1673 lines
46 KiB
C
1673 lines
46 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2018, Intel Corporation. */
|
||
|
|
||
|
#include "ice_sched.h"
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
|
||
|
* @pi: port information structure
|
||
|
* @info: Scheduler element information from firmware
|
||
|
*
|
||
|
* This function inserts the root node of the scheduling tree topology
|
||
|
* to the SW DB.
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_root_node(struct ice_port_info *pi,
|
||
|
struct ice_aqc_txsched_elem_data *info)
|
||
|
{
|
||
|
struct ice_sched_node *root;
|
||
|
struct ice_hw *hw;
|
||
|
|
||
|
if (!pi)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
|
||
|
root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
|
||
|
if (!root)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
/* coverity[suspicious_sizeof] */
|
||
|
root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
|
||
|
sizeof(*root), GFP_KERNEL);
|
||
|
if (!root->children) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), root);
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
}
|
||
|
|
||
|
memcpy(&root->info, info, sizeof(*info));
|
||
|
pi->root = root;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
|
||
|
* @start_node: pointer to the starting ice_sched_node struct in a sub-tree
|
||
|
* @teid: node TEID to search
|
||
|
*
|
||
|
* This function searches for a node matching the TEID in the scheduling tree
|
||
|
* from the SW DB. The search is recursive and is restricted by the number of
|
||
|
* layers it has searched through; stopping at the max supported layer.
|
||
|
*
|
||
|
* This function needs to be called when holding the port_info->sched_lock
|
||
|
*/
|
||
|
struct ice_sched_node *
|
||
|
ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
|
||
|
{
|
||
|
u16 i;
|
||
|
|
||
|
/* The TEID is same as that of the start_node */
|
||
|
if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
|
||
|
return start_node;
|
||
|
|
||
|
/* The node has no children or is at the max layer */
|
||
|
if (!start_node->num_children ||
|
||
|
start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
|
||
|
start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
|
||
|
return NULL;
|
||
|
|
||
|
/* Check if TEID matches to any of the children nodes */
|
||
|
for (i = 0; i < start_node->num_children; i++)
|
||
|
if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
|
||
|
return start_node->children[i];
|
||
|
|
||
|
/* Search within each child's sub-tree */
|
||
|
for (i = 0; i < start_node->num_children; i++) {
|
||
|
struct ice_sched_node *tmp;
|
||
|
|
||
|
tmp = ice_sched_find_node_by_teid(start_node->children[i],
|
||
|
teid);
|
||
|
if (tmp)
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @cmd_opc: cmd opcode
|
||
|
* @elems_req: number of elements to request
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_resp: returns total number of elements response
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* This function sends a scheduling elements cmd (cmd_opc)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
|
||
|
u16 elems_req, void *buf, u16 buf_size,
|
||
|
u16 *elems_resp, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aqc_sched_elem_cmd *cmd;
|
||
|
struct ice_aq_desc desc;
|
||
|
enum ice_status status;
|
||
|
|
||
|
cmd = &desc.params.sched_elem_cmd;
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
|
||
|
cmd->num_elem_req = cpu_to_le16(elems_req);
|
||
|
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
||
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
if (!status && elems_resp)
|
||
|
*elems_resp = le16_to_cpu(cmd->num_elem_resp);
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_query_sched_elems - query scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to query
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements returned
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Query scheduling elements (0x0404)
|
||
|
*/
|
||
|
enum ice_status
|
||
|
ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
|
||
|
struct ice_aqc_get_elem *buf, u16 buf_size,
|
||
|
u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_node - Insert the Tx scheduler node in SW DB
|
||
|
* @pi: port information structure
|
||
|
* @layer: Scheduler layer of the node
|
||
|
* @info: Scheduler element information from firmware
|
||
|
*
|
||
|
* This function inserts a scheduler node to the SW DB.
|
||
|
*/
|
||
|
enum ice_status
|
||
|
ice_sched_add_node(struct ice_port_info *pi, u8 layer,
|
||
|
struct ice_aqc_txsched_elem_data *info)
|
||
|
{
|
||
|
struct ice_sched_node *parent;
|
||
|
struct ice_aqc_get_elem elem;
|
||
|
struct ice_sched_node *node;
|
||
|
enum ice_status status;
|
||
|
struct ice_hw *hw;
|
||
|
|
||
|
if (!pi)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
hw = pi->hw;
|
||
|
|
||
|
/* A valid parent node should be there */
|
||
|
parent = ice_sched_find_node_by_teid(pi->root,
|
||
|
le32_to_cpu(info->parent_teid));
|
||
|
if (!parent) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED,
|
||
|
"Parent Node not found for parent_teid=0x%x\n",
|
||
|
le32_to_cpu(info->parent_teid));
|
||
|
return ICE_ERR_PARAM;
|
||
|
}
|
||
|
|
||
|
/* query the current node information from FW before additing it
|
||
|
* to the SW DB
|
||
|
*/
|
||
|
status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
|
||
|
if (!node)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
if (hw->max_children[layer]) {
|
||
|
/* coverity[suspicious_sizeof] */
|
||
|
node->children = devm_kcalloc(ice_hw_to_dev(hw),
|
||
|
hw->max_children[layer],
|
||
|
sizeof(*node), GFP_KERNEL);
|
||
|
if (!node->children) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), node);
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
node->in_use = true;
|
||
|
node->parent = parent;
|
||
|
node->tx_sched_layer = layer;
|
||
|
parent->children[parent->num_children++] = node;
|
||
|
memcpy(&node->info, &elem.generic[0], sizeof(node->info));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_delete_sched_elems - delete scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @grps_req: number of groups to delete
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @grps_del: returns total number of elements deleted
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Delete scheduling elements (0x040F)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
|
||
|
struct ice_aqc_delete_elem *buf, u16 buf_size,
|
||
|
u16 *grps_del, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
|
||
|
grps_req, (void *)buf, buf_size,
|
||
|
grps_del, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_remove_elems - remove nodes from HW
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @parent: pointer to the parent node
|
||
|
* @num_nodes: number of nodes
|
||
|
* @node_teids: array of node teids to be deleted
|
||
|
*
|
||
|
* This function remove nodes from HW
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
|
||
|
u16 num_nodes, u32 *node_teids)
|
||
|
{
|
||
|
struct ice_aqc_delete_elem *buf;
|
||
|
u16 i, num_groups_removed = 0;
|
||
|
enum ice_status status;
|
||
|
u16 buf_size;
|
||
|
|
||
|
buf_size = sizeof(*buf) + sizeof(u32) * (num_nodes - 1);
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
buf->hdr.parent_teid = parent->info.node_teid;
|
||
|
buf->hdr.num_elems = cpu_to_le16(num_nodes);
|
||
|
for (i = 0; i < num_nodes; i++)
|
||
|
buf->teid[i] = cpu_to_le32(node_teids[i]);
|
||
|
|
||
|
status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
|
||
|
&num_groups_removed, NULL);
|
||
|
if (status || num_groups_removed != 1)
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
|
||
|
hw->adminq.sq_last_status);
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_first_node - get the first node of the given layer
|
||
|
* @pi: port information structure
|
||
|
* @parent: pointer the base node of the subtree
|
||
|
* @layer: layer number
|
||
|
*
|
||
|
* This function retrieves the first node of the given layer from the subtree
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_first_node(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *parent, u8 layer)
|
||
|
{
|
||
|
return pi->sib_head[parent->tc_num][layer];
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_tc_node - get pointer to TC node
|
||
|
* @pi: port information structure
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function returns the TC node pointer
|
||
|
*/
|
||
|
struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
if (!pi || !pi->root)
|
||
|
return NULL;
|
||
|
for (i = 0; i < pi->root->num_children; i++)
|
||
|
if (pi->root->children[i]->tc_num == tc)
|
||
|
return pi->root->children[i];
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_free_sched_node - Free a Tx scheduler node from SW DB
|
||
|
* @pi: port information structure
|
||
|
* @node: pointer to the ice_sched_node struct
|
||
|
*
|
||
|
* This function frees up a node from SW DB as well as from HW
|
||
|
*
|
||
|
* This function needs to be called with the port_info->sched_lock held
|
||
|
*/
|
||
|
void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
|
||
|
{
|
||
|
struct ice_sched_node *parent;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u8 i, j;
|
||
|
|
||
|
/* Free the children before freeing up the parent node
|
||
|
* The parent array is updated below and that shifts the nodes
|
||
|
* in the array. So always pick the first child if num children > 0
|
||
|
*/
|
||
|
while (node->num_children)
|
||
|
ice_free_sched_node(pi, node->children[0]);
|
||
|
|
||
|
/* Leaf, TC and root nodes can't be deleted by SW */
|
||
|
if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
|
||
|
u32 teid = le32_to_cpu(node->info.node_teid);
|
||
|
|
||
|
ice_sched_remove_elems(hw, node->parent, 1, &teid);
|
||
|
}
|
||
|
parent = node->parent;
|
||
|
/* root has no parent */
|
||
|
if (parent) {
|
||
|
struct ice_sched_node *p;
|
||
|
|
||
|
/* update the parent */
|
||
|
for (i = 0; i < parent->num_children; i++)
|
||
|
if (parent->children[i] == node) {
|
||
|
for (j = i + 1; j < parent->num_children; j++)
|
||
|
parent->children[j - 1] =
|
||
|
parent->children[j];
|
||
|
parent->num_children--;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
|
||
|
while (p) {
|
||
|
if (p->sibling == node) {
|
||
|
p->sibling = node->sibling;
|
||
|
break;
|
||
|
}
|
||
|
p = p->sibling;
|
||
|
}
|
||
|
|
||
|
/* update the sibling head if head is getting removed */
|
||
|
if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
|
||
|
pi->sib_head[node->tc_num][node->tx_sched_layer] =
|
||
|
node->sibling;
|
||
|
}
|
||
|
|
||
|
/* leaf nodes have no children */
|
||
|
if (node->children)
|
||
|
devm_kfree(ice_hw_to_dev(hw), node->children);
|
||
|
devm_kfree(ice_hw_to_dev(hw), node);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_get_dflt_topo - gets default scheduler topology
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @lport: logical port number
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @num_branches: returns total number of queue to port branches
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Get default scheduler topology (0x400)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
|
||
|
struct ice_aqc_get_topo_elem *buf, u16 buf_size,
|
||
|
u8 *num_branches, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aqc_get_topo *cmd;
|
||
|
struct ice_aq_desc desc;
|
||
|
enum ice_status status;
|
||
|
|
||
|
cmd = &desc.params.get_topo;
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
|
||
|
cmd->port_num = lport;
|
||
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
if (!status && num_branches)
|
||
|
*num_branches = cmd->num_branches;
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_add_sched_elems - adds scheduling element
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @grps_req: the number of groups that are requested to be added
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @grps_added: returns total number of groups added
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Add scheduling elements (0x0401)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
|
||
|
struct ice_aqc_add_elem *buf, u16 buf_size,
|
||
|
u16 *grps_added, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
|
||
|
grps_req, (void *)buf, buf_size,
|
||
|
grps_added, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_suspend_sched_elems - suspend scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to suspend
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements suspended
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Suspend scheduling elements (0x0409)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req,
|
||
|
struct ice_aqc_suspend_resume_elem *buf,
|
||
|
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_resume_sched_elems - resume scheduler elements
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @elems_req: number of elements to resume
|
||
|
* @buf: pointer to buffer
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @elems_ret: returns total number of elements resumed
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* resume scheduling elements (0x040A)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req,
|
||
|
struct ice_aqc_suspend_resume_elem *buf,
|
||
|
u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
|
||
|
{
|
||
|
return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
|
||
|
elems_req, (void *)buf, buf_size,
|
||
|
elems_ret, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_aq_query_sched_res - query scheduler resource
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @buf_size: buffer size in bytes
|
||
|
* @buf: pointer to buffer
|
||
|
* @cd: pointer to command details structure or NULL
|
||
|
*
|
||
|
* Query scheduler resource allocation (0x0412)
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
|
||
|
struct ice_aqc_query_txsched_res_resp *buf,
|
||
|
struct ice_sq_cd *cd)
|
||
|
{
|
||
|
struct ice_aq_desc desc;
|
||
|
|
||
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
|
||
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_suspend_resume_elems - suspend or resume HW nodes
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_nodes: number of nodes
|
||
|
* @node_teids: array of node teids to be suspended or resumed
|
||
|
* @suspend: true means suspend / false means resume
|
||
|
*
|
||
|
* This function suspends or resumes HW nodes
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
|
||
|
bool suspend)
|
||
|
{
|
||
|
struct ice_aqc_suspend_resume_elem *buf;
|
||
|
u16 i, buf_size, num_elem_ret = 0;
|
||
|
enum ice_status status;
|
||
|
|
||
|
buf_size = sizeof(*buf) * num_nodes;
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
for (i = 0; i < num_nodes; i++)
|
||
|
buf->teid[i] = cpu_to_le32(node_teids[i]);
|
||
|
|
||
|
if (suspend)
|
||
|
status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
|
||
|
buf_size, &num_elem_ret,
|
||
|
NULL);
|
||
|
else
|
||
|
status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
|
||
|
buf_size, &num_elem_ret,
|
||
|
NULL);
|
||
|
if (status || num_elem_ret != num_nodes)
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @vsi_handle: VSI handle
|
||
|
* @tc: TC number
|
||
|
* @new_numqs: number of queues
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
|
||
|
{
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
struct ice_q_ctx *q_ctx;
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return ICE_ERR_PARAM;
|
||
|
/* allocate LAN queue contexts */
|
||
|
if (!vsi_ctx->lan_q_ctx[tc]) {
|
||
|
vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
|
||
|
new_numqs,
|
||
|
sizeof(*q_ctx),
|
||
|
GFP_KERNEL);
|
||
|
if (!vsi_ctx->lan_q_ctx[tc])
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
|
||
|
return 0;
|
||
|
}
|
||
|
/* num queues are increased, update the queue contexts */
|
||
|
if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
|
||
|
u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
|
||
|
|
||
|
q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
|
||
|
sizeof(*q_ctx), GFP_KERNEL);
|
||
|
if (!q_ctx)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
|
||
|
prev_num * sizeof(*q_ctx));
|
||
|
devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
|
||
|
vsi_ctx->lan_q_ctx[tc] = q_ctx;
|
||
|
vsi_ctx->num_lan_q_entries[tc] = new_numqs;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_agg - clears the aggregator related information
|
||
|
* @hw: pointer to the hardware structure
|
||
|
*
|
||
|
* This function removes aggregator list and free up aggregator related memory
|
||
|
* previously allocated.
|
||
|
*/
|
||
|
void ice_sched_clear_agg(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
struct ice_sched_agg_info *atmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_vsi_info *vtmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_vsi_info, vtmp,
|
||
|
&agg_info->agg_vsi_list, list_entry) {
|
||
|
list_del(&agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
|
||
|
}
|
||
|
list_del(&agg_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(hw), agg_info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_tx_topo - clears the scheduler tree nodes
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes all the nodes from HW as well as from SW DB.
|
||
|
*/
|
||
|
static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
|
||
|
{
|
||
|
if (!pi)
|
||
|
return;
|
||
|
if (pi->root) {
|
||
|
ice_free_sched_node(pi, pi->root);
|
||
|
pi->root = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_clear_port - clear the scheduler elements from SW DB for a port
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* Cleanup scheduling elements from SW DB
|
||
|
*/
|
||
|
void ice_sched_clear_port(struct ice_port_info *pi)
|
||
|
{
|
||
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
||
|
return;
|
||
|
|
||
|
pi->port_state = ICE_SCHED_PORT_STATE_INIT;
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
ice_sched_clear_tx_topo(pi);
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
mutex_destroy(&pi->sched_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* Cleanup scheduling elements from SW DB for all the ports
|
||
|
*/
|
||
|
void ice_sched_cleanup_all(struct ice_hw *hw)
|
||
|
{
|
||
|
if (!hw)
|
||
|
return;
|
||
|
|
||
|
if (hw->layer_info) {
|
||
|
devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
|
||
|
hw->layer_info = NULL;
|
||
|
}
|
||
|
|
||
|
if (hw->port_info)
|
||
|
ice_sched_clear_port(hw->port_info);
|
||
|
|
||
|
hw->num_tx_sched_layers = 0;
|
||
|
hw->num_tx_sched_phys_layers = 0;
|
||
|
hw->flattened_layers = 0;
|
||
|
hw->max_cgds = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_elems - add nodes to HW and SW DB
|
||
|
* @pi: port information structure
|
||
|
* @tc_node: pointer to the branch node
|
||
|
* @parent: pointer to the parent node
|
||
|
* @layer: layer number to add nodes
|
||
|
* @num_nodes: number of nodes
|
||
|
* @num_nodes_added: pointer to num nodes added
|
||
|
* @first_node_teid: if new nodes are added then return the TEID of first node
|
||
|
*
|
||
|
* This function add nodes to HW as well as to SW DB for a given layer
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
|
||
|
struct ice_sched_node *parent, u8 layer, u16 num_nodes,
|
||
|
u16 *num_nodes_added, u32 *first_node_teid)
|
||
|
{
|
||
|
struct ice_sched_node *prev, *new_node;
|
||
|
struct ice_aqc_add_elem *buf;
|
||
|
u16 i, num_groups_added = 0;
|
||
|
enum ice_status status = 0;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
size_t buf_size;
|
||
|
u32 teid;
|
||
|
|
||
|
buf_size = struct_size(buf, generic, num_nodes - 1);
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
buf->hdr.parent_teid = parent->info.node_teid;
|
||
|
buf->hdr.num_elems = cpu_to_le16(num_nodes);
|
||
|
for (i = 0; i < num_nodes; i++) {
|
||
|
buf->generic[i].parent_teid = parent->info.node_teid;
|
||
|
buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
|
||
|
buf->generic[i].data.valid_sections =
|
||
|
ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
|
||
|
ICE_AQC_ELEM_VALID_EIR;
|
||
|
buf->generic[i].data.generic = 0;
|
||
|
buf->generic[i].data.cir_bw.bw_profile_idx =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
||
|
buf->generic[i].data.cir_bw.bw_alloc =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
||
|
buf->generic[i].data.eir_bw.bw_profile_idx =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
|
||
|
buf->generic[i].data.eir_bw.bw_alloc =
|
||
|
cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
|
||
|
}
|
||
|
|
||
|
status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
|
||
|
&num_groups_added, NULL);
|
||
|
if (status || num_groups_added != 1) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
|
||
|
hw->adminq.sq_last_status);
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return ICE_ERR_CFG;
|
||
|
}
|
||
|
|
||
|
*num_nodes_added = num_nodes;
|
||
|
/* add nodes to the SW DB */
|
||
|
for (i = 0; i < num_nodes; i++) {
|
||
|
status = ice_sched_add_node(pi, layer, &buf->generic[i]);
|
||
|
if (status) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED,
|
||
|
"add nodes in SW DB failed status =%d\n",
|
||
|
status);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
teid = le32_to_cpu(buf->generic[i].node_teid);
|
||
|
new_node = ice_sched_find_node_by_teid(parent, teid);
|
||
|
if (!new_node) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED,
|
||
|
"Node is missing for teid =%d\n", teid);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
new_node->sibling = NULL;
|
||
|
new_node->tc_num = tc_node->tc_num;
|
||
|
|
||
|
/* add it to previous node sibling pointer */
|
||
|
/* Note: siblings are not linked across branches */
|
||
|
prev = ice_sched_get_first_node(pi, tc_node, layer);
|
||
|
if (prev && prev != new_node) {
|
||
|
while (prev->sibling)
|
||
|
prev = prev->sibling;
|
||
|
prev->sibling = new_node;
|
||
|
}
|
||
|
|
||
|
/* initialize the sibling head */
|
||
|
if (!pi->sib_head[tc_node->tc_num][layer])
|
||
|
pi->sib_head[tc_node->tc_num][layer] = new_node;
|
||
|
|
||
|
if (i == 0)
|
||
|
*first_node_teid = teid;
|
||
|
}
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_nodes_to_layer - Add nodes to a given layer
|
||
|
* @pi: port information structure
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @parent: pointer to parent node
|
||
|
* @layer: layer number to add nodes
|
||
|
* @num_nodes: number of nodes to be added
|
||
|
* @first_node_teid: pointer to the first node TEID
|
||
|
* @num_nodes_added: pointer to number of nodes added
|
||
|
*
|
||
|
* This function add nodes to a given layer.
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
|
||
|
struct ice_sched_node *tc_node,
|
||
|
struct ice_sched_node *parent, u8 layer,
|
||
|
u16 num_nodes, u32 *first_node_teid,
|
||
|
u16 *num_nodes_added)
|
||
|
{
|
||
|
u32 *first_teid_ptr = first_node_teid;
|
||
|
u16 new_num_nodes, max_child_nodes;
|
||
|
enum ice_status status = 0;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u16 num_added = 0;
|
||
|
u32 temp;
|
||
|
|
||
|
*num_nodes_added = 0;
|
||
|
|
||
|
if (!num_nodes)
|
||
|
return status;
|
||
|
|
||
|
if (!parent || layer < hw->sw_entry_point_layer)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
/* max children per node per layer */
|
||
|
max_child_nodes = hw->max_children[parent->tx_sched_layer];
|
||
|
|
||
|
/* current number of children + required nodes exceed max children ? */
|
||
|
if ((parent->num_children + num_nodes) > max_child_nodes) {
|
||
|
/* Fail if the parent is a TC node */
|
||
|
if (parent == tc_node)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
/* utilize all the spaces if the parent is not full */
|
||
|
if (parent->num_children < max_child_nodes) {
|
||
|
new_num_nodes = max_child_nodes - parent->num_children;
|
||
|
/* this recursion is intentional, and wouldn't
|
||
|
* go more than 2 calls
|
||
|
*/
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node,
|
||
|
parent, layer,
|
||
|
new_num_nodes,
|
||
|
first_node_teid,
|
||
|
&num_added);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
*num_nodes_added += num_added;
|
||
|
}
|
||
|
/* Don't modify the first node TEID memory if the first node was
|
||
|
* added already in the above call. Instead send some temp
|
||
|
* memory for all other recursive calls.
|
||
|
*/
|
||
|
if (num_added)
|
||
|
first_teid_ptr = &temp;
|
||
|
|
||
|
new_num_nodes = num_nodes - num_added;
|
||
|
|
||
|
/* This parent is full, try the next sibling */
|
||
|
parent = parent->sibling;
|
||
|
|
||
|
/* this recursion is intentional, for 1024 queues
|
||
|
* per VSI, it goes max of 16 iterations.
|
||
|
* 1024 / 8 = 128 layer 8 nodes
|
||
|
* 128 /8 = 16 (add 8 nodes per iteration)
|
||
|
*/
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
|
||
|
layer, new_num_nodes,
|
||
|
first_teid_ptr,
|
||
|
&num_added);
|
||
|
*num_nodes_added += num_added;
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
|
||
|
num_nodes_added, first_node_teid);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_qgrp_layer - get the current queue group layer number
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function returns the current queue group layer number
|
||
|
*/
|
||
|
static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
|
||
|
{
|
||
|
/* It's always total layers - 1, the array is 0 relative so -2 */
|
||
|
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_vsi_layer - get the current VSI layer number
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* This function returns the current VSI layer number
|
||
|
*/
|
||
|
static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
|
||
|
{
|
||
|
/* Num Layers VSI layer
|
||
|
* 9 6
|
||
|
* 7 4
|
||
|
* 5 or less sw_entry_point_layer
|
||
|
*/
|
||
|
/* calculate the VSI layer based on number of layers. */
|
||
|
if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
|
||
|
u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
|
||
|
|
||
|
if (layer > hw->sw_entry_point_layer)
|
||
|
return layer;
|
||
|
}
|
||
|
return hw->sw_entry_point_layer;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_dflt_leaf_node - remove the default leaf node in the tree
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function removes the leaf node that was created by the FW
|
||
|
* during initialization
|
||
|
*/
|
||
|
static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
|
||
|
node = pi->root;
|
||
|
while (node) {
|
||
|
if (!node->num_children)
|
||
|
break;
|
||
|
node = node->children[0];
|
||
|
}
|
||
|
if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
|
||
|
u32 teid = le32_to_cpu(node->info.node_teid);
|
||
|
enum ice_status status;
|
||
|
|
||
|
/* remove the default leaf node */
|
||
|
status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
|
||
|
if (!status)
|
||
|
ice_free_sched_node(pi, node);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_dflt_nodes - free the default nodes in the tree
|
||
|
* @pi: port information structure
|
||
|
*
|
||
|
* This function frees all the nodes except root and TC that were created by
|
||
|
* the FW during initialization
|
||
|
*/
|
||
|
static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
|
||
|
ice_rm_dflt_leaf_node(pi);
|
||
|
|
||
|
/* remove the default nodes except TC and root nodes */
|
||
|
node = pi->root;
|
||
|
while (node) {
|
||
|
if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
|
||
|
node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
|
||
|
ice_free_sched_node(pi, node);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (!node->num_children)
|
||
|
break;
|
||
|
node = node->children[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_init_port - Initialize scheduler by querying information from FW
|
||
|
* @pi: port info structure for the tree to cleanup
|
||
|
*
|
||
|
* This function is the initial call to find the total number of Tx scheduler
|
||
|
* resources, default topology created by firmware and storing the information
|
||
|
* in SW DB.
|
||
|
*/
|
||
|
enum ice_status ice_sched_init_port(struct ice_port_info *pi)
|
||
|
{
|
||
|
struct ice_aqc_get_topo_elem *buf;
|
||
|
enum ice_status status;
|
||
|
struct ice_hw *hw;
|
||
|
u8 num_branches;
|
||
|
u16 num_elems;
|
||
|
u8 i, j;
|
||
|
|
||
|
if (!pi)
|
||
|
return ICE_ERR_PARAM;
|
||
|
hw = pi->hw;
|
||
|
|
||
|
/* Query the Default Topology from FW */
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
/* Query default scheduling tree topology */
|
||
|
status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
|
||
|
&num_branches, NULL);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
|
||
|
/* num_branches should be between 1-8 */
|
||
|
if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
|
||
|
num_branches);
|
||
|
status = ICE_ERR_PARAM;
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
|
||
|
/* get the number of elements on the default/first branch */
|
||
|
num_elems = le16_to_cpu(buf[0].hdr.num_elems);
|
||
|
|
||
|
/* num_elems should always be between 1-9 */
|
||
|
if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
|
||
|
ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
|
||
|
num_elems);
|
||
|
status = ICE_ERR_PARAM;
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
|
||
|
/* If the last node is a leaf node then the index of the queue group
|
||
|
* layer is two less than the number of elements.
|
||
|
*/
|
||
|
if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
|
||
|
ICE_AQC_ELEM_TYPE_LEAF)
|
||
|
pi->last_node_teid =
|
||
|
le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
|
||
|
else
|
||
|
pi->last_node_teid =
|
||
|
le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
|
||
|
|
||
|
/* Insert the Tx Sched root node */
|
||
|
status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
|
||
|
/* Parse the default tree and cache the information */
|
||
|
for (i = 0; i < num_branches; i++) {
|
||
|
num_elems = le16_to_cpu(buf[i].hdr.num_elems);
|
||
|
|
||
|
/* Skip root element as already inserted */
|
||
|
for (j = 1; j < num_elems; j++) {
|
||
|
/* update the sw entry point */
|
||
|
if (buf[0].generic[j].data.elem_type ==
|
||
|
ICE_AQC_ELEM_TYPE_ENTRY_POINT)
|
||
|
hw->sw_entry_point_layer = j;
|
||
|
|
||
|
status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
|
||
|
if (status)
|
||
|
goto err_init_port;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Remove the default nodes. */
|
||
|
if (pi->root)
|
||
|
ice_sched_rm_dflt_nodes(pi);
|
||
|
|
||
|
/* initialize the port for handling the scheduler tree */
|
||
|
pi->port_state = ICE_SCHED_PORT_STATE_READY;
|
||
|
mutex_init(&pi->sched_lock);
|
||
|
|
||
|
err_init_port:
|
||
|
if (status && pi->root) {
|
||
|
ice_free_sched_node(pi, pi->root);
|
||
|
pi->root = NULL;
|
||
|
}
|
||
|
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_query_res_alloc - query the FW for num of logical sched layers
|
||
|
* @hw: pointer to the HW struct
|
||
|
*
|
||
|
* query FW for allocated scheduler resources and store in HW struct
|
||
|
*/
|
||
|
enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
|
||
|
{
|
||
|
struct ice_aqc_query_txsched_res_resp *buf;
|
||
|
enum ice_status status = 0;
|
||
|
__le16 max_sibl;
|
||
|
u16 i;
|
||
|
|
||
|
if (hw->layer_info)
|
||
|
return status;
|
||
|
|
||
|
buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return ICE_ERR_NO_MEMORY;
|
||
|
|
||
|
status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
|
||
|
if (status)
|
||
|
goto sched_query_out;
|
||
|
|
||
|
hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
|
||
|
hw->num_tx_sched_phys_layers =
|
||
|
le16_to_cpu(buf->sched_props.phys_levels);
|
||
|
hw->flattened_layers = buf->sched_props.flattening_bitmap;
|
||
|
hw->max_cgds = buf->sched_props.max_pf_cgds;
|
||
|
|
||
|
/* max sibling group size of current layer refers to the max children
|
||
|
* of the below layer node.
|
||
|
* layer 1 node max children will be layer 2 max sibling group size
|
||
|
* layer 2 node max children will be layer 3 max sibling group size
|
||
|
* and so on. This array will be populated from root (index 0) to
|
||
|
* qgroup layer 7. Leaf node has no children.
|
||
|
*/
|
||
|
for (i = 0; i < hw->num_tx_sched_layers; i++) {
|
||
|
max_sibl = buf->layer_props[i].max_sibl_grp_sz;
|
||
|
hw->max_children[i] = le16_to_cpu(max_sibl);
|
||
|
}
|
||
|
|
||
|
hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
|
||
|
(hw->num_tx_sched_layers *
|
||
|
sizeof(*hw->layer_info)),
|
||
|
GFP_KERNEL);
|
||
|
if (!hw->layer_info) {
|
||
|
status = ICE_ERR_NO_MEMORY;
|
||
|
goto sched_query_out;
|
||
|
}
|
||
|
|
||
|
sched_query_out:
|
||
|
devm_kfree(ice_hw_to_dev(hw), buf);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_find_node_in_subtree - Find node in part of base node subtree
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @base: pointer to the base node
|
||
|
* @node: pointer to the node to search
|
||
|
*
|
||
|
* This function checks whether a given node is part of the base node
|
||
|
* subtree or not
|
||
|
*/
|
||
|
static bool
|
||
|
ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
|
||
|
struct ice_sched_node *node)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
for (i = 0; i < base->num_children; i++) {
|
||
|
struct ice_sched_node *child = base->children[i];
|
||
|
|
||
|
if (node == child)
|
||
|
return true;
|
||
|
|
||
|
if (child->tx_sched_layer > node->tx_sched_layer)
|
||
|
return false;
|
||
|
|
||
|
/* this recursion is intentional, and wouldn't
|
||
|
* go more than 8 calls
|
||
|
*/
|
||
|
if (ice_sched_find_node_in_subtree(hw, child, node))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: branch number
|
||
|
* @owner: LAN or RDMA
|
||
|
*
|
||
|
* This function retrieves a free LAN or RDMA queue group node
|
||
|
*/
|
||
|
struct ice_sched_node *
|
||
|
ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
|
||
|
u8 owner)
|
||
|
{
|
||
|
struct ice_sched_node *vsi_node, *qgrp_node = NULL;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
u16 max_children;
|
||
|
u8 qgrp_layer;
|
||
|
|
||
|
qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
|
||
|
max_children = pi->hw->max_children[qgrp_layer];
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return NULL;
|
||
|
vsi_node = vsi_ctx->sched.vsi_node[tc];
|
||
|
/* validate invalid VSI ID */
|
||
|
if (!vsi_node)
|
||
|
goto lan_q_exit;
|
||
|
|
||
|
/* get the first queue group node from VSI sub-tree */
|
||
|
qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
|
||
|
while (qgrp_node) {
|
||
|
/* make sure the qgroup node is part of the VSI subtree */
|
||
|
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
|
||
|
if (qgrp_node->num_children < max_children &&
|
||
|
qgrp_node->owner == owner)
|
||
|
break;
|
||
|
qgrp_node = qgrp_node->sibling;
|
||
|
}
|
||
|
|
||
|
lan_q_exit:
|
||
|
return qgrp_node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_get_vsi_node - Get a VSI node based on VSI ID
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @tc_node: pointer to the TC node
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function retrieves a VSI node for a given VSI ID from a given
|
||
|
* TC branch
|
||
|
*/
|
||
|
static struct ice_sched_node *
|
||
|
ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
|
||
|
u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
u8 vsi_layer;
|
||
|
|
||
|
vsi_layer = ice_sched_get_vsi_layer(hw);
|
||
|
node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
|
||
|
|
||
|
/* Check whether it already exists */
|
||
|
while (node) {
|
||
|
if (node->vsi_handle == vsi_handle)
|
||
|
return node;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @num_qs: number of queues
|
||
|
* @num_nodes: num nodes array
|
||
|
*
|
||
|
* This function calculates the number of VSI child nodes based on the
|
||
|
* number of queues.
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
|
||
|
{
|
||
|
u16 num = num_qs;
|
||
|
u8 i, qgl, vsil;
|
||
|
|
||
|
qgl = ice_sched_get_qgrp_layer(hw);
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
|
||
|
/* calculate num nodes from queue group to VSI layer */
|
||
|
for (i = qgl; i > vsil; i--) {
|
||
|
/* round to the next integer if there is a remainder */
|
||
|
num = DIV_ROUND_UP(num, hw->max_children[i]);
|
||
|
|
||
|
/* need at least one node */
|
||
|
num_nodes[i] = num ? num : 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_node: pointer to the TC node
|
||
|
* @num_nodes: pointer to the num nodes that needs to be added per layer
|
||
|
* @owner: node owner (LAN or RDMA)
|
||
|
*
|
||
|
* This function adds the VSI child nodes to tree. It gets called for
|
||
|
* LAN and RDMA separately.
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes,
|
||
|
u8 owner)
|
||
|
{
|
||
|
struct ice_sched_node *parent, *node;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
enum ice_status status;
|
||
|
u32 first_node_teid;
|
||
|
u16 num_added = 0;
|
||
|
u8 i, qgl, vsil;
|
||
|
|
||
|
qgl = ice_sched_get_qgrp_layer(hw);
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
|
||
|
for (i = vsil + 1; i <= qgl; i++) {
|
||
|
if (!parent)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
|
||
|
num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_added);
|
||
|
if (status || num_nodes[i] != num_added)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_added) {
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
node = parent;
|
||
|
while (node) {
|
||
|
node->owner = owner;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
} else {
|
||
|
parent = parent->children[0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
|
||
|
* @hw: pointer to the HW struct
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @num_nodes: pointer to num nodes array
|
||
|
*
|
||
|
* This function calculates the number of supported nodes needed to add this
|
||
|
* VSI into Tx tree including the VSI, parent and intermediate nodes in below
|
||
|
* layers
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes)
|
||
|
{
|
||
|
struct ice_sched_node *node;
|
||
|
u8 vsil;
|
||
|
int i;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(hw);
|
||
|
for (i = vsil; i >= hw->sw_entry_point_layer; i--)
|
||
|
/* Add intermediate nodes if TC has no children and
|
||
|
* need at least one node for VSI
|
||
|
*/
|
||
|
if (!tc_node->num_children || i == vsil) {
|
||
|
num_nodes[i]++;
|
||
|
} else {
|
||
|
/* If intermediate nodes are reached max children
|
||
|
* then add a new one.
|
||
|
*/
|
||
|
node = ice_sched_get_first_node(hw->port_info, tc_node,
|
||
|
(u8)i);
|
||
|
/* scan all the siblings */
|
||
|
while (node) {
|
||
|
if (node->num_children < hw->max_children[i])
|
||
|
break;
|
||
|
node = node->sibling;
|
||
|
}
|
||
|
|
||
|
/* tree has one intermediate node to add this new VSI.
|
||
|
* So no need to calculate supported nodes for below
|
||
|
* layers.
|
||
|
*/
|
||
|
if (node)
|
||
|
break;
|
||
|
/* all the nodes are full, allocate a new one */
|
||
|
num_nodes[i]++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc_node: pointer to TC node
|
||
|
* @num_nodes: pointer to num nodes array
|
||
|
*
|
||
|
* This function adds the VSI supported nodes into Tx tree including the
|
||
|
* VSI, its parent and intermediate nodes in below layers
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
struct ice_sched_node *tc_node, u16 *num_nodes)
|
||
|
{
|
||
|
struct ice_sched_node *parent = tc_node;
|
||
|
enum ice_status status;
|
||
|
u32 first_node_teid;
|
||
|
u16 num_added = 0;
|
||
|
u8 i, vsil;
|
||
|
|
||
|
if (!pi)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
vsil = ice_sched_get_vsi_layer(pi->hw);
|
||
|
for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
|
||
|
status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
|
||
|
i, num_nodes[i],
|
||
|
&first_node_teid,
|
||
|
&num_added);
|
||
|
if (status || num_nodes[i] != num_added)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
/* The newly added node can be a new parent for the next
|
||
|
* layer nodes
|
||
|
*/
|
||
|
if (num_added)
|
||
|
parent = ice_sched_find_node_by_teid(tc_node,
|
||
|
first_node_teid);
|
||
|
else
|
||
|
parent = parent->children[0];
|
||
|
|
||
|
if (!parent)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
if (i == vsil)
|
||
|
parent->vsi_handle = vsi_handle;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_add_vsi_to_topo - add a new VSI into tree
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
*
|
||
|
* This function adds a new VSI into scheduler tree
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
|
||
|
{
|
||
|
u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
struct ice_sched_node *tc_node;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
/* calculate number of supported nodes needed for this VSI */
|
||
|
ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
|
||
|
|
||
|
/* add VSI supported nodes to TC subtree */
|
||
|
return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
|
||
|
num_nodes);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_update_vsi_child_nodes - update VSI child nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
* @new_numqs: new number of max queues
|
||
|
* @owner: owner of this subtree
|
||
|
*
|
||
|
* This function updates the VSI child nodes based on the number of queues
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
|
||
|
u8 tc, u16 new_numqs, u8 owner)
|
||
|
{
|
||
|
u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
|
||
|
struct ice_sched_node *vsi_node;
|
||
|
struct ice_sched_node *tc_node;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
enum ice_status status = 0;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
u16 prev_numqs;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return ICE_ERR_PARAM;
|
||
|
|
||
|
prev_numqs = vsi_ctx->sched.max_lanq[tc];
|
||
|
/* num queues are not changed or less than the previous number */
|
||
|
if (new_numqs <= prev_numqs)
|
||
|
return status;
|
||
|
status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
if (new_numqs)
|
||
|
ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
|
||
|
/* Keep the max number of queue configuration all the time. Update the
|
||
|
* tree only if number of queues > previous number of queues. This may
|
||
|
* leave some extra nodes in the tree if number of queues < previous
|
||
|
* number but that wouldn't harm anything. Removing those extra nodes
|
||
|
* may complicate the code if those nodes are part of SRL or
|
||
|
* individually rate limited.
|
||
|
*/
|
||
|
status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
|
||
|
new_num_nodes, owner);
|
||
|
if (status)
|
||
|
return status;
|
||
|
vsi_ctx->sched.max_lanq[tc] = new_numqs;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_cfg_vsi - configure the new/existing VSI
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @tc: TC number
|
||
|
* @maxqs: max number of queues
|
||
|
* @owner: LAN or RDMA
|
||
|
* @enable: TC enabled or disabled
|
||
|
*
|
||
|
* This function adds/updates VSI nodes based on the number of queues. If TC is
|
||
|
* enabled and VSI is in suspended state then resume the VSI back. If TC is
|
||
|
* disabled then suspend the VSI if it is not already.
|
||
|
*/
|
||
|
enum ice_status
|
||
|
ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
|
||
|
u8 owner, bool enable)
|
||
|
{
|
||
|
struct ice_sched_node *vsi_node, *tc_node;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
enum ice_status status = 0;
|
||
|
struct ice_hw *hw = pi->hw;
|
||
|
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
|
||
|
tc_node = ice_sched_get_tc_node(pi, tc);
|
||
|
if (!tc_node)
|
||
|
return ICE_ERR_PARAM;
|
||
|
vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
return ICE_ERR_PARAM;
|
||
|
vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
|
||
|
|
||
|
/* suspend the VSI if TC is not enabled */
|
||
|
if (!enable) {
|
||
|
if (vsi_node && vsi_node->in_use) {
|
||
|
u32 teid = le32_to_cpu(vsi_node->info.node_teid);
|
||
|
|
||
|
status = ice_sched_suspend_resume_elems(hw, 1, &teid,
|
||
|
true);
|
||
|
if (!status)
|
||
|
vsi_node->in_use = false;
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/* TC is enabled, if it is a new VSI then add it to the tree */
|
||
|
if (!vsi_node) {
|
||
|
status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
return ICE_ERR_CFG;
|
||
|
|
||
|
vsi_ctx->sched.vsi_node[tc] = vsi_node;
|
||
|
vsi_node->in_use = true;
|
||
|
/* invalidate the max queues whenever VSI gets added first time
|
||
|
* into the scheduler tree (boot or after reset). We need to
|
||
|
* recreate the child nodes all the time in these cases.
|
||
|
*/
|
||
|
vsi_ctx->sched.max_lanq[tc] = 0;
|
||
|
}
|
||
|
|
||
|
/* update the VSI child nodes */
|
||
|
status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
|
||
|
owner);
|
||
|
if (status)
|
||
|
return status;
|
||
|
|
||
|
/* TC is enabled, resume the VSI if it is in the suspend state */
|
||
|
if (!vsi_node->in_use) {
|
||
|
u32 teid = le32_to_cpu(vsi_node->info.node_teid);
|
||
|
|
||
|
status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
|
||
|
if (!status)
|
||
|
vsi_node->in_use = true;
|
||
|
}
|
||
|
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function removes single aggregator VSI info entry from
|
||
|
* aggregator list.
|
||
|
*/
|
||
|
static void
|
||
|
ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
|
||
|
{
|
||
|
struct ice_sched_agg_info *agg_info;
|
||
|
struct ice_sched_agg_info *atmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
|
||
|
list_entry) {
|
||
|
struct ice_sched_agg_vsi_info *agg_vsi_info;
|
||
|
struct ice_sched_agg_vsi_info *vtmp;
|
||
|
|
||
|
list_for_each_entry_safe(agg_vsi_info, vtmp,
|
||
|
&agg_info->agg_vsi_list, list_entry)
|
||
|
if (agg_vsi_info->vsi_handle == vsi_handle) {
|
||
|
list_del(&agg_vsi_info->list_entry);
|
||
|
devm_kfree(ice_hw_to_dev(pi->hw),
|
||
|
agg_vsi_info);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
|
||
|
* @node: pointer to the sub-tree node
|
||
|
*
|
||
|
* This function checks for a leaf node presence in a given sub-tree node.
|
||
|
*/
|
||
|
static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
|
||
|
{
|
||
|
u8 i;
|
||
|
|
||
|
for (i = 0; i < node->num_children; i++)
|
||
|
if (ice_sched_is_leaf_node_present(node->children[i]))
|
||
|
return true;
|
||
|
/* check for a leaf node */
|
||
|
return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
* @owner: LAN or RDMA
|
||
|
*
|
||
|
* This function removes the VSI and its LAN or RDMA children nodes from the
|
||
|
* scheduler tree.
|
||
|
*/
|
||
|
static enum ice_status
|
||
|
ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
|
||
|
{
|
||
|
enum ice_status status = ICE_ERR_PARAM;
|
||
|
struct ice_vsi_ctx *vsi_ctx;
|
||
|
u8 i;
|
||
|
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
|
||
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
||
|
return status;
|
||
|
mutex_lock(&pi->sched_lock);
|
||
|
vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
|
||
|
if (!vsi_ctx)
|
||
|
goto exit_sched_rm_vsi_cfg;
|
||
|
|
||
|
ice_for_each_traffic_class(i) {
|
||
|
struct ice_sched_node *vsi_node, *tc_node;
|
||
|
u8 j = 0;
|
||
|
|
||
|
tc_node = ice_sched_get_tc_node(pi, i);
|
||
|
if (!tc_node)
|
||
|
continue;
|
||
|
|
||
|
vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
|
||
|
if (!vsi_node)
|
||
|
continue;
|
||
|
|
||
|
if (ice_sched_is_leaf_node_present(vsi_node)) {
|
||
|
ice_debug(pi->hw, ICE_DBG_SCHED,
|
||
|
"VSI has leaf nodes in TC %d\n", i);
|
||
|
status = ICE_ERR_IN_USE;
|
||
|
goto exit_sched_rm_vsi_cfg;
|
||
|
}
|
||
|
while (j < vsi_node->num_children) {
|
||
|
if (vsi_node->children[j]->owner == owner) {
|
||
|
ice_free_sched_node(pi, vsi_node->children[j]);
|
||
|
|
||
|
/* reset the counter again since the num
|
||
|
* children will be updated after node removal
|
||
|
*/
|
||
|
j = 0;
|
||
|
} else {
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
/* remove the VSI if it has no children */
|
||
|
if (!vsi_node->num_children) {
|
||
|
ice_free_sched_node(pi, vsi_node);
|
||
|
vsi_ctx->sched.vsi_node[i] = NULL;
|
||
|
|
||
|
/* clean up aggregator related VSI info if any */
|
||
|
ice_sched_rm_agg_vsi_info(pi, vsi_handle);
|
||
|
}
|
||
|
if (owner == ICE_SCHED_NODE_OWNER_LAN)
|
||
|
vsi_ctx->sched.max_lanq[i] = 0;
|
||
|
}
|
||
|
status = 0;
|
||
|
|
||
|
exit_sched_rm_vsi_cfg:
|
||
|
mutex_unlock(&pi->sched_lock);
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
|
||
|
* @pi: port information structure
|
||
|
* @vsi_handle: software VSI handle
|
||
|
*
|
||
|
* This function clears the VSI and its LAN children nodes from scheduler tree
|
||
|
* for all TCs.
|
||
|
*/
|
||
|
enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
|
||
|
{
|
||
|
return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
|
||
|
}
|