_tfd_get_num_tbs(trans, tfd));
|
||
|
|
||
|
wait_write_ptr = ieee80211_has_morefrags(fc);
|
||
|
|
||
|
/* start timer if queue currently empty */
|
||
|
if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) {
|
||
|
/*
|
||
|
* If the TXQ is active, then set the timer, if not,
|
||
|
* set the timer in remainder so that the timer will
|
||
|
* be armed with the right value when the station will
|
||
|
* wake up.
|
||
|
*/
|
||
|
if (!txq->frozen)
|
||
|
mod_timer(&txq->stuck_timer,
|
||
|
jiffies + txq->wd_timeout);
|
||
|
else
|
||
|
txq->frozen_expiry_remainder = txq->wd_timeout;
|
||
|
}
|
||
|
|
||
|
/* Tell device the write index *just past* this latest filled TFD */
|
||
|
txq->write_ptr = iwl_queue_inc_wrap(trans, txq->write_ptr);
|
||
|
if (!wait_write_ptr)
|
||
|
iwl_pcie_txq_inc_wr_ptr(trans, txq);
|
||
|
|
||
|
/*
|
||
|
* At this point the frame is "transmitted" successfully
|
||
|
* and we will get a TX status notification eventually.
|
||
|
*/
|
||
|
spin_unlock(&txq->lock);
|
||
|
return 0;
|
||
|
out_err:
|
||
|
iwl_pcie_tfd_unmap(trans, out_meta, txq, txq->write_ptr);
|
||
|
spin_unlock(&txq->lock);
|
||
|
return -1;
|
||
|
}
|