linux/linux-5.4.31/drivers/net/ethernet/cisco/enic/vnic_dev.c

1305 lines
29 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
/*
* Copyright 2008-2010 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*
* This program is free software; you may redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/if_ether.h>
#include "vnic_resource.h"
#include "vnic_devcmd.h"
#include "vnic_dev.h"
#include "vnic_wq.h"
#include "vnic_stats.h"
#include "enic.h"
#define VNIC_MAX_RES_HDR_SIZE \
(sizeof(struct vnic_resource_header) + \
sizeof(struct vnic_resource) * RES_TYPE_MAX)
#define VNIC_RES_STRIDE 128
void *vnic_dev_priv(struct vnic_dev *vdev)
{
return vdev->priv;
}
static int vnic_dev_discover_res(struct vnic_dev *vdev,
struct vnic_dev_bar *bar, unsigned int num_bars)
{
struct vnic_resource_header __iomem *rh;
struct mgmt_barmap_hdr __iomem *mrh;
struct vnic_resource __iomem *r;
u8 type;
if (num_bars == 0)
return -EINVAL;
if (bar->len < VNIC_MAX_RES_HDR_SIZE) {
vdev_err(vdev, "vNIC BAR0 res hdr length error\n");
return -EINVAL;
}
rh = bar->vaddr;
mrh = bar->vaddr;
if (!rh) {
vdev_err(vdev, "vNIC BAR0 res hdr not mem-mapped\n");
return -EINVAL;
}
/* Check for mgmt vnic in addition to normal vnic */
if ((ioread32(&rh->magic) != VNIC_RES_MAGIC) ||
(ioread32(&rh->version) != VNIC_RES_VERSION)) {
if ((ioread32(&mrh->magic) != MGMTVNIC_MAGIC) ||
(ioread32(&mrh->version) != MGMTVNIC_VERSION)) {
vdev_err(vdev, "vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n",
VNIC_RES_MAGIC, VNIC_RES_VERSION,
MGMTVNIC_MAGIC, MGMTVNIC_VERSION,
ioread32(&rh->magic), ioread32(&rh->version));
return -EINVAL;
}
}
if (ioread32(&mrh->magic) == MGMTVNIC_MAGIC)
r = (struct vnic_resource __iomem *)(mrh + 1);
else
r = (struct vnic_resource __iomem *)(rh + 1);
while ((type = ioread8(&r->type)) != RES_TYPE_EOL) {
u8 bar_num = ioread8(&r->bar);
u32 bar_offset = ioread32(&r->bar_offset);
u32 count = ioread32(&r->count);
u32 len;
r++;
if (bar_num >= num_bars)
continue;
if (!bar[bar_num].len || !bar[bar_num].vaddr)
continue;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
/* each count is stride bytes long */
len = count * VNIC_RES_STRIDE;
if (len + bar_offset > bar[bar_num].len) {
vdev_err(vdev, "vNIC BAR0 resource %d out-of-bounds, offset 0x%x + size 0x%x > bar len 0x%lx\n",
type, bar_offset, len,
bar[bar_num].len);
return -EINVAL;
}
break;
case RES_TYPE_INTR_PBA_LEGACY:
case RES_TYPE_DEVCMD:
case RES_TYPE_DEVCMD2:
len = count;
break;
default:
continue;
}
vdev->res[type].count = count;
vdev->res[type].vaddr = (char __iomem *)bar[bar_num].vaddr +
bar_offset;
vdev->res[type].bus_addr = bar[bar_num].bus_addr + bar_offset;
}
return 0;
}
unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev,
enum vnic_res_type type)
{
return vdev->res[type].count;
}
EXPORT_SYMBOL(vnic_dev_get_res_count);
void __iomem *vnic_dev_get_res(struct vnic_dev *vdev, enum vnic_res_type type,
unsigned int index)
{
if (!vdev->res[type].vaddr)
return NULL;
switch (type) {
case RES_TYPE_WQ:
case RES_TYPE_RQ:
case RES_TYPE_CQ:
case RES_TYPE_INTR_CTRL:
return (char __iomem *)vdev->res[type].vaddr +
index * VNIC_RES_STRIDE;
default:
return (char __iomem *)vdev->res[type].vaddr;
}
}
EXPORT_SYMBOL(vnic_dev_get_res);
static unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
/* The base address of the desc rings must be 512 byte aligned.
* Descriptor count is aligned to groups of 32 descriptors. A
* count of 0 means the maximum 4096 descriptors. Descriptor
* size is aligned to 16 bytes.
*/
unsigned int count_align = 32;
unsigned int desc_align = 16;
ring->base_align = 512;
if (desc_count == 0)
desc_count = 4096;
ring->desc_count = ALIGN(desc_count, count_align);
ring->desc_size = ALIGN(desc_size, desc_align);
ring->size = ring->desc_count * ring->desc_size;
ring->size_unaligned = ring->size + ring->base_align;
return ring->size_unaligned;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
memset(ring->descs, 0, ring->size);
}
int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring,
unsigned int desc_count, unsigned int desc_size)
{
vnic_dev_desc_ring_size(ring, desc_count, desc_size);
ring->descs_unaligned = pci_alloc_consistent(vdev->pdev,
ring->size_unaligned,
&ring->base_addr_unaligned);
if (!ring->descs_unaligned) {
vdev_err(vdev, "Failed to allocate ring (size=%d), aborting\n",
(int)ring->size);
return -ENOMEM;
}
ring->base_addr = ALIGN(ring->base_addr_unaligned,
ring->base_align);
ring->descs = (u8 *)ring->descs_unaligned +
(ring->base_addr - ring->base_addr_unaligned);
vnic_dev_clear_desc_ring(ring);
ring->desc_avail = ring->desc_count - 1;
return 0;
}
void vnic_dev_free_desc_ring(struct vnic_dev *vdev, struct vnic_dev_ring *ring)
{
if (ring->descs) {
pci_free_consistent(vdev->pdev,
ring->size_unaligned,
ring->descs_unaligned,
ring->base_addr_unaligned);
ring->descs = NULL;
}
}
static int _vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait)
{
struct vnic_devcmd __iomem *devcmd = vdev->devcmd;
unsigned int i;
int delay;
u32 status;
int err;
status = ioread32(&devcmd->status);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (status & STAT_BUSY) {
vdev_neterr(vdev, "Busy devcmd %d\n", _CMD_N(cmd));
return -EBUSY;
}
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE) {
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
writeq(vdev->args[i], &devcmd->args[i]);
wmb();
}
iowrite32(cmd, &devcmd->cmd);
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
return 0;
for (delay = 0; delay < wait; delay++) {
udelay(100);
status = ioread32(&devcmd->status);
if (status == 0xFFFFFFFF) {
/* PCI-e target device is gone */
return -ENODEV;
}
if (!(status & STAT_BUSY)) {
if (status & STAT_ERROR) {
err = (int)readq(&devcmd->args[0]);
if (err == ERR_EINVAL &&
cmd == CMD_CAPABILITY)
return -err;
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
vdev_neterr(vdev, "Error %d devcmd %d\n",
err, _CMD_N(cmd));
return -err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ) {
rmb();
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
vdev->args[i] = readq(&devcmd->args[i]);
}
return 0;
}
}
vdev_neterr(vdev, "Timedout devcmd %d\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
static int _vnic_dev_cmd2(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int wait)
{
struct devcmd2_controller *dc2c = vdev->devcmd2;
struct devcmd2_result *result;
u8 color;
unsigned int i;
int delay, err;
u32 fetch_index, new_posted;
u32 posted = dc2c->posted;
fetch_index = ioread32(&dc2c->wq_ctrl->fetch_index);
if (fetch_index == 0xFFFFFFFF)
return -ENODEV;
new_posted = (posted + 1) % DEVCMD2_RING_SIZE;
if (new_posted == fetch_index) {
vdev_neterr(vdev, "devcmd2 %d: wq is full. fetch index: %u, posted index: %u\n",
_CMD_N(cmd), fetch_index, posted);
return -EBUSY;
}
dc2c->cmd_ring[posted].cmd = cmd;
dc2c->cmd_ring[posted].flags = 0;
if ((_CMD_FLAGS(cmd) & _CMD_FLAGS_NOWAIT))
dc2c->cmd_ring[posted].flags |= DEVCMD2_FNORESULT;
if (_CMD_DIR(cmd) & _CMD_DIR_WRITE)
for (i = 0; i < VNIC_DEVCMD_NARGS; i++)
dc2c->cmd_ring[posted].args[i] = vdev->args[i];
/* Adding write memory barrier prevents compiler and/or CPU reordering,
* thus avoiding descriptor posting before descriptor is initialized.
* Otherwise, hardware can read stale descriptor fields.
*/
wmb();
iowrite32(new_posted, &dc2c->wq_ctrl->posted_index);
dc2c->posted = new_posted;
if (dc2c->cmd_ring[posted].flags & DEVCMD2_FNORESULT)
return 0;
result = dc2c->result + dc2c->next_result;
color = dc2c->color;
dc2c->next_result++;
if (dc2c->next_result == dc2c->result_size) {
dc2c->next_result = 0;
dc2c->color = dc2c->color ? 0 : 1;
}
for (delay = 0; delay < wait; delay++) {
if (result->color == color) {
if (result->error) {
err = result->error;
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
vdev_neterr(vdev, "Error %d devcmd %d\n",
err, _CMD_N(cmd));
return -err;
}
if (_CMD_DIR(cmd) & _CMD_DIR_READ)
for (i = 0; i < VNIC_DEVCMD2_NARGS; i++)
vdev->args[i] = result->results[i];
return 0;
}
udelay(100);
}
vdev_neterr(vdev, "devcmd %d timed out\n", _CMD_N(cmd));
return -ETIMEDOUT;
}
static int vnic_dev_init_devcmd1(struct vnic_dev *vdev)
{
vdev->devcmd = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD, 0);
if (!vdev->devcmd)
return -ENODEV;
vdev->devcmd_rtn = _vnic_dev_cmd;
return 0;
}
static int vnic_dev_init_devcmd2(struct vnic_dev *vdev)
{
int err;
unsigned int fetch_index;
if (vdev->devcmd2)
return 0;
vdev->devcmd2 = kzalloc(sizeof(*vdev->devcmd2), GFP_KERNEL);
if (!vdev->devcmd2)
return -ENOMEM;
vdev->devcmd2->color = 1;
vdev->devcmd2->result_size = DEVCMD2_RING_SIZE;
err = enic_wq_devcmd2_alloc(vdev, &vdev->devcmd2->wq, DEVCMD2_RING_SIZE,
DEVCMD2_DESC_SIZE);
if (err)
goto err_free_devcmd2;
fetch_index = ioread32(&vdev->devcmd2->wq.ctrl->fetch_index);
if (fetch_index == 0xFFFFFFFF) { /* check for hardware gone */
vdev_err(vdev, "Fatal error in devcmd2 init - hardware surprise removal\n");
err = -ENODEV;
goto err_free_wq;
}
enic_wq_init_start(&vdev->devcmd2->wq, 0, fetch_index, fetch_index, 0,
0);
vdev->devcmd2->posted = fetch_index;
vnic_wq_enable(&vdev->devcmd2->wq);
err = vnic_dev_alloc_desc_ring(vdev, &vdev->devcmd2->results_ring,
DEVCMD2_RING_SIZE, DEVCMD2_DESC_SIZE);
if (err)
goto err_disable_wq;
vdev->devcmd2->result = vdev->devcmd2->results_ring.descs;
vdev->devcmd2->cmd_ring = vdev->devcmd2->wq.ring.descs;
vdev->devcmd2->wq_ctrl = vdev->devcmd2->wq.ctrl;
vdev->args[0] = (u64)vdev->devcmd2->results_ring.base_addr |
VNIC_PADDR_TARGET;
vdev->args[1] = DEVCMD2_RING_SIZE;
err = _vnic_dev_cmd2(vdev, CMD_INITIALIZE_DEVCMD2, 1000);
if (err)
goto err_free_desc_ring;
vdev->devcmd_rtn = _vnic_dev_cmd2;
return 0;
err_free_desc_ring:
vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
err_disable_wq:
vnic_wq_disable(&vdev->devcmd2->wq);
err_free_wq:
vnic_wq_free(&vdev->devcmd2->wq);
err_free_devcmd2:
kfree(vdev->devcmd2);
vdev->devcmd2 = NULL;
return err;
}
static void vnic_dev_deinit_devcmd2(struct vnic_dev *vdev)
{
vnic_dev_free_desc_ring(vdev, &vdev->devcmd2->results_ring);
vnic_wq_disable(&vdev->devcmd2->wq);
vnic_wq_free(&vdev->devcmd2->wq);
kfree(vdev->devcmd2);
}
static int vnic_dev_cmd_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd proxy_cmd, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait)
{
u32 status;
int err;
memset(vdev->args, 0, sizeof(vdev->args));
vdev->args[0] = vdev->proxy_index;
vdev->args[1] = cmd;
vdev->args[2] = *a0;
vdev->args[3] = *a1;
err = vdev->devcmd_rtn(vdev, proxy_cmd, wait);
if (err)
return err;
status = (u32)vdev->args[0];
if (status & STAT_ERROR) {
err = (int)vdev->args[1];
if (err != ERR_ECMDUNKNOWN ||
cmd != CMD_CAPABILITY)
vdev_neterr(vdev, "Error %d proxy devcmd %d\n",
err, _CMD_N(cmd));
return err;
}
*a0 = vdev->args[1];
*a1 = vdev->args[2];
return 0;
}
static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev,
enum vnic_devcmd_cmd cmd, u64 *a0, u64 *a1, int wait)
{
int err;
vdev->args[0] = *a0;
vdev->args[1] = *a1;
err = vdev->devcmd_rtn(vdev, cmd, wait);
*a0 = vdev->args[0];
*a1 = vdev->args[1];
return err;
}
void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev, u16 index)
{
vdev->proxy = PROXY_BY_INDEX;
vdev->proxy_index = index;
}
void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev)
{
vdev->proxy = PROXY_NONE;
vdev->proxy_index = 0;
}
int vnic_dev_cmd(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
u64 *a0, u64 *a1, int wait)
{
memset(vdev->args, 0, sizeof(vdev->args));
switch (vdev->proxy) {
case PROXY_BY_INDEX:
return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_INDEX, cmd,
a0, a1, wait);
case PROXY_BY_BDF:
return vnic_dev_cmd_proxy(vdev, CMD_PROXY_BY_BDF, cmd,
a0, a1, wait);
case PROXY_NONE:
default:
return vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait);
}
}
static int vnic_dev_capable(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd)
{
u64 a0 = (u32)cmd, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
return !(err || a0);
}
int vnic_dev_fw_info(struct vnic_dev *vdev,
struct vnic_devcmd_fw_info **fw_info)
{
u64 a0, a1 = 0;
int wait = 1000;
int err = 0;
if (!vdev->fw_info) {
vdev->fw_info = pci_zalloc_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_fw_info),
&vdev->fw_info_pa);
if (!vdev->fw_info)
return -ENOMEM;
a0 = vdev->fw_info_pa;
a1 = sizeof(struct vnic_devcmd_fw_info);
/* only get fw_info once and cache it */
if (vnic_dev_capable(vdev, CMD_MCPU_FW_INFO))
err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO,
&a0, &a1, wait);
else
err = vnic_dev_cmd(vdev, CMD_MCPU_FW_INFO_OLD,
&a0, &a1, wait);
}
*fw_info = vdev->fw_info;
return err;
}
int vnic_dev_spec(struct vnic_dev *vdev, unsigned int offset, unsigned int size,
void *value)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = offset;
a1 = size;
err = vnic_dev_cmd(vdev, CMD_DEV_SPEC, &a0, &a1, wait);
switch (size) {
case 1: *(u8 *)value = (u8)a0; break;
case 2: *(u16 *)value = (u16)a0; break;
case 4: *(u32 *)value = (u32)a0; break;
case 8: *(u64 *)value = a0; break;
default: BUG(); break;
}
return err;
}
int vnic_dev_stats_dump(struct vnic_dev *vdev, struct vnic_stats **stats)
{
u64 a0, a1;
int wait = 1000;
if (!vdev->stats) {
vdev->stats = pci_alloc_consistent(vdev->pdev,
sizeof(struct vnic_stats), &vdev->stats_pa);
if (!vdev->stats)
return -ENOMEM;
}
*stats = vdev->stats;
a0 = vdev->stats_pa;
a1 = sizeof(struct vnic_stats);
return vnic_dev_cmd(vdev, CMD_STATS_DUMP, &a0, &a1, wait);
}
int vnic_dev_close(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_CLOSE, &a0, &a1, wait);
}
int vnic_dev_enable_wait(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_ENABLE_WAIT))
return vnic_dev_cmd(vdev, CMD_ENABLE_WAIT, &a0, &a1, wait);
else
return vnic_dev_cmd(vdev, CMD_ENABLE, &a0, &a1, wait);
}
int vnic_dev_disable(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DISABLE, &a0, &a1, wait);
}
int vnic_dev_open(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OPEN, &a0, &a1, wait);
}
int vnic_dev_open_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_OPEN_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_soft_reset(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_SOFT_RESET, &a0, &a1, wait);
}
int vnic_dev_soft_reset_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
err = vnic_dev_cmd(vdev, CMD_SOFT_RESET_STATUS, &a0, &a1, wait);
if (err)
return err;
*done = (a0 == 0);
return 0;
}
int vnic_dev_hang_reset(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
int err;
if (vnic_dev_capable(vdev, CMD_HANG_RESET)) {
return vnic_dev_cmd(vdev, CMD_HANG_RESET,
&a0, &a1, wait);
} else {
err = vnic_dev_soft_reset(vdev, arg);
if (err)
return err;
return vnic_dev_init(vdev, 0);
}
}
int vnic_dev_hang_reset_done(struct vnic_dev *vdev, int *done)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
*done = 0;
if (vnic_dev_capable(vdev, CMD_HANG_RESET_STATUS)) {
err = vnic_dev_cmd(vdev, CMD_HANG_RESET_STATUS,
&a0, &a1, wait);
if (err)
return err;
} else {
return vnic_dev_soft_reset_done(vdev, done);
}
*done = (a0 == 0);
return 0;
}
int vnic_dev_hang_notify(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_HANG_NOTIFY, &a0, &a1, wait);
}
int vnic_dev_get_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
{
u64 a0, a1;
int wait = 1000;
int err, i;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = 0;
err = vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
if (err)
return err;
for (i = 0; i < ETH_ALEN; i++)
mac_addr[i] = ((u8 *)&a0)[i];
return 0;
}
int vnic_dev_packet_filter(struct vnic_dev *vdev, int directed, int multicast,
int broadcast, int promisc, int allmulti)
{
u64 a0, a1 = 0;
int wait = 1000;
int err;
a0 = (directed ? CMD_PFILTER_DIRECTED : 0) |
(multicast ? CMD_PFILTER_MULTICAST : 0) |
(broadcast ? CMD_PFILTER_BROADCAST : 0) |
(promisc ? CMD_PFILTER_PROMISCUOUS : 0) |
(allmulti ? CMD_PFILTER_ALL_MULTICAST : 0);
err = vnic_dev_cmd(vdev, CMD_PACKET_FILTER, &a0, &a1, wait);
if (err)
vdev_neterr(vdev, "Can't set packet filter\n");
return err;
}
int vnic_dev_add_addr(struct vnic_dev *vdev, const u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
if (err)
vdev_neterr(vdev, "Can't add addr [%pM], %d\n", addr, err);
return err;
}
int vnic_dev_del_addr(struct vnic_dev *vdev, const u8 *addr)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
int err;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = addr[i];
err = vnic_dev_cmd(vdev, CMD_ADDR_DEL, &a0, &a1, wait);
if (err)
vdev_neterr(vdev, "Can't del addr [%pM], %d\n", addr, err);
return err;
}
int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev,
u8 ig_vlan_rewrite_mode)
{
u64 a0 = ig_vlan_rewrite_mode, a1 = 0;
int wait = 1000;
if (vnic_dev_capable(vdev, CMD_IG_VLAN_REWRITE_MODE))
return vnic_dev_cmd(vdev, CMD_IG_VLAN_REWRITE_MODE,
&a0, &a1, wait);
else
return 0;
}
static int vnic_dev_notify_setcmd(struct vnic_dev *vdev,
void *notify_addr, dma_addr_t notify_pa, u16 intr)
{
u64 a0, a1;
int wait = 1000;
int r;
memset(notify_addr, 0, sizeof(struct vnic_devcmd_notify));
vdev->notify = notify_addr;
vdev->notify_pa = notify_pa;
a0 = (u64)notify_pa;
a1 = ((u64)intr << 32) & 0x0000ffff00000000ULL;
a1 += sizeof(struct vnic_devcmd_notify);
r = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
vdev->notify_sz = (r == 0) ? (u32)a1 : 0;
return r;
}
int vnic_dev_notify_set(struct vnic_dev *vdev, u16 intr)
{
void *notify_addr;
dma_addr_t notify_pa;
if (vdev->notify || vdev->notify_pa) {
vdev_neterr(vdev, "notify block %p still allocated\n",
vdev->notify);
return -EINVAL;
}
notify_addr = pci_alloc_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_notify),
&notify_pa);
if (!notify_addr)
return -ENOMEM;
return vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, intr);
}
static int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev)
{
u64 a0, a1;
int wait = 1000;
int err;
a0 = 0; /* paddr = 0 to unset notify buffer */
a1 = 0x0000ffff00000000ULL; /* intr num = -1 to unreg for intr */
a1 += sizeof(struct vnic_devcmd_notify);
err = vnic_dev_cmd(vdev, CMD_NOTIFY, &a0, &a1, wait);
vdev->notify = NULL;
vdev->notify_pa = 0;
vdev->notify_sz = 0;
return err;
}
int vnic_dev_notify_unset(struct vnic_dev *vdev)
{
if (vdev->notify) {
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
}
return vnic_dev_notify_unsetcmd(vdev);
}
static int vnic_dev_notify_ready(struct vnic_dev *vdev)
{
u32 *words;
unsigned int nwords = vdev->notify_sz / 4;
unsigned int i;
u32 csum;
if (!vdev->notify || !vdev->notify_sz)
return 0;
do {
csum = 0;
memcpy(&vdev->notify_copy, vdev->notify, vdev->notify_sz);
words = (u32 *)&vdev->notify_copy;
for (i = 1; i < nwords; i++)
csum += words[i];
} while (csum != words[0]);
return 1;
}
int vnic_dev_init(struct vnic_dev *vdev, int arg)
{
u64 a0 = (u32)arg, a1 = 0;
int wait = 1000;
int r = 0;
if (vnic_dev_capable(vdev, CMD_INIT))
r = vnic_dev_cmd(vdev, CMD_INIT, &a0, &a1, wait);
else {
vnic_dev_cmd(vdev, CMD_INIT_v1, &a0, &a1, wait);
if (a0 & CMD_INITF_DEFAULT_MAC) {
/* Emulate these for old CMD_INIT_v1 which
* didn't pass a0 so no CMD_INITF_*.
*/
vnic_dev_cmd(vdev, CMD_GET_MAC_ADDR, &a0, &a1, wait);
vnic_dev_cmd(vdev, CMD_ADDR_ADD, &a0, &a1, wait);
}
}
return r;
}
int vnic_dev_deinit(struct vnic_dev *vdev)
{
u64 a0 = 0, a1 = 0;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_DEINIT, &a0, &a1, wait);
}
void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev)
{
/* Default: hardware intr coal timer is in units of 1.5 usecs */
vdev->intr_coal_timer_info.mul = 2;
vdev->intr_coal_timer_info.div = 3;
vdev->intr_coal_timer_info.max_usec =
vnic_dev_intr_coal_timer_hw_to_usec(vdev, 0xffff);
}
int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev)
{
int wait = 1000;
int err;
memset(vdev->args, 0, sizeof(vdev->args));
if (vnic_dev_capable(vdev, CMD_INTR_COAL_CONVERT))
err = vdev->devcmd_rtn(vdev, CMD_INTR_COAL_CONVERT, wait);
else
err = ERR_ECMDUNKNOWN;
/* Use defaults when firmware doesn't support the devcmd at all or
* supports it for only specific hardware
*/
if ((err == ERR_ECMDUNKNOWN) ||
(!err && !(vdev->args[0] && vdev->args[1] && vdev->args[2]))) {
vdev_netwarn(vdev, "Using default conversion factor for interrupt coalesce timer\n");
vnic_dev_intr_coal_timer_info_default(vdev);
return 0;
}
if (!err) {
vdev->intr_coal_timer_info.mul = (u32) vdev->args[0];
vdev->intr_coal_timer_info.div = (u32) vdev->args[1];
vdev->intr_coal_timer_info.max_usec = (u32) vdev->args[2];
}
return err;
}
int vnic_dev_link_status(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.link_state;
}
u32 vnic_dev_port_speed(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.port_speed;
}
u32 vnic_dev_msg_lvl(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.msglvl;
}
u32 vnic_dev_mtu(struct vnic_dev *vdev)
{
if (!vnic_dev_notify_ready(vdev))
return 0;
return vdev->notify_copy.mtu;
}
void vnic_dev_set_intr_mode(struct vnic_dev *vdev,
enum vnic_dev_intr_mode intr_mode)
{
vdev->intr_mode = intr_mode;
}
enum vnic_dev_intr_mode vnic_dev_get_intr_mode(
struct vnic_dev *vdev)
{
return vdev->intr_mode;
}
u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev, u32 usec)
{
return (usec * vdev->intr_coal_timer_info.mul) /
vdev->intr_coal_timer_info.div;
}
u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev, u32 hw_cycles)
{
return (hw_cycles * vdev->intr_coal_timer_info.div) /
vdev->intr_coal_timer_info.mul;
}
u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev)
{
return vdev->intr_coal_timer_info.max_usec;
}
void vnic_dev_unregister(struct vnic_dev *vdev)
{
if (vdev) {
if (vdev->notify)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_notify),
vdev->notify,
vdev->notify_pa);
if (vdev->stats)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_stats),
vdev->stats, vdev->stats_pa);
if (vdev->fw_info)
pci_free_consistent(vdev->pdev,
sizeof(struct vnic_devcmd_fw_info),
vdev->fw_info, vdev->fw_info_pa);
if (vdev->devcmd2)
vnic_dev_deinit_devcmd2(vdev);
kfree(vdev);
}
}
EXPORT_SYMBOL(vnic_dev_unregister);
struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev,
void *priv, struct pci_dev *pdev, struct vnic_dev_bar *bar,
unsigned int num_bars)
{
if (!vdev) {
vdev = kzalloc(sizeof(struct vnic_dev), GFP_KERNEL);
if (!vdev)
return NULL;
}
vdev->priv = priv;
vdev->pdev = pdev;
if (vnic_dev_discover_res(vdev, bar, num_bars))
goto err_out;
return vdev;
err_out:
vnic_dev_unregister(vdev);
return NULL;
}
EXPORT_SYMBOL(vnic_dev_register);
struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev)
{
return vdev->pdev;
}
EXPORT_SYMBOL(vnic_dev_get_pdev);
int vnic_devcmd_init(struct vnic_dev *vdev)
{
void __iomem *res;
int err;
res = vnic_dev_get_res(vdev, RES_TYPE_DEVCMD2, 0);
if (res) {
err = vnic_dev_init_devcmd2(vdev);
if (err)
vdev_warn(vdev, "DEVCMD2 init failed: %d, Using DEVCMD1\n",
err);
else
return 0;
} else {
vdev_warn(vdev, "DEVCMD2 resource not found (old firmware?) Using DEVCMD1\n");
}
err = vnic_dev_init_devcmd1(vdev);
if (err)
vdev_err(vdev, "DEVCMD1 initialization failed: %d\n", err);
return err;
}
int vnic_dev_init_prov2(struct vnic_dev *vdev, u8 *buf, u32 len)
{
u64 a0, a1 = len;
int wait = 1000;
dma_addr_t prov_pa;
void *prov_buf;
int ret;
prov_buf = pci_alloc_consistent(vdev->pdev, len, &prov_pa);
if (!prov_buf)
return -ENOMEM;
memcpy(prov_buf, buf, len);
a0 = prov_pa;
ret = vnic_dev_cmd(vdev, CMD_INIT_PROV_INFO2, &a0, &a1, wait);
pci_free_consistent(vdev->pdev, len, prov_buf, prov_pa);
return ret;
}
int vnic_dev_enable2(struct vnic_dev *vdev, int active)
{
u64 a0, a1 = 0;
int wait = 1000;
a0 = (active ? CMD_ENABLE2_ACTIVE : 0);
return vnic_dev_cmd(vdev, CMD_ENABLE2, &a0, &a1, wait);
}
static int vnic_dev_cmd_status(struct vnic_dev *vdev, enum vnic_devcmd_cmd cmd,
int *status)
{
u64 a0 = cmd, a1 = 0;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_STATUS, &a0, &a1, wait);
if (!ret)
*status = (int)a0;
return ret;
}
int vnic_dev_enable2_done(struct vnic_dev *vdev, int *status)
{
return vnic_dev_cmd_status(vdev, CMD_ENABLE2, status);
}
int vnic_dev_deinit_done(struct vnic_dev *vdev, int *status)
{
return vnic_dev_cmd_status(vdev, CMD_DEINIT, status);
}
int vnic_dev_set_mac_addr(struct vnic_dev *vdev, u8 *mac_addr)
{
u64 a0, a1;
int wait = 1000;
int i;
for (i = 0; i < ETH_ALEN; i++)
((u8 *)&a0)[i] = mac_addr[i];
return vnic_dev_cmd(vdev, CMD_SET_MAC_ADDR, &a0, &a1, wait);
}
/* vnic_dev_classifier: Add/Delete classifier entries
* @vdev: vdev of the device
* @cmd: CLSF_ADD for Add filter
* CLSF_DEL for Delete filter
* @entry: In case of ADD filter, the caller passes the RQ number in this
* variable.
*
* This function stores the filter_id returned by the firmware in the
* same variable before return;
*
* In case of DEL filter, the caller passes the RQ number. Return
* value is irrelevant.
* @data: filter data
*/
int vnic_dev_classifier(struct vnic_dev *vdev, u8 cmd, u16 *entry,
struct filter *data)
{
u64 a0, a1;
int wait = 1000;
dma_addr_t tlv_pa;
int ret = -EINVAL;
struct filter_tlv *tlv, *tlv_va;
struct filter_action *action;
u64 tlv_size;
if (cmd == CLSF_ADD) {
tlv_size = sizeof(struct filter) +
sizeof(struct filter_action) +
2 * sizeof(struct filter_tlv);
tlv_va = pci_alloc_consistent(vdev->pdev, tlv_size, &tlv_pa);
if (!tlv_va)
return -ENOMEM;
tlv = tlv_va;
a0 = tlv_pa;
a1 = tlv_size;
memset(tlv, 0, tlv_size);
tlv->type = CLSF_TLV_FILTER;
tlv->length = sizeof(struct filter);
*(struct filter *)&tlv->val = *data;
tlv = (struct filter_tlv *)((char *)tlv +
sizeof(struct filter_tlv) +
sizeof(struct filter));
tlv->type = CLSF_TLV_ACTION;
tlv->length = sizeof(struct filter_action);
action = (struct filter_action *)&tlv->val;
action->type = FILTER_ACTION_RQ_STEERING;
action->u.rq_idx = *entry;
ret = vnic_dev_cmd(vdev, CMD_ADD_FILTER, &a0, &a1, wait);
*entry = (u16)a0;
pci_free_consistent(vdev->pdev, tlv_size, tlv_va, tlv_pa);
} else if (cmd == CLSF_DEL) {
a0 = *entry;
ret = vnic_dev_cmd(vdev, CMD_DEL_FILTER, &a0, &a1, wait);
}
return ret;
}
int vnic_dev_overlay_offload_ctrl(struct vnic_dev *vdev, u8 overlay, u8 config)
{
u64 a0 = overlay;
u64 a1 = config;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CTRL, &a0, &a1, wait);
}
int vnic_dev_overlay_offload_cfg(struct vnic_dev *vdev, u8 overlay,
u16 vxlan_udp_port_number)
{
u64 a1 = vxlan_udp_port_number;
u64 a0 = overlay;
int wait = 1000;
return vnic_dev_cmd(vdev, CMD_OVERLAY_OFFLOAD_CFG, &a0, &a1, wait);
}
int vnic_dev_get_supported_feature_ver(struct vnic_dev *vdev, u8 feature,
u64 *supported_versions, u64 *a1)
{
u64 a0 = feature;
int wait = 1000;
int ret;
ret = vnic_dev_cmd(vdev, CMD_GET_SUPP_FEATURE_VER, &a0, a1, wait);
if (!ret)
*supported_versions = a0;
return ret;
}
int vnic_dev_capable_rss_hash_type(struct vnic_dev *vdev, u8 *rss_hash_type)
{
u64 a0 = CMD_NIC_CFG, a1 = 0;
int wait = 1000;
int err;
err = vnic_dev_cmd(vdev, CMD_CAPABILITY, &a0, &a1, wait);
/* rss_hash_type is valid only when a0 is 1. Adapter which does not
* support CMD_CAPABILITY for rss_hash_type has a0 = 0
*/
if (err || (a0 != 1))
return -EOPNOTSUPP;
a1 = (a1 >> NIC_CFG_RSS_HASH_TYPE_SHIFT) &
NIC_CFG_RSS_HASH_TYPE_MASK_FIELD;
*rss_hash_type = (u8)a1;
return 0;
}