linux/linux-5.4.31/drivers/net/ethernet/chelsio/cxgb4/cudbg_lib.c

3130 lines
86 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 Chelsio Communications. All rights reserved.
*/
#include <linux/sort.h>
#include "t4_regs.h"
#include "cxgb4.h"
#include "cxgb4_cudbg.h"
#include "cudbg_if.h"
#include "cudbg_lib_common.h"
#include "cudbg_entity.h"
#include "cudbg_lib.h"
#include "cudbg_zlib.h"
static int cudbg_do_compression(struct cudbg_init *pdbg_init,
struct cudbg_buffer *pin_buff,
struct cudbg_buffer *dbg_buff)
{
struct cudbg_buffer temp_in_buff = { 0 };
int bytes_left, bytes_read, bytes;
u32 offset = dbg_buff->offset;
int rc;
temp_in_buff.offset = pin_buff->offset;
temp_in_buff.data = pin_buff->data;
temp_in_buff.size = pin_buff->size;
bytes_left = pin_buff->size;
bytes_read = 0;
while (bytes_left > 0) {
/* Do compression in smaller chunks */
bytes = min_t(unsigned long, bytes_left,
(unsigned long)CUDBG_CHUNK_SIZE);
temp_in_buff.data = (char *)pin_buff->data + bytes_read;
temp_in_buff.size = bytes;
rc = cudbg_compress_buff(pdbg_init, &temp_in_buff, dbg_buff);
if (rc)
return rc;
bytes_left -= bytes;
bytes_read += bytes;
}
pin_buff->size = dbg_buff->offset - offset;
return 0;
}
static int cudbg_write_and_release_buff(struct cudbg_init *pdbg_init,
struct cudbg_buffer *pin_buff,
struct cudbg_buffer *dbg_buff)
{
int rc = 0;
if (pdbg_init->compress_type == CUDBG_COMPRESSION_NONE) {
cudbg_update_buff(pin_buff, dbg_buff);
} else {
rc = cudbg_do_compression(pdbg_init, pin_buff, dbg_buff);
if (rc)
goto out;
}
out:
cudbg_put_buff(pdbg_init, pin_buff);
return rc;
}
static int is_fw_attached(struct cudbg_init *pdbg_init)
{
struct adapter *padap = pdbg_init->adap;
if (!(padap->flags & CXGB4_FW_OK) || padap->use_bd)
return 0;
return 1;
}
/* This function will add additional padding bytes into debug_buffer to make it
* 4 byte aligned.
*/
void cudbg_align_debug_buffer(struct cudbg_buffer *dbg_buff,
struct cudbg_entity_hdr *entity_hdr)
{
u8 zero_buf[4] = {0};
u8 padding, remain;
remain = (dbg_buff->offset - entity_hdr->start_offset) % 4;
padding = 4 - remain;
if (remain) {
memcpy(((u8 *)dbg_buff->data) + dbg_buff->offset, &zero_buf,
padding);
dbg_buff->offset += padding;
entity_hdr->num_pad = padding;
}
entity_hdr->size = dbg_buff->offset - entity_hdr->start_offset;
}
struct cudbg_entity_hdr *cudbg_get_entity_hdr(void *outbuf, int i)
{
struct cudbg_hdr *cudbg_hdr = (struct cudbg_hdr *)outbuf;
return (struct cudbg_entity_hdr *)
((char *)outbuf + cudbg_hdr->hdr_len +
(sizeof(struct cudbg_entity_hdr) * (i - 1)));
}
static int cudbg_read_vpd_reg(struct adapter *padap, u32 addr, u32 len,
void *dest)
{
int vaddr, rc;
vaddr = t4_eeprom_ptov(addr, padap->pf, EEPROMPFSIZE);
if (vaddr < 0)
return vaddr;
rc = pci_read_vpd(padap->pdev, vaddr, len, dest);
if (rc < 0)
return rc;
return 0;
}
static int cudbg_mem_desc_cmp(const void *a, const void *b)
{
return ((const struct cudbg_mem_desc *)a)->base -
((const struct cudbg_mem_desc *)b)->base;
}
int cudbg_fill_meminfo(struct adapter *padap,
struct cudbg_meminfo *meminfo_buff)
{
struct cudbg_mem_desc *md;
u32 lo, hi, used, alloc;
int n, i;
memset(meminfo_buff->avail, 0,
ARRAY_SIZE(meminfo_buff->avail) *
sizeof(struct cudbg_mem_desc));
memset(meminfo_buff->mem, 0,
(ARRAY_SIZE(cudbg_region) + 3) * sizeof(struct cudbg_mem_desc));
md = meminfo_buff->mem;
for (i = 0; i < ARRAY_SIZE(meminfo_buff->mem); i++) {
meminfo_buff->mem[i].limit = 0;
meminfo_buff->mem[i].idx = i;
}
/* Find and sort the populated memory ranges */
i = 0;
lo = t4_read_reg(padap, MA_TARGET_MEM_ENABLE_A);
if (lo & EDRAM0_ENABLE_F) {
hi = t4_read_reg(padap, MA_EDRAM0_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EDRAM0_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EDRAM0_SIZE_G(hi));
meminfo_buff->avail[i].idx = 0;
i++;
}
if (lo & EDRAM1_ENABLE_F) {
hi = t4_read_reg(padap, MA_EDRAM1_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EDRAM1_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EDRAM1_SIZE_G(hi));
meminfo_buff->avail[i].idx = 1;
i++;
}
if (is_t5(padap->params.chip)) {
if (lo & EXT_MEM0_ENABLE_F) {
hi = t4_read_reg(padap, MA_EXT_MEMORY0_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EXT_MEM_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EXT_MEM_SIZE_G(hi));
meminfo_buff->avail[i].idx = 3;
i++;
}
if (lo & EXT_MEM1_ENABLE_F) {
hi = t4_read_reg(padap, MA_EXT_MEMORY1_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EXT_MEM1_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EXT_MEM1_SIZE_G(hi));
meminfo_buff->avail[i].idx = 4;
i++;
}
} else {
if (lo & EXT_MEM_ENABLE_F) {
hi = t4_read_reg(padap, MA_EXT_MEMORY_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EXT_MEM_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EXT_MEM_SIZE_G(hi));
meminfo_buff->avail[i].idx = 2;
i++;
}
if (lo & HMA_MUX_F) {
hi = t4_read_reg(padap, MA_EXT_MEMORY1_BAR_A);
meminfo_buff->avail[i].base =
cudbg_mbytes_to_bytes(EXT_MEM1_BASE_G(hi));
meminfo_buff->avail[i].limit =
meminfo_buff->avail[i].base +
cudbg_mbytes_to_bytes(EXT_MEM1_SIZE_G(hi));
meminfo_buff->avail[i].idx = 5;
i++;
}
}
if (!i) /* no memory available */
return CUDBG_STATUS_ENTITY_NOT_FOUND;
meminfo_buff->avail_c = i;
sort(meminfo_buff->avail, i, sizeof(struct cudbg_mem_desc),
cudbg_mem_desc_cmp, NULL);
(md++)->base = t4_read_reg(padap, SGE_DBQ_CTXT_BADDR_A);
(md++)->base = t4_read_reg(padap, SGE_IMSG_CTXT_BADDR_A);
(md++)->base = t4_read_reg(padap, SGE_FLM_CACHE_BADDR_A);
(md++)->base = t4_read_reg(padap, TP_CMM_TCB_BASE_A);
(md++)->base = t4_read_reg(padap, TP_CMM_MM_BASE_A);
(md++)->base = t4_read_reg(padap, TP_CMM_TIMER_BASE_A);
(md++)->base = t4_read_reg(padap, TP_CMM_MM_RX_FLST_BASE_A);
(md++)->base = t4_read_reg(padap, TP_CMM_MM_TX_FLST_BASE_A);
(md++)->base = t4_read_reg(padap, TP_CMM_MM_PS_FLST_BASE_A);
/* the next few have explicit upper bounds */
md->base = t4_read_reg(padap, TP_PMM_TX_BASE_A);
md->limit = md->base - 1 +
t4_read_reg(padap, TP_PMM_TX_PAGE_SIZE_A) *
PMTXMAXPAGE_G(t4_read_reg(padap, TP_PMM_TX_MAX_PAGE_A));
md++;
md->base = t4_read_reg(padap, TP_PMM_RX_BASE_A);
md->limit = md->base - 1 +
t4_read_reg(padap, TP_PMM_RX_PAGE_SIZE_A) *
PMRXMAXPAGE_G(t4_read_reg(padap, TP_PMM_RX_MAX_PAGE_A));
md++;
if (t4_read_reg(padap, LE_DB_CONFIG_A) & HASHEN_F) {
if (CHELSIO_CHIP_VERSION(padap->params.chip) <= CHELSIO_T5) {
hi = t4_read_reg(padap, LE_DB_TID_HASHBASE_A) / 4;
md->base = t4_read_reg(padap, LE_DB_HASH_TID_BASE_A);
} else {
hi = t4_read_reg(padap, LE_DB_HASH_TID_BASE_A);
md->base = t4_read_reg(padap,
LE_DB_HASH_TBL_BASE_ADDR_A);
}
md->limit = 0;
} else {
md->base = 0;
md->idx = ARRAY_SIZE(cudbg_region); /* hide it */
}
md++;
#define ulp_region(reg) do { \
md->base = t4_read_reg(padap, ULP_ ## reg ## _LLIMIT_A);\
(md++)->limit = t4_read_reg(padap, ULP_ ## reg ## _ULIMIT_A);\
} while (0)
ulp_region(RX_ISCSI);
ulp_region(RX_TDDP);
ulp_region(TX_TPT);
ulp_region(RX_STAG);
ulp_region(RX_RQ);
ulp_region(RX_RQUDP);
ulp_region(RX_PBL);
ulp_region(TX_PBL);
#undef ulp_region
md->base = 0;
md->idx = ARRAY_SIZE(cudbg_region);
if (!is_t4(padap->params.chip)) {
u32 fifo_size = t4_read_reg(padap, SGE_DBVFIFO_SIZE_A);
u32 sge_ctrl = t4_read_reg(padap, SGE_CONTROL2_A);
u32 size = 0;
if (is_t5(padap->params.chip)) {
if (sge_ctrl & VFIFO_ENABLE_F)
size = DBVFIFO_SIZE_G(fifo_size);
} else {
size = T6_DBVFIFO_SIZE_G(fifo_size);
}
if (size) {
md->base = BASEADDR_G(t4_read_reg(padap,
SGE_DBVFIFO_BADDR_A));
md->limit = md->base + (size << 2) - 1;
}
}
md++;
md->base = t4_read_reg(padap, ULP_RX_CTX_BASE_A);
md->limit = 0;
md++;
md->base = t4_read_reg(padap, ULP_TX_ERR_TABLE_BASE_A);
md->limit = 0;
md++;
md->base = padap->vres.ocq.start;
if (padap->vres.ocq.size)
md->limit = md->base + padap->vres.ocq.size - 1;
else
md->idx = ARRAY_SIZE(cudbg_region); /* hide it */
md++;
/* add any address-space holes, there can be up to 3 */
for (n = 0; n < i - 1; n++)
if (meminfo_buff->avail[n].limit <
meminfo_buff->avail[n + 1].base)
(md++)->base = meminfo_buff->avail[n].limit;
if (meminfo_buff->avail[n].limit)
(md++)->base = meminfo_buff->avail[n].limit;
n = md - meminfo_buff->mem;
meminfo_buff->mem_c = n;
sort(meminfo_buff->mem, n, sizeof(struct cudbg_mem_desc),
cudbg_mem_desc_cmp, NULL);
lo = t4_read_reg(padap, CIM_SDRAM_BASE_ADDR_A);
hi = t4_read_reg(padap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1;
meminfo_buff->up_ram_lo = lo;
meminfo_buff->up_ram_hi = hi;
lo = t4_read_reg(padap, CIM_EXTMEM2_BASE_ADDR_A);
hi = t4_read_reg(padap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1;
meminfo_buff->up_extmem2_lo = lo;
meminfo_buff->up_extmem2_hi = hi;
lo = t4_read_reg(padap, TP_PMM_RX_MAX_PAGE_A);
for (i = 0, meminfo_buff->free_rx_cnt = 0; i < 2; i++)
meminfo_buff->free_rx_cnt +=
FREERXPAGECOUNT_G(t4_read_reg(padap,
TP_FLM_FREE_RX_CNT_A));
meminfo_buff->rx_pages_data[0] = PMRXMAXPAGE_G(lo);
meminfo_buff->rx_pages_data[1] =
t4_read_reg(padap, TP_PMM_RX_PAGE_SIZE_A) >> 10;
meminfo_buff->rx_pages_data[2] = (lo & PMRXNUMCHN_F) ? 2 : 1;
lo = t4_read_reg(padap, TP_PMM_TX_MAX_PAGE_A);
hi = t4_read_reg(padap, TP_PMM_TX_PAGE_SIZE_A);
for (i = 0, meminfo_buff->free_tx_cnt = 0; i < 4; i++)
meminfo_buff->free_tx_cnt +=
FREETXPAGECOUNT_G(t4_read_reg(padap,
TP_FLM_FREE_TX_CNT_A));
meminfo_buff->tx_pages_data[0] = PMTXMAXPAGE_G(lo);
meminfo_buff->tx_pages_data[1] =
hi >= (1 << 20) ? (hi >> 20) : (hi >> 10);
meminfo_buff->tx_pages_data[2] =
hi >= (1 << 20) ? 'M' : 'K';
meminfo_buff->tx_pages_data[3] = 1 << PMTXNUMCHN_G(lo);
meminfo_buff->p_structs = t4_read_reg(padap, TP_CMM_MM_MAX_PSTRUCT_A);
meminfo_buff->p_structs_free_cnt =
FREEPSTRUCTCOUNT_G(t4_read_reg(padap, TP_FLM_FREE_PS_CNT_A));
for (i = 0; i < 4; i++) {
if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5)
lo = t4_read_reg(padap,
MPS_RX_MAC_BG_PG_CNT0_A + i * 4);
else
lo = t4_read_reg(padap, MPS_RX_PG_RSV0_A + i * 4);
if (is_t5(padap->params.chip)) {
used = T5_USED_G(lo);
alloc = T5_ALLOC_G(lo);
} else {
used = USED_G(lo);
alloc = ALLOC_G(lo);
}
meminfo_buff->port_used[i] = used;
meminfo_buff->port_alloc[i] = alloc;
}
for (i = 0; i < padap->params.arch.nchan; i++) {
if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5)
lo = t4_read_reg(padap,
MPS_RX_LPBK_BG_PG_CNT0_A + i * 4);
else
lo = t4_read_reg(padap, MPS_RX_PG_RSV4_A + i * 4);
if (is_t5(padap->params.chip)) {
used = T5_USED_G(lo);
alloc = T5_ALLOC_G(lo);
} else {
used = USED_G(lo);
alloc = ALLOC_G(lo);
}
meminfo_buff->loopback_used[i] = used;
meminfo_buff->loopback_alloc[i] = alloc;
}
return 0;
}
int cudbg_collect_reg_dump(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
u32 buf_size = 0;
int rc = 0;
if (is_t4(padap->params.chip))
buf_size = T4_REGMAP_SIZE;
else if (is_t5(padap->params.chip) || is_t6(padap->params.chip))
buf_size = T5_REGMAP_SIZE;
rc = cudbg_get_buff(pdbg_init, dbg_buff, buf_size, &temp_buff);
if (rc)
return rc;
t4_get_regs(padap, (void *)temp_buff.data, temp_buff.size);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_fw_devlog(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct devlog_params *dparams;
int rc = 0;
rc = t4_init_devlog_params(padap);
if (rc < 0) {
cudbg_err->sys_err = rc;
return rc;
}
dparams = &padap->params.devlog;
rc = cudbg_get_buff(pdbg_init, dbg_buff, dparams->size, &temp_buff);
if (rc)
return rc;
/* Collect FW devlog */
if (dparams->start != 0) {
spin_lock(&padap->win0_lock);
rc = t4_memory_rw(padap, padap->params.drv_memwin,
dparams->memtype, dparams->start,
dparams->size,
(__be32 *)(char *)temp_buff.data,
1);
spin_unlock(&padap->win0_lock);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int size, rc;
u32 cfg = 0;
if (is_t6(padap->params.chip)) {
size = padap->params.cim_la_size / 10 + 1;
size *= 10 * sizeof(u32);
} else {
size = padap->params.cim_la_size / 8;
size *= 8 * sizeof(u32);
}
size += sizeof(cfg);
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
rc = t4_cim_read(padap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
memcpy((char *)temp_buff.data, &cfg, sizeof(cfg));
rc = t4_cim_read_la(padap,
(u32 *)((char *)temp_buff.data + sizeof(cfg)),
NULL);
if (rc < 0) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_ma_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int size, rc;
size = 2 * CIM_MALA_SIZE * 5 * sizeof(u32);
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
t4_cim_read_ma_la(padap,
(u32 *)temp_buff.data,
(u32 *)((char *)temp_buff.data +
5 * CIM_MALA_SIZE));
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_qcfg(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_cim_qcfg *cim_qcfg_data;
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_cim_qcfg),
&temp_buff);
if (rc)
return rc;
cim_qcfg_data = (struct cudbg_cim_qcfg *)temp_buff.data;
cim_qcfg_data->chip = padap->params.chip;
rc = t4_cim_read(padap, UP_IBQ_0_RDADDR_A,
ARRAY_SIZE(cim_qcfg_data->stat), cim_qcfg_data->stat);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
rc = t4_cim_read(padap, UP_OBQ_0_REALADDR_A,
ARRAY_SIZE(cim_qcfg_data->obq_wr),
cim_qcfg_data->obq_wr);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
t4_read_cimq_cfg(padap, cim_qcfg_data->base, cim_qcfg_data->size,
cim_qcfg_data->thres);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
static int cudbg_read_cim_ibq(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err, int qid)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int no_of_read_words, rc = 0;
u32 qsize;
/* collect CIM IBQ */
qsize = CIM_IBQ_SIZE * 4 * sizeof(u32);
rc = cudbg_get_buff(pdbg_init, dbg_buff, qsize, &temp_buff);
if (rc)
return rc;
/* t4_read_cim_ibq will return no. of read words or error */
no_of_read_words = t4_read_cim_ibq(padap, qid,
(u32 *)temp_buff.data, qsize);
/* no_of_read_words is less than or equal to 0 means error */
if (no_of_read_words <= 0) {
if (!no_of_read_words)
rc = CUDBG_SYSTEM_ERROR;
else
rc = no_of_read_words;
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_ibq_tp0(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 0);
}
int cudbg_collect_cim_ibq_tp1(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 1);
}
int cudbg_collect_cim_ibq_ulp(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 2);
}
int cudbg_collect_cim_ibq_sge0(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 3);
}
int cudbg_collect_cim_ibq_sge1(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 4);
}
int cudbg_collect_cim_ibq_ncsi(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 5);
}
u32 cudbg_cim_obq_size(struct adapter *padap, int qid)
{
u32 value;
t4_write_reg(padap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
QUENUMSELECT_V(qid));
value = t4_read_reg(padap, CIM_QUEUE_CONFIG_CTRL_A);
value = CIMQSIZE_G(value) * 64; /* size in number of words */
return value * sizeof(u32);
}
static int cudbg_read_cim_obq(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err, int qid)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int no_of_read_words, rc = 0;
u32 qsize;
/* collect CIM OBQ */
qsize = cudbg_cim_obq_size(padap, qid);
rc = cudbg_get_buff(pdbg_init, dbg_buff, qsize, &temp_buff);
if (rc)
return rc;
/* t4_read_cim_obq will return no. of read words or error */
no_of_read_words = t4_read_cim_obq(padap, qid,
(u32 *)temp_buff.data, qsize);
/* no_of_read_words is less than or equal to 0 means error */
if (no_of_read_words <= 0) {
if (!no_of_read_words)
rc = CUDBG_SYSTEM_ERROR;
else
rc = no_of_read_words;
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_obq_ulp0(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 0);
}
int cudbg_collect_cim_obq_ulp1(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 1);
}
int cudbg_collect_cim_obq_ulp2(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 2);
}
int cudbg_collect_cim_obq_ulp3(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 3);
}
int cudbg_collect_cim_obq_sge(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 4);
}
int cudbg_collect_cim_obq_ncsi(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 5);
}
int cudbg_collect_obq_sge_rx_q0(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 6);
}
int cudbg_collect_obq_sge_rx_q1(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 7);
}
static int cudbg_meminfo_get_mem_index(struct adapter *padap,
struct cudbg_meminfo *mem_info,
u8 mem_type, u8 *idx)
{
u8 i, flag;
switch (mem_type) {
case MEM_EDC0:
flag = EDC0_FLAG;
break;
case MEM_EDC1:
flag = EDC1_FLAG;
break;
case MEM_MC0:
/* Some T5 cards have both MC0 and MC1. */
flag = is_t5(padap->params.chip) ? MC0_FLAG : MC_FLAG;
break;
case MEM_MC1:
flag = MC1_FLAG;
break;
case MEM_HMA:
flag = HMA_FLAG;
break;
default:
return CUDBG_STATUS_ENTITY_NOT_FOUND;
}
for (i = 0; i < mem_info->avail_c; i++) {
if (mem_info->avail[i].idx == flag) {
*idx = i;
return 0;
}
}
return CUDBG_STATUS_ENTITY_NOT_FOUND;
}
/* Fetch the @region_name's start and end from @meminfo. */
static int cudbg_get_mem_region(struct adapter *padap,
struct cudbg_meminfo *meminfo,
u8 mem_type, const char *region_name,
struct cudbg_mem_desc *mem_desc)
{
u8 mc, found = 0;
u32 i, idx = 0;
int rc;
rc = cudbg_meminfo_get_mem_index(padap, meminfo, mem_type, &mc);
if (rc)
return rc;
for (i = 0; i < ARRAY_SIZE(cudbg_region); i++) {
if (!strcmp(cudbg_region[i], region_name)) {
found = 1;
idx = i;
break;
}
}
if (!found)
return -EINVAL;
found = 0;
for (i = 0; i < meminfo->mem_c; i++) {
if (meminfo->mem[i].idx >= ARRAY_SIZE(cudbg_region))
continue; /* Skip holes */
if (!(meminfo->mem[i].limit))
meminfo->mem[i].limit =
i < meminfo->mem_c - 1 ?
meminfo->mem[i + 1].base - 1 : ~0;
if (meminfo->mem[i].idx == idx) {
/* Check if the region exists in @mem_type memory */
if (meminfo->mem[i].base < meminfo->avail[mc].base &&
meminfo->mem[i].limit < meminfo->avail[mc].base)
return -EINVAL;
if (meminfo->mem[i].base > meminfo->avail[mc].limit)
return -EINVAL;
memcpy(mem_desc, &meminfo->mem[i],
sizeof(struct cudbg_mem_desc));
found = 1;
break;
}
}
if (!found)
return -EINVAL;
return 0;
}
/* Fetch and update the start and end of the requested memory region w.r.t 0
* in the corresponding EDC/MC/HMA.
*/
static int cudbg_get_mem_relative(struct adapter *padap,
struct cudbg_meminfo *meminfo,
u8 mem_type, u32 *out_base, u32 *out_end)
{
u8 mc_idx;
int rc;
rc = cudbg_meminfo_get_mem_index(padap, meminfo, mem_type, &mc_idx);
if (rc)
return rc;
if (*out_base < meminfo->avail[mc_idx].base)
*out_base = 0;
else
*out_base -= meminfo->avail[mc_idx].base;
if (*out_end > meminfo->avail[mc_idx].limit)
*out_end = meminfo->avail[mc_idx].limit;
else
*out_end -= meminfo->avail[mc_idx].base;
return 0;
}
/* Get TX and RX Payload region */
static int cudbg_get_payload_range(struct adapter *padap, u8 mem_type,
const char *region_name,
struct cudbg_region_info *payload)
{
struct cudbg_mem_desc mem_desc = { 0 };
struct cudbg_meminfo meminfo;
int rc;
rc = cudbg_fill_meminfo(padap, &meminfo);
if (rc)
return rc;
rc = cudbg_get_mem_region(padap, &meminfo, mem_type, region_name,
&mem_desc);
if (rc) {
payload->exist = false;
return 0;
}
payload->exist = true;
payload->start = mem_desc.base;
payload->end = mem_desc.limit;
return cudbg_get_mem_relative(padap, &meminfo, mem_type,
&payload->start, &payload->end);
}
static int cudbg_memory_read(struct cudbg_init *pdbg_init, int win,
int mtype, u32 addr, u32 len, void *hbuf)
{
u32 win_pf, memoffset, mem_aperture, mem_base;
struct adapter *adap = pdbg_init->adap;
u32 pos, offset, resid;
u32 *res_buf;
u64 *buf;
int ret;
/* Argument sanity checks ...
*/
if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
return -EINVAL;
buf = (u64 *)hbuf;
/* Try to do 64-bit reads. Residual will be handled later. */
resid = len & 0x7;
len -= resid;
ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
&mem_aperture);
if (ret)
return ret;
addr = addr + memoffset;
win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
pos = addr & ~(mem_aperture - 1);
offset = addr - pos;
/* Set up initial PCI-E Memory Window to cover the start of our
* transfer.
*/
t4_memory_update_win(adap, win, pos | win_pf);
/* Transfer data from the adapter */
while (len > 0) {
*buf++ = le64_to_cpu((__force __le64)
t4_read_reg64(adap, mem_base + offset));
offset += sizeof(u64);
len -= sizeof(u64);
/* If we've reached the end of our current window aperture,
* move the PCI-E Memory Window on to the next.
*/
if (offset == mem_aperture) {
pos += mem_aperture;
offset = 0;
t4_memory_update_win(adap, win, pos | win_pf);
}
}
res_buf = (u32 *)buf;
/* Read residual in 32-bit multiples */
while (resid > sizeof(u32)) {
*res_buf++ = le32_to_cpu((__force __le32)
t4_read_reg(adap, mem_base + offset));
offset += sizeof(u32);
resid -= sizeof(u32);
/* If we've reached the end of our current window aperture,
* move the PCI-E Memory Window on to the next.
*/
if (offset == mem_aperture) {
pos += mem_aperture;
offset = 0;
t4_memory_update_win(adap, win, pos | win_pf);
}
}
/* Transfer residual < 32-bits */
if (resid)
t4_memory_rw_residual(adap, resid, mem_base + offset,
(u8 *)res_buf, T4_MEMORY_READ);
return 0;
}
#define CUDBG_YIELD_ITERATION 256
static int cudbg_read_fw_mem(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff, u8 mem_type,
unsigned long tot_len,
struct cudbg_error *cudbg_err)
{
static const char * const region_name[] = { "Tx payload:",
"Rx payload:" };
unsigned long bytes, bytes_left, bytes_read = 0;
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_region_info payload[2];
u32 yield_count = 0;
int rc = 0;
u8 i;
/* Get TX/RX Payload region range if they exist */
memset(payload, 0, sizeof(payload));
for (i = 0; i < ARRAY_SIZE(region_name); i++) {
rc = cudbg_get_payload_range(padap, mem_type, region_name[i],
&payload[i]);
if (rc)
return rc;
if (payload[i].exist) {
/* Align start and end to avoid wrap around */
payload[i].start = roundup(payload[i].start,
CUDBG_CHUNK_SIZE);
payload[i].end = rounddown(payload[i].end,
CUDBG_CHUNK_SIZE);
}
}
bytes_left = tot_len;
while (bytes_left > 0) {
/* As MC size is huge and read through PIO access, this
* loop will hold cpu for a longer time. OS may think that
* the process is hanged and will generate CPU stall traces.
* So yield the cpu regularly.
*/
yield_count++;
if (!(yield_count % CUDBG_YIELD_ITERATION))
schedule();
bytes = min_t(unsigned long, bytes_left,
(unsigned long)CUDBG_CHUNK_SIZE);
rc = cudbg_get_buff(pdbg_init, dbg_buff, bytes, &temp_buff);
if (rc)
return rc;
for (i = 0; i < ARRAY_SIZE(payload); i++)
if (payload[i].exist &&
bytes_read >= payload[i].start &&
bytes_read + bytes <= payload[i].end)
/* TX and RX Payload regions can't overlap */
goto skip_read;
spin_lock(&padap->win0_lock);
rc = cudbg_memory_read(pdbg_init, MEMWIN_NIC, mem_type,
bytes_read, bytes, temp_buff.data);
spin_unlock(&padap->win0_lock);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
skip_read:
bytes_left -= bytes;
bytes_read += bytes;
rc = cudbg_write_and_release_buff(pdbg_init, &temp_buff,
dbg_buff);
if (rc) {
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
return rc;
}
static void cudbg_t4_fwcache(struct cudbg_init *pdbg_init,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
int rc;
if (is_fw_attached(pdbg_init)) {
/* Flush uP dcache before reading edcX/mcX */
rc = t4_fwcache(padap, FW_PARAM_DEV_FWCACHE_FLUSH);
if (rc)
cudbg_err->sys_warn = rc;
}
}
static unsigned long cudbg_mem_region_size(struct cudbg_init *pdbg_init,
struct cudbg_error *cudbg_err,
u8 mem_type)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_meminfo mem_info;
u8 mc_idx;
int rc;
memset(&mem_info, 0, sizeof(struct cudbg_meminfo));
rc = cudbg_fill_meminfo(padap, &mem_info);
if (rc)
return rc;
cudbg_t4_fwcache(pdbg_init, cudbg_err);
rc = cudbg_meminfo_get_mem_index(padap, &mem_info, mem_type, &mc_idx);
if (rc)
return rc;
return mem_info.avail[mc_idx].limit - mem_info.avail[mc_idx].base;
}
static int cudbg_collect_mem_region(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err,
u8 mem_type)
{
unsigned long size = cudbg_mem_region_size(pdbg_init, cudbg_err, mem_type);
return cudbg_read_fw_mem(pdbg_init, dbg_buff, mem_type, size,
cudbg_err);
}
int cudbg_collect_edc0_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err,
MEM_EDC0);
}
int cudbg_collect_edc1_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err,
MEM_EDC1);
}
int cudbg_collect_mc0_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err,
MEM_MC0);
}
int cudbg_collect_mc1_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err,
MEM_MC1);
}
int cudbg_collect_hma_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err,
MEM_HMA);
}
int cudbg_collect_rss(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int rc, nentries;
nentries = t4_chip_rss_size(padap);
rc = cudbg_get_buff(pdbg_init, dbg_buff, nentries * sizeof(u16),
&temp_buff);
if (rc)
return rc;
rc = t4_read_rss(padap, (u16 *)temp_buff.data);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_rss_vf_config(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_rss_vf_conf *vfconf;
int vf, rc, vf_count;
vf_count = padap->params.arch.vfcount;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
vf_count * sizeof(struct cudbg_rss_vf_conf),
&temp_buff);
if (rc)
return rc;
vfconf = (struct cudbg_rss_vf_conf *)temp_buff.data;
for (vf = 0; vf < vf_count; vf++)
t4_read_rss_vf_config(padap, vf, &vfconf[vf].rss_vf_vfl,
&vfconf[vf].rss_vf_vfh, true);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_path_mtu(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, NMTUS * sizeof(u16),
&temp_buff);
if (rc)
return rc;
t4_read_mtu_tbl(padap, (u16 *)temp_buff.data, NULL);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_pm_stats(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_pm_stats *pm_stats_buff;
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_pm_stats),
&temp_buff);
if (rc)
return rc;
pm_stats_buff = (struct cudbg_pm_stats *)temp_buff.data;
t4_pmtx_get_stats(padap, pm_stats_buff->tx_cnt, pm_stats_buff->tx_cyc);
t4_pmrx_get_stats(padap, pm_stats_buff->rx_cnt, pm_stats_buff->rx_cyc);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_hw_sched(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_hw_sched *hw_sched_buff;
int i, rc = 0;
if (!padap->params.vpd.cclk)
return CUDBG_STATUS_CCLK_NOT_DEFINED;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_hw_sched),
&temp_buff);
if (rc)
return rc;
hw_sched_buff = (struct cudbg_hw_sched *)temp_buff.data;
hw_sched_buff->map = t4_read_reg(padap, TP_TX_MOD_QUEUE_REQ_MAP_A);
hw_sched_buff->mode = TIMERMODE_G(t4_read_reg(padap, TP_MOD_CONFIG_A));
t4_read_pace_tbl(padap, hw_sched_buff->pace_tab);
for (i = 0; i < NTX_SCHED; ++i)
t4_get_tx_sched(padap, i, &hw_sched_buff->kbps[i],
&hw_sched_buff->ipg[i], true);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_tp_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct ireg_buf *ch_tp_pio;
int i, rc, n = 0;
u32 size;
if (is_t5(padap->params.chip))
n = sizeof(t5_tp_pio_array) +
sizeof(t5_tp_tm_pio_array) +
sizeof(t5_tp_mib_index_array);
else
n = sizeof(t6_tp_pio_array) +
sizeof(t6_tp_tm_pio_array) +
sizeof(t6_tp_mib_index_array);
n = n / (IREG_NUM_ELEM * sizeof(u32));
size = sizeof(struct ireg_buf) * n;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
ch_tp_pio = (struct ireg_buf *)temp_buff.data;
/* TP_PIO */
if (is_t5(padap->params.chip))
n = sizeof(t5_tp_pio_array) / (IREG_NUM_ELEM * sizeof(u32));
else if (is_t6(padap->params.chip))
n = sizeof(t6_tp_pio_array) / (IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n; i++) {
struct ireg_field *tp_pio = &ch_tp_pio->tp_pio;
u32 *buff = ch_tp_pio->outbuf;
if (is_t5(padap->params.chip)) {
tp_pio->ireg_addr = t5_tp_pio_array[i][0];
tp_pio->ireg_data = t5_tp_pio_array[i][1];
tp_pio->ireg_local_offset = t5_tp_pio_array[i][2];
tp_pio->ireg_offset_range = t5_tp_pio_array[i][3];
} else if (is_t6(padap->params.chip)) {
tp_pio->ireg_addr = t6_tp_pio_array[i][0];
tp_pio->ireg_data = t6_tp_pio_array[i][1];
tp_pio->ireg_local_offset = t6_tp_pio_array[i][2];
tp_pio->ireg_offset_range = t6_tp_pio_array[i][3];
}
t4_tp_pio_read(padap, buff, tp_pio->ireg_offset_range,
tp_pio->ireg_local_offset, true);
ch_tp_pio++;
}
/* TP_TM_PIO */
if (is_t5(padap->params.chip))
n = sizeof(t5_tp_tm_pio_array) / (IREG_NUM_ELEM * sizeof(u32));
else if (is_t6(padap->params.chip))
n = sizeof(t6_tp_tm_pio_array) / (IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n; i++) {
struct ireg_field *tp_pio = &ch_tp_pio->tp_pio;
u32 *buff = ch_tp_pio->outbuf;
if (is_t5(padap->params.chip)) {
tp_pio->ireg_addr = t5_tp_tm_pio_array[i][0];
tp_pio->ireg_data = t5_tp_tm_pio_array[i][1];
tp_pio->ireg_local_offset = t5_tp_tm_pio_array[i][2];
tp_pio->ireg_offset_range = t5_tp_tm_pio_array[i][3];
} else if (is_t6(padap->params.chip)) {
tp_pio->ireg_addr = t6_tp_tm_pio_array[i][0];
tp_pio->ireg_data = t6_tp_tm_pio_array[i][1];
tp_pio->ireg_local_offset = t6_tp_tm_pio_array[i][2];
tp_pio->ireg_offset_range = t6_tp_tm_pio_array[i][3];
}
t4_tp_tm_pio_read(padap, buff, tp_pio->ireg_offset_range,
tp_pio->ireg_local_offset, true);
ch_tp_pio++;
}
/* TP_MIB_INDEX */
if (is_t5(padap->params.chip))
n = sizeof(t5_tp_mib_index_array) /
(IREG_NUM_ELEM * sizeof(u32));
else if (is_t6(padap->params.chip))
n = sizeof(t6_tp_mib_index_array) /
(IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n ; i++) {
struct ireg_field *tp_pio = &ch_tp_pio->tp_pio;
u32 *buff = ch_tp_pio->outbuf;
if (is_t5(padap->params.chip)) {
tp_pio->ireg_addr = t5_tp_mib_index_array[i][0];
tp_pio->ireg_data = t5_tp_mib_index_array[i][1];
tp_pio->ireg_local_offset =
t5_tp_mib_index_array[i][2];
tp_pio->ireg_offset_range =
t5_tp_mib_index_array[i][3];
} else if (is_t6(padap->params.chip)) {
tp_pio->ireg_addr = t6_tp_mib_index_array[i][0];
tp_pio->ireg_data = t6_tp_mib_index_array[i][1];
tp_pio->ireg_local_offset =
t6_tp_mib_index_array[i][2];
tp_pio->ireg_offset_range =
t6_tp_mib_index_array[i][3];
}
t4_tp_mib_read(padap, buff, tp_pio->ireg_offset_range,
tp_pio->ireg_local_offset, true);
ch_tp_pio++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
static void cudbg_read_sge_qbase_indirect_reg(struct adapter *padap,
struct sge_qbase_reg_field *qbase,
u32 func, bool is_pf)
{
u32 *buff, i;
if (is_pf) {
buff = qbase->pf_data_value[func];
} else {
buff = qbase->vf_data_value[func];
/* In SGE_QBASE_INDEX,
* Entries 0->7 are PF0->7, Entries 8->263 are VFID0->256.
*/
func += 8;
}
t4_write_reg(padap, qbase->reg_addr, func);
for (i = 0; i < SGE_QBASE_DATA_REG_NUM; i++, buff++)
*buff = t4_read_reg(padap, qbase->reg_data[i]);
}
int cudbg_collect_sge_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct sge_qbase_reg_field *sge_qbase;
struct ireg_buf *ch_sge_dbg;
int i, rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
sizeof(*ch_sge_dbg) * 2 + sizeof(*sge_qbase),
&temp_buff);
if (rc)
return rc;
ch_sge_dbg = (struct ireg_buf *)temp_buff.data;
for (i = 0; i < 2; i++) {
struct ireg_field *sge_pio = &ch_sge_dbg->tp_pio;
u32 *buff = ch_sge_dbg->outbuf;
sge_pio->ireg_addr = t5_sge_dbg_index_array[i][0];
sge_pio->ireg_data = t5_sge_dbg_index_array[i][1];
sge_pio->ireg_local_offset = t5_sge_dbg_index_array[i][2];
sge_pio->ireg_offset_range = t5_sge_dbg_index_array[i][3];
t4_read_indirect(padap,
sge_pio->ireg_addr,
sge_pio->ireg_data,
buff,
sge_pio->ireg_offset_range,
sge_pio->ireg_local_offset);
ch_sge_dbg++;
}
if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) {
sge_qbase = (struct sge_qbase_reg_field *)ch_sge_dbg;
/* 1 addr reg SGE_QBASE_INDEX and 4 data reg
* SGE_QBASE_MAP[0-3]
*/
sge_qbase->reg_addr = t6_sge_qbase_index_array[0];
for (i = 0; i < SGE_QBASE_DATA_REG_NUM; i++)
sge_qbase->reg_data[i] =
t6_sge_qbase_index_array[i + 1];
for (i = 0; i <= PCIE_FW_MASTER_M; i++)
cudbg_read_sge_qbase_indirect_reg(padap, sge_qbase,
i, true);
for (i = 0; i < padap->params.arch.vfcount; i++)
cudbg_read_sge_qbase_indirect_reg(padap, sge_qbase,
i, false);
sge_qbase->vfcount = padap->params.arch.vfcount;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_ulprx_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_ulprx_la *ulprx_la_buff;
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_ulprx_la),
&temp_buff);
if (rc)
return rc;
ulprx_la_buff = (struct cudbg_ulprx_la *)temp_buff.data;
t4_ulprx_read_la(padap, (u32 *)ulprx_la_buff->data);
ulprx_la_buff->size = ULPRX_LA_SIZE;
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_tp_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_tp_la *tp_la_buff;
int size, rc;
size = sizeof(struct cudbg_tp_la) + TPLA_SIZE * sizeof(u64);
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
tp_la_buff = (struct cudbg_tp_la *)temp_buff.data;
tp_la_buff->mode = DBGLAMODE_G(t4_read_reg(padap, TP_DBG_LA_CONFIG_A));
t4_tp_read_la(padap, (u64 *)tp_la_buff->data, NULL);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_meminfo(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_meminfo *meminfo_buff;
struct cudbg_ver_hdr *ver_hdr;
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
sizeof(struct cudbg_ver_hdr) +
sizeof(struct cudbg_meminfo),
&temp_buff);
if (rc)
return rc;
ver_hdr = (struct cudbg_ver_hdr *)temp_buff.data;
ver_hdr->signature = CUDBG_ENTITY_SIGNATURE;
ver_hdr->revision = CUDBG_MEMINFO_REV;
ver_hdr->size = sizeof(struct cudbg_meminfo);
meminfo_buff = (struct cudbg_meminfo *)(temp_buff.data +
sizeof(*ver_hdr));
rc = cudbg_fill_meminfo(padap, meminfo_buff);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cim_pif_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct cudbg_cim_pif_la *cim_pif_la_buff;
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
int size, rc;
size = sizeof(struct cudbg_cim_pif_la) +
2 * CIM_PIFLA_SIZE * 6 * sizeof(u32);
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
cim_pif_la_buff = (struct cudbg_cim_pif_la *)temp_buff.data;
cim_pif_la_buff->size = CIM_PIFLA_SIZE;
t4_cim_read_pif_la(padap, (u32 *)cim_pif_la_buff->data,
(u32 *)cim_pif_la_buff->data + 6 * CIM_PIFLA_SIZE,
NULL, NULL);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_clk_info(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_clk_info *clk_info_buff;
u64 tp_tick_us;
int rc;
if (!padap->params.vpd.cclk)
return CUDBG_STATUS_CCLK_NOT_DEFINED;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_clk_info),
&temp_buff);
if (rc)
return rc;
clk_info_buff = (struct cudbg_clk_info *)temp_buff.data;
clk_info_buff->cclk_ps = 1000000000 / padap->params.vpd.cclk; /* psec */
clk_info_buff->res = t4_read_reg(padap, TP_TIMER_RESOLUTION_A);
clk_info_buff->tre = TIMERRESOLUTION_G(clk_info_buff->res);
clk_info_buff->dack_re = DELAYEDACKRESOLUTION_G(clk_info_buff->res);
tp_tick_us = (clk_info_buff->cclk_ps << clk_info_buff->tre) / 1000000;
clk_info_buff->dack_timer =
(clk_info_buff->cclk_ps << clk_info_buff->dack_re) / 1000000 *
t4_read_reg(padap, TP_DACK_TIMER_A);
clk_info_buff->retransmit_min =
tp_tick_us * t4_read_reg(padap, TP_RXT_MIN_A);
clk_info_buff->retransmit_max =
tp_tick_us * t4_read_reg(padap, TP_RXT_MAX_A);
clk_info_buff->persist_timer_min =
tp_tick_us * t4_read_reg(padap, TP_PERS_MIN_A);
clk_info_buff->persist_timer_max =
tp_tick_us * t4_read_reg(padap, TP_PERS_MAX_A);
clk_info_buff->keepalive_idle_timer =
tp_tick_us * t4_read_reg(padap, TP_KEEP_IDLE_A);
clk_info_buff->keepalive_interval =
tp_tick_us * t4_read_reg(padap, TP_KEEP_INTVL_A);
clk_info_buff->initial_srtt =
tp_tick_us * INITSRTT_G(t4_read_reg(padap, TP_INIT_SRTT_A));
clk_info_buff->finwait2_timer =
tp_tick_us * t4_read_reg(padap, TP_FINWAIT2_TIMER_A);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_pcie_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct ireg_buf *ch_pcie;
int i, rc, n;
u32 size;
n = sizeof(t5_pcie_pdbg_array) / (IREG_NUM_ELEM * sizeof(u32));
size = sizeof(struct ireg_buf) * n * 2;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
ch_pcie = (struct ireg_buf *)temp_buff.data;
/* PCIE_PDBG */
for (i = 0; i < n; i++) {
struct ireg_field *pcie_pio = &ch_pcie->tp_pio;
u32 *buff = ch_pcie->outbuf;
pcie_pio->ireg_addr = t5_pcie_pdbg_array[i][0];
pcie_pio->ireg_data = t5_pcie_pdbg_array[i][1];
pcie_pio->ireg_local_offset = t5_pcie_pdbg_array[i][2];
pcie_pio->ireg_offset_range = t5_pcie_pdbg_array[i][3];
t4_read_indirect(padap,
pcie_pio->ireg_addr,
pcie_pio->ireg_data,
buff,
pcie_pio->ireg_offset_range,
pcie_pio->ireg_local_offset);
ch_pcie++;
}
/* PCIE_CDBG */
n = sizeof(t5_pcie_cdbg_array) / (IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n; i++) {
struct ireg_field *pcie_pio = &ch_pcie->tp_pio;
u32 *buff = ch_pcie->outbuf;
pcie_pio->ireg_addr = t5_pcie_cdbg_array[i][0];
pcie_pio->ireg_data = t5_pcie_cdbg_array[i][1];
pcie_pio->ireg_local_offset = t5_pcie_cdbg_array[i][2];
pcie_pio->ireg_offset_range = t5_pcie_cdbg_array[i][3];
t4_read_indirect(padap,
pcie_pio->ireg_addr,
pcie_pio->ireg_data,
buff,
pcie_pio->ireg_offset_range,
pcie_pio->ireg_local_offset);
ch_pcie++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_pm_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct ireg_buf *ch_pm;
int i, rc, n;
u32 size;
n = sizeof(t5_pm_rx_array) / (IREG_NUM_ELEM * sizeof(u32));
size = sizeof(struct ireg_buf) * n * 2;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
ch_pm = (struct ireg_buf *)temp_buff.data;
/* PM_RX */
for (i = 0; i < n; i++) {
struct ireg_field *pm_pio = &ch_pm->tp_pio;
u32 *buff = ch_pm->outbuf;
pm_pio->ireg_addr = t5_pm_rx_array[i][0];
pm_pio->ireg_data = t5_pm_rx_array[i][1];
pm_pio->ireg_local_offset = t5_pm_rx_array[i][2];
pm_pio->ireg_offset_range = t5_pm_rx_array[i][3];
t4_read_indirect(padap,
pm_pio->ireg_addr,
pm_pio->ireg_data,
buff,
pm_pio->ireg_offset_range,
pm_pio->ireg_local_offset);
ch_pm++;
}
/* PM_TX */
n = sizeof(t5_pm_tx_array) / (IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n; i++) {
struct ireg_field *pm_pio = &ch_pm->tp_pio;
u32 *buff = ch_pm->outbuf;
pm_pio->ireg_addr = t5_pm_tx_array[i][0];
pm_pio->ireg_data = t5_pm_tx_array[i][1];
pm_pio->ireg_local_offset = t5_pm_tx_array[i][2];
pm_pio->ireg_offset_range = t5_pm_tx_array[i][3];
t4_read_indirect(padap,
pm_pio->ireg_addr,
pm_pio->ireg_data,
buff,
pm_pio->ireg_offset_range,
pm_pio->ireg_local_offset);
ch_pm++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_tid(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_tid_info_region_rev1 *tid1;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_tid_info_region *tid;
u32 para[2], val[2];
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
sizeof(struct cudbg_tid_info_region_rev1),
&temp_buff);
if (rc)
return rc;
tid1 = (struct cudbg_tid_info_region_rev1 *)temp_buff.data;
tid = &tid1->tid;
tid1->ver_hdr.signature = CUDBG_ENTITY_SIGNATURE;
tid1->ver_hdr.revision = CUDBG_TID_INFO_REV;
tid1->ver_hdr.size = sizeof(struct cudbg_tid_info_region_rev1) -
sizeof(struct cudbg_ver_hdr);
/* If firmware is not attached/alive, use backdoor register
* access to collect dump.
*/
if (!is_fw_attached(pdbg_init))
goto fill_tid;
#define FW_PARAM_PFVF_A(param) \
(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param) | \
FW_PARAMS_PARAM_Y_V(0) | \
FW_PARAMS_PARAM_Z_V(0))
para[0] = FW_PARAM_PFVF_A(ETHOFLD_START);
para[1] = FW_PARAM_PFVF_A(ETHOFLD_END);
rc = t4_query_params(padap, padap->mbox, padap->pf, 0, 2, para, val);
if (rc < 0) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
tid->uotid_base = val[0];
tid->nuotids = val[1] - val[0] + 1;
if (is_t5(padap->params.chip)) {
tid->sb = t4_read_reg(padap, LE_DB_SERVER_INDEX_A) / 4;
} else if (is_t6(padap->params.chip)) {
tid1->tid_start =
t4_read_reg(padap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
tid->sb = t4_read_reg(padap, LE_DB_SRVR_START_INDEX_A);
para[0] = FW_PARAM_PFVF_A(HPFILTER_START);
para[1] = FW_PARAM_PFVF_A(HPFILTER_END);
rc = t4_query_params(padap, padap->mbox, padap->pf, 0, 2,
para, val);
if (rc < 0) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
tid->hpftid_base = val[0];
tid->nhpftids = val[1] - val[0] + 1;
}
#undef FW_PARAM_PFVF_A
fill_tid:
tid->ntids = padap->tids.ntids;
tid->nstids = padap->tids.nstids;
tid->stid_base = padap->tids.stid_base;
tid->hash_base = padap->tids.hash_base;
tid->natids = padap->tids.natids;
tid->nftids = padap->tids.nftids;
tid->ftid_base = padap->tids.ftid_base;
tid->aftid_base = padap->tids.aftid_base;
tid->aftid_end = padap->tids.aftid_end;
tid->sftid_base = padap->tids.sftid_base;
tid->nsftids = padap->tids.nsftids;
tid->flags = padap->flags;
tid->le_db_conf = t4_read_reg(padap, LE_DB_CONFIG_A);
tid->ip_users = t4_read_reg(padap, LE_DB_ACT_CNT_IPV4_A);
tid->ipv6_users = t4_read_reg(padap, LE_DB_ACT_CNT_IPV6_A);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_pcie_config(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
u32 size, *value, j;
int i, rc, n;
size = sizeof(u32) * CUDBG_NUM_PCIE_CONFIG_REGS;
n = sizeof(t5_pcie_config_array) / (2 * sizeof(u32));
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
value = (u32 *)temp_buff.data;
for (i = 0; i < n; i++) {
for (j = t5_pcie_config_array[i][0];
j <= t5_pcie_config_array[i][1]; j += 4) {
t4_hw_pci_read_cfg4(padap, j, value);
value++;
}
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
static int cudbg_sge_ctxt_check_valid(u32 *buf, int type)
{
int index, bit, bit_pos = 0;
switch (type) {
case CTXT_EGRESS:
bit_pos = 176;
break;
case CTXT_INGRESS:
bit_pos = 141;
break;
case CTXT_FLM:
bit_pos = 89;
break;
}
index = bit_pos / 32;
bit = bit_pos % 32;
return buf[index] & (1U << bit);
}
static int cudbg_get_ctxt_region_info(struct adapter *padap,
struct cudbg_region_info *ctx_info,
u8 *mem_type)
{
struct cudbg_mem_desc mem_desc;
struct cudbg_meminfo meminfo;
u32 i, j, value, found;
u8 flq;
int rc;
rc = cudbg_fill_meminfo(padap, &meminfo);
if (rc)
return rc;
/* Get EGRESS and INGRESS context region size */
for (i = CTXT_EGRESS; i <= CTXT_INGRESS; i++) {
found = 0;
memset(&mem_desc, 0, sizeof(struct cudbg_mem_desc));
for (j = 0; j < ARRAY_SIZE(meminfo.avail); j++) {
rc = cudbg_get_mem_region(padap, &meminfo, j,
cudbg_region[i],
&mem_desc);
if (!rc) {
found = 1;
rc = cudbg_get_mem_relative(padap, &meminfo, j,
&mem_desc.base,
&mem_desc.limit);
if (rc) {
ctx_info[i].exist = false;
break;
}
ctx_info[i].exist = true;
ctx_info[i].start = mem_desc.base;
ctx_info[i].end = mem_desc.limit;
mem_type[i] = j;
break;
}
}
if (!found)
ctx_info[i].exist = false;
}
/* Get FLM and CNM max qid. */
value = t4_read_reg(padap, SGE_FLM_CFG_A);
/* Get number of data freelist queues */
flq = HDRSTARTFLQ_G(value);
ctx_info[CTXT_FLM].exist = true;
ctx_info[CTXT_FLM].end = (CUDBG_MAX_FL_QIDS >> flq) * SGE_CTXT_SIZE;
/* The number of CONM contexts are same as number of freelist
* queues.
*/
ctx_info[CTXT_CNM].exist = true;
ctx_info[CTXT_CNM].end = ctx_info[CTXT_FLM].end;
return 0;
}
int cudbg_dump_context_size(struct adapter *padap)
{
struct cudbg_region_info region_info[CTXT_CNM + 1] = { {0} };
u8 mem_type[CTXT_INGRESS + 1] = { 0 };
u32 i, size = 0;
int rc;
/* Get max valid qid for each type of queue */
rc = cudbg_get_ctxt_region_info(padap, region_info, mem_type);
if (rc)
return rc;
for (i = 0; i < CTXT_CNM; i++) {
if (!region_info[i].exist) {
if (i == CTXT_EGRESS || i == CTXT_INGRESS)
size += CUDBG_LOWMEM_MAX_CTXT_QIDS *
SGE_CTXT_SIZE;
continue;
}
size += (region_info[i].end - region_info[i].start + 1) /
SGE_CTXT_SIZE;
}
return size * sizeof(struct cudbg_ch_cntxt);
}
static void cudbg_read_sge_ctxt(struct cudbg_init *pdbg_init, u32 cid,
enum ctxt_type ctype, u32 *data)
{
struct adapter *padap = pdbg_init->adap;
int rc = -1;
/* Under heavy traffic, the SGE Queue contexts registers will be
* frequently accessed by firmware.
*
* To avoid conflicts with firmware, always ask firmware to fetch
* the SGE Queue contexts via mailbox. On failure, fallback to
* accessing hardware registers directly.
*/
if (is_fw_attached(pdbg_init))
rc = t4_sge_ctxt_rd(padap, padap->mbox, cid, ctype, data);
if (rc)
t4_sge_ctxt_rd_bd(padap, cid, ctype, data);
}
static void cudbg_get_sge_ctxt_fw(struct cudbg_init *pdbg_init, u32 max_qid,
u8 ctxt_type,
struct cudbg_ch_cntxt **out_buff)
{
struct cudbg_ch_cntxt *buff = *out_buff;
int rc;
u32 j;
for (j = 0; j < max_qid; j++) {
cudbg_read_sge_ctxt(pdbg_init, j, ctxt_type, buff->data);
rc = cudbg_sge_ctxt_check_valid(buff->data, ctxt_type);
if (!rc)
continue;
buff->cntxt_type = ctxt_type;
buff->cntxt_id = j;
buff++;
if (ctxt_type == CTXT_FLM) {
cudbg_read_sge_ctxt(pdbg_init, j, CTXT_CNM, buff->data);
buff->cntxt_type = CTXT_CNM;
buff->cntxt_id = j;
buff++;
}
}
*out_buff = buff;
}
int cudbg_collect_dump_context(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct cudbg_region_info region_info[CTXT_CNM + 1] = { {0} };
struct adapter *padap = pdbg_init->adap;
u32 j, size, max_ctx_size, max_ctx_qid;
u8 mem_type[CTXT_INGRESS + 1] = { 0 };
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_ch_cntxt *buff;
u64 *dst_off, *src_off;
u8 *ctx_buf;
u8 i, k;
int rc;
/* Get max valid qid for each type of queue */
rc = cudbg_get_ctxt_region_info(padap, region_info, mem_type);
if (rc)
return rc;
rc = cudbg_dump_context_size(padap);
if (rc <= 0)
return CUDBG_STATUS_ENTITY_NOT_FOUND;
size = rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
/* Get buffer with enough space to read the biggest context
* region in memory.
*/
max_ctx_size = max(region_info[CTXT_EGRESS].end -
region_info[CTXT_EGRESS].start + 1,
region_info[CTXT_INGRESS].end -
region_info[CTXT_INGRESS].start + 1);
ctx_buf = kvzalloc(max_ctx_size, GFP_KERNEL);
if (!ctx_buf) {
cudbg_put_buff(pdbg_init, &temp_buff);
return -ENOMEM;
}
buff = (struct cudbg_ch_cntxt *)temp_buff.data;
/* Collect EGRESS and INGRESS context data.
* In case of failures, fallback to collecting via FW or
* backdoor access.
*/
for (i = CTXT_EGRESS; i <= CTXT_INGRESS; i++) {
if (!region_info[i].exist) {
max_ctx_qid = CUDBG_LOWMEM_MAX_CTXT_QIDS;
cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, i,
&buff);
continue;
}
max_ctx_size = region_info[i].end - region_info[i].start + 1;
max_ctx_qid = max_ctx_size / SGE_CTXT_SIZE;
/* If firmware is not attached/alive, use backdoor register
* access to collect dump.
*/
if (is_fw_attached(pdbg_init)) {
t4_sge_ctxt_flush(padap, padap->mbox, i);
rc = t4_memory_rw(padap, MEMWIN_NIC, mem_type[i],
region_info[i].start, max_ctx_size,
(__be32 *)ctx_buf, 1);
}
if (rc || !is_fw_attached(pdbg_init)) {
max_ctx_qid = CUDBG_LOWMEM_MAX_CTXT_QIDS;
cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, i,
&buff);
continue;
}
for (j = 0; j < max_ctx_qid; j++) {
src_off = (u64 *)(ctx_buf + j * SGE_CTXT_SIZE);
dst_off = (u64 *)buff->data;
/* The data is stored in 64-bit cpu order. Convert it
* to big endian before parsing.
*/
for (k = 0; k < SGE_CTXT_SIZE / sizeof(u64); k++)
dst_off[k] = cpu_to_be64(src_off[k]);
rc = cudbg_sge_ctxt_check_valid(buff->data, i);
if (!rc)
continue;
buff->cntxt_type = i;
buff->cntxt_id = j;
buff++;
}
}
kvfree(ctx_buf);
/* Collect FREELIST and CONGESTION MANAGER contexts */
max_ctx_size = region_info[CTXT_FLM].end -
region_info[CTXT_FLM].start + 1;
max_ctx_qid = max_ctx_size / SGE_CTXT_SIZE;
/* Since FLM and CONM are 1-to-1 mapped, the below function
* will fetch both FLM and CONM contexts.
*/
cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, CTXT_FLM, &buff);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
static inline void cudbg_tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask)
{
*mask = x | y;
y = (__force u64)cpu_to_be64(y);
memcpy(addr, (char *)&y + 2, ETH_ALEN);
}
static void cudbg_mps_rpl_backdoor(struct adapter *padap,
struct fw_ldst_mps_rplc *mps_rplc)
{
if (is_t5(padap->params.chip)) {
mps_rplc->rplc255_224 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP3_A));
mps_rplc->rplc223_192 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP2_A));
mps_rplc->rplc191_160 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP1_A));
mps_rplc->rplc159_128 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP0_A));
} else {
mps_rplc->rplc255_224 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP7_A));
mps_rplc->rplc223_192 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP6_A));
mps_rplc->rplc191_160 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP5_A));
mps_rplc->rplc159_128 = htonl(t4_read_reg(padap,
MPS_VF_RPLCT_MAP4_A));
}
mps_rplc->rplc127_96 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP3_A));
mps_rplc->rplc95_64 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP2_A));
mps_rplc->rplc63_32 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP1_A));
mps_rplc->rplc31_0 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP0_A));
}
static int cudbg_collect_tcam_index(struct cudbg_init *pdbg_init,
struct cudbg_mps_tcam *tcam, u32 idx)
{
struct adapter *padap = pdbg_init->adap;
u64 tcamy, tcamx, val;
u32 ctl, data2;
int rc = 0;
if (CHELSIO_CHIP_VERSION(padap->params.chip) >= CHELSIO_T6) {
/* CtlReqID - 1: use Host Driver Requester ID
* CtlCmdType - 0: Read, 1: Write
* CtlTcamSel - 0: TCAM0, 1: TCAM1
* CtlXYBitSel- 0: Y bit, 1: X bit
*/
/* Read tcamy */
ctl = CTLREQID_V(1) | CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0);
if (idx < 256)
ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0);
else
ctl |= CTLTCAMINDEX_V(idx - 256) | CTLTCAMSEL_V(1);
t4_write_reg(padap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
val = t4_read_reg(padap, MPS_CLS_TCAM_RDATA1_REQ_ID1_A);
tcamy = DMACH_G(val) << 32;
tcamy |= t4_read_reg(padap, MPS_CLS_TCAM_RDATA0_REQ_ID1_A);
data2 = t4_read_reg(padap, MPS_CLS_TCAM_RDATA2_REQ_ID1_A);
tcam->lookup_type = DATALKPTYPE_G(data2);
/* 0 - Outer header, 1 - Inner header
* [71:48] bit locations are overloaded for
* outer vs. inner lookup types.
*/
if (tcam->lookup_type && tcam->lookup_type != DATALKPTYPE_M) {
/* Inner header VNI */
tcam->vniy = (data2 & DATAVIDH2_F) | DATAVIDH1_G(data2);
tcam->vniy = (tcam->vniy << 16) | VIDL_G(val);
tcam->dip_hit = data2 & DATADIPHIT_F;
} else {
tcam->vlan_vld = data2 & DATAVIDH2_F;
tcam->ivlan = VIDL_G(val);
}
tcam->port_num = DATAPORTNUM_G(data2);
/* Read tcamx. Change the control param */
ctl |= CTLXYBITSEL_V(1);
t4_write_reg(padap, MPS_CLS_TCAM_DATA2_CTL_A, ctl);
val = t4_read_reg(padap, MPS_CLS_TCAM_RDATA1_REQ_ID1_A);
tcamx = DMACH_G(val) << 32;
tcamx |= t4_read_reg(padap, MPS_CLS_TCAM_RDATA0_REQ_ID1_A);
data2 = t4_read_reg(padap, MPS_CLS_TCAM_RDATA2_REQ_ID1_A);
if (tcam->lookup_type && tcam->lookup_type != DATALKPTYPE_M) {
/* Inner header VNI mask */
tcam->vnix = (data2 & DATAVIDH2_F) | DATAVIDH1_G(data2);
tcam->vnix = (tcam->vnix << 16) | VIDL_G(val);
}
} else {
tcamy = t4_read_reg64(padap, MPS_CLS_TCAM_Y_L(idx));
tcamx = t4_read_reg64(padap, MPS_CLS_TCAM_X_L(idx));
}
/* If no entry, return */
if (tcamx & tcamy)
return rc;
tcam->cls_lo = t4_read_reg(padap, MPS_CLS_SRAM_L(idx));
tcam->cls_hi = t4_read_reg(padap, MPS_CLS_SRAM_H(idx));
if (is_t5(padap->params.chip))
tcam->repli = (tcam->cls_lo & REPLICATE_F);
else if (is_t6(padap->params.chip))
tcam->repli = (tcam->cls_lo & T6_REPLICATE_F);
if (tcam->repli) {
struct fw_ldst_cmd ldst_cmd;
struct fw_ldst_mps_rplc mps_rplc;
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
ldst_cmd.op_to_addrspace =
htonl(FW_CMD_OP_V(FW_LDST_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F |
FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS));
ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
ldst_cmd.u.mps.rplc.fid_idx =
htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) |
FW_LDST_CMD_IDX_V(idx));
/* If firmware is not attached/alive, use backdoor register
* access to collect dump.
*/
if (is_fw_attached(pdbg_init))
rc = t4_wr_mbox(padap, padap->mbox, &ldst_cmd,
sizeof(ldst_cmd), &ldst_cmd);
if (rc || !is_fw_attached(pdbg_init)) {
cudbg_mps_rpl_backdoor(padap, &mps_rplc);
/* Ignore error since we collected directly from
* reading registers.
*/
rc = 0;
} else {
mps_rplc = ldst_cmd.u.mps.rplc;
}
tcam->rplc[0] = ntohl(mps_rplc.rplc31_0);
tcam->rplc[1] = ntohl(mps_rplc.rplc63_32);
tcam->rplc[2] = ntohl(mps_rplc.rplc95_64);
tcam->rplc[3] = ntohl(mps_rplc.rplc127_96);
if (padap->params.arch.mps_rplc_size > CUDBG_MAX_RPLC_SIZE) {
tcam->rplc[4] = ntohl(mps_rplc.rplc159_128);
tcam->rplc[5] = ntohl(mps_rplc.rplc191_160);
tcam->rplc[6] = ntohl(mps_rplc.rplc223_192);
tcam->rplc[7] = ntohl(mps_rplc.rplc255_224);
}
}
cudbg_tcamxy2valmask(tcamx, tcamy, tcam->addr, &tcam->mask);
tcam->idx = idx;
tcam->rplc_size = padap->params.arch.mps_rplc_size;
return rc;
}
int cudbg_collect_mps_tcam(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
u32 size = 0, i, n, total_size = 0;
struct cudbg_mps_tcam *tcam;
int rc;
n = padap->params.arch.mps_tcam_size;
size = sizeof(struct cudbg_mps_tcam) * n;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
tcam = (struct cudbg_mps_tcam *)temp_buff.data;
for (i = 0; i < n; i++) {
rc = cudbg_collect_tcam_index(pdbg_init, tcam, i);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
total_size += sizeof(struct cudbg_mps_tcam);
tcam++;
}
if (!total_size) {
rc = CUDBG_SYSTEM_ERROR;
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_vpd_data(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
char vpd_str[CUDBG_VPD_VER_LEN + 1];
u32 scfg_vers, vpd_vers, fw_vers;
struct cudbg_vpd_data *vpd_data;
struct vpd_params vpd = { 0 };
int rc, ret;
rc = t4_get_raw_vpd_params(padap, &vpd);
if (rc)
return rc;
rc = t4_get_fw_version(padap, &fw_vers);
if (rc)
return rc;
/* Serial Configuration Version is located beyond the PF's vpd size.
* Temporarily give access to entire EEPROM to get it.
*/
rc = pci_set_vpd_size(padap->pdev, EEPROMVSIZE);
if (rc < 0)
return rc;
ret = cudbg_read_vpd_reg(padap, CUDBG_SCFG_VER_ADDR, CUDBG_SCFG_VER_LEN,
&scfg_vers);
/* Restore back to original PF's vpd size */
rc = pci_set_vpd_size(padap->pdev, CUDBG_VPD_PF_SIZE);
if (rc < 0)
return rc;
if (ret)
return ret;
rc = cudbg_read_vpd_reg(padap, CUDBG_VPD_VER_ADDR, CUDBG_VPD_VER_LEN,
vpd_str);
if (rc)
return rc;
vpd_str[CUDBG_VPD_VER_LEN] = '\0';
rc = kstrtouint(vpd_str, 0, &vpd_vers);
if (rc)
return rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_vpd_data),
&temp_buff);
if (rc)
return rc;
vpd_data = (struct cudbg_vpd_data *)temp_buff.data;
memcpy(vpd_data->sn, vpd.sn, SERNUM_LEN + 1);
memcpy(vpd_data->bn, vpd.pn, PN_LEN + 1);
memcpy(vpd_data->na, vpd.na, MACADDR_LEN + 1);
memcpy(vpd_data->mn, vpd.id, ID_LEN + 1);
vpd_data->scfg_vers = scfg_vers;
vpd_data->vpd_vers = vpd_vers;
vpd_data->fw_major = FW_HDR_FW_VER_MAJOR_G(fw_vers);
vpd_data->fw_minor = FW_HDR_FW_VER_MINOR_G(fw_vers);
vpd_data->fw_micro = FW_HDR_FW_VER_MICRO_G(fw_vers);
vpd_data->fw_build = FW_HDR_FW_VER_BUILD_G(fw_vers);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
static int cudbg_read_tid(struct cudbg_init *pdbg_init, u32 tid,
struct cudbg_tid_data *tid_data)
{
struct adapter *padap = pdbg_init->adap;
int i, cmd_retry = 8;
u32 val;
/* Fill REQ_DATA regs with 0's */
for (i = 0; i < NUM_LE_DB_DBGI_REQ_DATA_INSTANCES; i++)
t4_write_reg(padap, LE_DB_DBGI_REQ_DATA_A + (i << 2), 0);
/* Write DBIG command */
val = DBGICMD_V(4) | DBGITID_V(tid);
t4_write_reg(padap, LE_DB_DBGI_REQ_TCAM_CMD_A, val);
tid_data->dbig_cmd = val;
val = DBGICMDSTRT_F | DBGICMDMODE_V(1); /* LE mode */
t4_write_reg(padap, LE_DB_DBGI_CONFIG_A, val);
tid_data->dbig_conf = val;
/* Poll the DBGICMDBUSY bit */
val = 1;
while (val) {
val = t4_read_reg(padap, LE_DB_DBGI_CONFIG_A);
val = val & DBGICMDBUSY_F;
cmd_retry--;
if (!cmd_retry)
return CUDBG_SYSTEM_ERROR;
}
/* Check RESP status */
val = t4_read_reg(padap, LE_DB_DBGI_RSP_STATUS_A);
tid_data->dbig_rsp_stat = val;
if (!(val & 1))
return CUDBG_SYSTEM_ERROR;
/* Read RESP data */
for (i = 0; i < NUM_LE_DB_DBGI_RSP_DATA_INSTANCES; i++)
tid_data->data[i] = t4_read_reg(padap,
LE_DB_DBGI_RSP_DATA_A +
(i << 2));
tid_data->tid = tid;
return 0;
}
static int cudbg_get_le_type(u32 tid, struct cudbg_tcam tcam_region)
{
int type = LE_ET_UNKNOWN;
if (tid < tcam_region.server_start)
type = LE_ET_TCAM_CON;
else if (tid < tcam_region.filter_start)
type = LE_ET_TCAM_SERVER;
else if (tid < tcam_region.clip_start)
type = LE_ET_TCAM_FILTER;
else if (tid < tcam_region.routing_start)
type = LE_ET_TCAM_CLIP;
else if (tid < tcam_region.tid_hash_base)
type = LE_ET_TCAM_ROUTING;
else if (tid < tcam_region.max_tid)
type = LE_ET_HASH_CON;
else
type = LE_ET_INVALID_TID;
return type;
}
static int cudbg_is_ipv6_entry(struct cudbg_tid_data *tid_data,
struct cudbg_tcam tcam_region)
{
int ipv6 = 0;
int le_type;
le_type = cudbg_get_le_type(tid_data->tid, tcam_region);
if (tid_data->tid & 1)
return 0;
if (le_type == LE_ET_HASH_CON) {
ipv6 = tid_data->data[16] & 0x8000;
} else if (le_type == LE_ET_TCAM_CON) {
ipv6 = tid_data->data[16] & 0x8000;
if (ipv6)
ipv6 = tid_data->data[9] == 0x00C00000;
} else {
ipv6 = 0;
}
return ipv6;
}
void cudbg_fill_le_tcam_info(struct adapter *padap,
struct cudbg_tcam *tcam_region)
{
u32 value;
/* Get the LE regions */
value = t4_read_reg(padap, LE_DB_TID_HASHBASE_A); /* hash base index */
tcam_region->tid_hash_base = value;
/* Get routing table index */
value = t4_read_reg(padap, LE_DB_ROUTING_TABLE_INDEX_A);
tcam_region->routing_start = value;
/* Get clip table index. For T6 there is separate CLIP TCAM */
if (is_t6(padap->params.chip))
value = t4_read_reg(padap, LE_DB_CLCAM_TID_BASE_A);
else
value = t4_read_reg(padap, LE_DB_CLIP_TABLE_INDEX_A);
tcam_region->clip_start = value;
/* Get filter table index */
value = t4_read_reg(padap, LE_DB_FILTER_TABLE_INDEX_A);
tcam_region->filter_start = value;
/* Get server table index */
value = t4_read_reg(padap, LE_DB_SERVER_INDEX_A);
tcam_region->server_start = value;
/* Check whether hash is enabled and calculate the max tids */
value = t4_read_reg(padap, LE_DB_CONFIG_A);
if ((value >> HASHEN_S) & 1) {
value = t4_read_reg(padap, LE_DB_HASH_CONFIG_A);
if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) {
tcam_region->max_tid = (value & 0xFFFFF) +
tcam_region->tid_hash_base;
} else {
value = HASHTIDSIZE_G(value);
value = 1 << value;
tcam_region->max_tid = value +
tcam_region->tid_hash_base;
}
} else { /* hash not enabled */
if (is_t6(padap->params.chip))
tcam_region->max_tid = (value & ASLIPCOMPEN_F) ?
CUDBG_MAX_TID_COMP_EN :
CUDBG_MAX_TID_COMP_DIS;
else
tcam_region->max_tid = CUDBG_MAX_TCAM_TID;
}
if (is_t6(padap->params.chip))
tcam_region->max_tid += CUDBG_T6_CLIP;
}
int cudbg_collect_le_tcam(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_tcam tcam_region = { 0 };
struct cudbg_tid_data *tid_data;
u32 bytes = 0;
int rc, size;
u32 i;
cudbg_fill_le_tcam_info(padap, &tcam_region);
size = sizeof(struct cudbg_tid_data) * tcam_region.max_tid;
size += sizeof(struct cudbg_tcam);
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
memcpy(temp_buff.data, &tcam_region, sizeof(struct cudbg_tcam));
bytes = sizeof(struct cudbg_tcam);
tid_data = (struct cudbg_tid_data *)(temp_buff.data + bytes);
/* read all tid */
for (i = 0; i < tcam_region.max_tid; ) {
rc = cudbg_read_tid(pdbg_init, i, tid_data);
if (rc) {
cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA;
/* Update tcam header and exit */
tcam_region.max_tid = i;
memcpy(temp_buff.data, &tcam_region,
sizeof(struct cudbg_tcam));
goto out;
}
if (cudbg_is_ipv6_entry(tid_data, tcam_region)) {
/* T6 CLIP TCAM: ipv6 takes 4 entries */
if (is_t6(padap->params.chip) &&
i >= tcam_region.clip_start &&
i < tcam_region.clip_start + CUDBG_T6_CLIP)
i += 4;
else /* Main TCAM: ipv6 takes two tids */
i += 2;
} else {
i++;
}
tid_data++;
bytes += sizeof(struct cudbg_tid_data);
}
out:
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_cctrl(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
u32 size;
int rc;
size = sizeof(u16) * NMTUS * NCCTRL_WIN;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
t4_read_cong_tbl(padap, (void *)temp_buff.data);
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_ma_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct ireg_buf *ma_indr;
int i, rc, n;
u32 size, j;
if (CHELSIO_CHIP_VERSION(padap->params.chip) < CHELSIO_T6)
return CUDBG_STATUS_ENTITY_NOT_FOUND;
n = sizeof(t6_ma_ireg_array) / (IREG_NUM_ELEM * sizeof(u32));
size = sizeof(struct ireg_buf) * n * 2;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
ma_indr = (struct ireg_buf *)temp_buff.data;
for (i = 0; i < n; i++) {
struct ireg_field *ma_fli = &ma_indr->tp_pio;
u32 *buff = ma_indr->outbuf;
ma_fli->ireg_addr = t6_ma_ireg_array[i][0];
ma_fli->ireg_data = t6_ma_ireg_array[i][1];
ma_fli->ireg_local_offset = t6_ma_ireg_array[i][2];
ma_fli->ireg_offset_range = t6_ma_ireg_array[i][3];
t4_read_indirect(padap, ma_fli->ireg_addr, ma_fli->ireg_data,
buff, ma_fli->ireg_offset_range,
ma_fli->ireg_local_offset);
ma_indr++;
}
n = sizeof(t6_ma_ireg_array2) / (IREG_NUM_ELEM * sizeof(u32));
for (i = 0; i < n; i++) {
struct ireg_field *ma_fli = &ma_indr->tp_pio;
u32 *buff = ma_indr->outbuf;
ma_fli->ireg_addr = t6_ma_ireg_array2[i][0];
ma_fli->ireg_data = t6_ma_ireg_array2[i][1];
ma_fli->ireg_local_offset = t6_ma_ireg_array2[i][2];
for (j = 0; j < t6_ma_ireg_array2[i][3]; j++) {
t4_read_indirect(padap, ma_fli->ireg_addr,
ma_fli->ireg_data, buff, 1,
ma_fli->ireg_local_offset);
buff++;
ma_fli->ireg_local_offset += 0x20;
}
ma_indr++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_ulptx_la(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_ulptx_la *ulptx_la_buff;
struct cudbg_ver_hdr *ver_hdr;
u32 i, j;
int rc;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
sizeof(struct cudbg_ver_hdr) +
sizeof(struct cudbg_ulptx_la),
&temp_buff);
if (rc)
return rc;
ver_hdr = (struct cudbg_ver_hdr *)temp_buff.data;
ver_hdr->signature = CUDBG_ENTITY_SIGNATURE;
ver_hdr->revision = CUDBG_ULPTX_LA_REV;
ver_hdr->size = sizeof(struct cudbg_ulptx_la);
ulptx_la_buff = (struct cudbg_ulptx_la *)(temp_buff.data +
sizeof(*ver_hdr));
for (i = 0; i < CUDBG_NUM_ULPTX; i++) {
ulptx_la_buff->rdptr[i] = t4_read_reg(padap,
ULP_TX_LA_RDPTR_0_A +
0x10 * i);
ulptx_la_buff->wrptr[i] = t4_read_reg(padap,
ULP_TX_LA_WRPTR_0_A +
0x10 * i);
ulptx_la_buff->rddata[i] = t4_read_reg(padap,
ULP_TX_LA_RDDATA_0_A +
0x10 * i);
for (j = 0; j < CUDBG_NUM_ULPTX_READ; j++)
ulptx_la_buff->rd_data[i][j] =
t4_read_reg(padap,
ULP_TX_LA_RDDATA_0_A + 0x10 * i);
}
for (i = 0; i < CUDBG_NUM_ULPTX_ASIC_READ; i++) {
t4_write_reg(padap, ULP_TX_ASIC_DEBUG_CTRL_A, 0x1);
ulptx_la_buff->rdptr_asic[i] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_CTRL_A);
ulptx_la_buff->rddata_asic[i][0] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_0_A);
ulptx_la_buff->rddata_asic[i][1] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_1_A);
ulptx_la_buff->rddata_asic[i][2] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_2_A);
ulptx_la_buff->rddata_asic[i][3] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_3_A);
ulptx_la_buff->rddata_asic[i][4] =
t4_read_reg(padap, ULP_TX_ASIC_DEBUG_4_A);
ulptx_la_buff->rddata_asic[i][5] =
t4_read_reg(padap, PM_RX_BASE_ADDR);
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_up_cim_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
u32 local_offset, local_range;
struct ireg_buf *up_cim;
u32 size, j, iter;
u32 instance = 0;
int i, rc, n;
if (is_t5(padap->params.chip))
n = sizeof(t5_up_cim_reg_array) /
((IREG_NUM_ELEM + 1) * sizeof(u32));
else if (is_t6(padap->params.chip))
n = sizeof(t6_up_cim_reg_array) /
((IREG_NUM_ELEM + 1) * sizeof(u32));
else
return CUDBG_STATUS_NOT_IMPLEMENTED;
size = sizeof(struct ireg_buf) * n;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
up_cim = (struct ireg_buf *)temp_buff.data;
for (i = 0; i < n; i++) {
struct ireg_field *up_cim_reg = &up_cim->tp_pio;
u32 *buff = up_cim->outbuf;
if (is_t5(padap->params.chip)) {
up_cim_reg->ireg_addr = t5_up_cim_reg_array[i][0];
up_cim_reg->ireg_data = t5_up_cim_reg_array[i][1];
up_cim_reg->ireg_local_offset =
t5_up_cim_reg_array[i][2];
up_cim_reg->ireg_offset_range =
t5_up_cim_reg_array[i][3];
instance = t5_up_cim_reg_array[i][4];
} else if (is_t6(padap->params.chip)) {
up_cim_reg->ireg_addr = t6_up_cim_reg_array[i][0];
up_cim_reg->ireg_data = t6_up_cim_reg_array[i][1];
up_cim_reg->ireg_local_offset =
t6_up_cim_reg_array[i][2];
up_cim_reg->ireg_offset_range =
t6_up_cim_reg_array[i][3];
instance = t6_up_cim_reg_array[i][4];
}
switch (instance) {
case NUM_CIM_CTL_TSCH_CHANNEL_INSTANCES:
iter = up_cim_reg->ireg_offset_range;
local_offset = 0x120;
local_range = 1;
break;
case NUM_CIM_CTL_TSCH_CHANNEL_TSCH_CLASS_INSTANCES:
iter = up_cim_reg->ireg_offset_range;
local_offset = 0x10;
local_range = 1;
break;
default:
iter = 1;
local_offset = 0;
local_range = up_cim_reg->ireg_offset_range;
break;
}
for (j = 0; j < iter; j++, buff++) {
rc = t4_cim_read(padap,
up_cim_reg->ireg_local_offset +
(j * local_offset), local_range, buff);
if (rc) {
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
up_cim++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_pbt_tables(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_pbt_tables *pbt;
int i, rc;
u32 addr;
rc = cudbg_get_buff(pdbg_init, dbg_buff,
sizeof(struct cudbg_pbt_tables),
&temp_buff);
if (rc)
return rc;
pbt = (struct cudbg_pbt_tables *)temp_buff.data;
/* PBT dynamic entries */
addr = CUDBG_CHAC_PBT_ADDR;
for (i = 0; i < CUDBG_PBT_DYNAMIC_ENTRIES; i++) {
rc = t4_cim_read(padap, addr + (i * 4), 1,
&pbt->pbt_dynamic[i]);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
/* PBT static entries */
/* static entries start when bit 6 is set */
addr = CUDBG_CHAC_PBT_ADDR + (1 << 6);
for (i = 0; i < CUDBG_PBT_STATIC_ENTRIES; i++) {
rc = t4_cim_read(padap, addr + (i * 4), 1,
&pbt->pbt_static[i]);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
/* LRF entries */
addr = CUDBG_CHAC_PBT_LRF;
for (i = 0; i < CUDBG_LRF_ENTRIES; i++) {
rc = t4_cim_read(padap, addr + (i * 4), 1,
&pbt->lrf_table[i]);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
/* PBT data entries */
addr = CUDBG_CHAC_PBT_DATA;
for (i = 0; i < CUDBG_PBT_DATA_ENTRIES; i++) {
rc = t4_cim_read(padap, addr + (i * 4), 1,
&pbt->pbt_data[i]);
if (rc) {
cudbg_err->sys_err = rc;
cudbg_put_buff(pdbg_init, &temp_buff);
return rc;
}
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_mbox_log(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_mbox_log *mboxlog = NULL;
struct cudbg_buffer temp_buff = { 0 };
struct mbox_cmd_log *log = NULL;
struct mbox_cmd *entry;
unsigned int entry_idx;
u16 mbox_cmds;
int i, k, rc;
u64 flit;
u32 size;
log = padap->mbox_log;
mbox_cmds = padap->mbox_log->size;
size = sizeof(struct cudbg_mbox_log) * mbox_cmds;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
mboxlog = (struct cudbg_mbox_log *)temp_buff.data;
for (k = 0; k < mbox_cmds; k++) {
entry_idx = log->cursor + k;
if (entry_idx >= log->size)
entry_idx -= log->size;
entry = mbox_cmd_log_entry(log, entry_idx);
/* skip over unused entries */
if (entry->timestamp == 0)
continue;
memcpy(&mboxlog->entry, entry, sizeof(struct mbox_cmd));
for (i = 0; i < MBOX_LEN / 8; i++) {
flit = entry->cmd[i];
mboxlog->hi[i] = (u32)(flit >> 32);
mboxlog->lo[i] = (u32)flit;
}
mboxlog++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
int cudbg_collect_hma_indirect(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct ireg_buf *hma_indr;
int i, rc, n;
u32 size;
if (CHELSIO_CHIP_VERSION(padap->params.chip) < CHELSIO_T6)
return CUDBG_STATUS_ENTITY_NOT_FOUND;
n = sizeof(t6_hma_ireg_array) / (IREG_NUM_ELEM * sizeof(u32));
size = sizeof(struct ireg_buf) * n;
rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff);
if (rc)
return rc;
hma_indr = (struct ireg_buf *)temp_buff.data;
for (i = 0; i < n; i++) {
struct ireg_field *hma_fli = &hma_indr->tp_pio;
u32 *buff = hma_indr->outbuf;
hma_fli->ireg_addr = t6_hma_ireg_array[i][0];
hma_fli->ireg_data = t6_hma_ireg_array[i][1];
hma_fli->ireg_local_offset = t6_hma_ireg_array[i][2];
hma_fli->ireg_offset_range = t6_hma_ireg_array[i][3];
t4_read_indirect(padap, hma_fli->ireg_addr, hma_fli->ireg_data,
buff, hma_fli->ireg_offset_range,
hma_fli->ireg_local_offset);
hma_indr++;
}
return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff);
}
void cudbg_fill_qdesc_num_and_size(const struct adapter *padap,
u32 *num, u32 *size)
{
u32 tot_entries = 0, tot_size = 0;
/* NIC TXQ, RXQ, FLQ, and CTRLQ */
tot_entries += MAX_ETH_QSETS * 3;
tot_entries += MAX_CTRL_QUEUES;
tot_size += MAX_ETH_QSETS * MAX_TXQ_ENTRIES * MAX_TXQ_DESC_SIZE;
tot_size += MAX_ETH_QSETS * MAX_RSPQ_ENTRIES * MAX_RXQ_DESC_SIZE;
tot_size += MAX_ETH_QSETS * MAX_RX_BUFFERS * MAX_FL_DESC_SIZE;
tot_size += MAX_CTRL_QUEUES * MAX_CTRL_TXQ_ENTRIES *
MAX_CTRL_TXQ_DESC_SIZE;
/* FW_EVTQ and INTRQ */
tot_entries += INGQ_EXTRAS;
tot_size += INGQ_EXTRAS * MAX_RSPQ_ENTRIES * MAX_RXQ_DESC_SIZE;
/* PTP_TXQ */
tot_entries += 1;
tot_size += MAX_TXQ_ENTRIES * MAX_TXQ_DESC_SIZE;
/* ULD TXQ, RXQ, and FLQ */
tot_entries += CXGB4_TX_MAX * MAX_OFLD_QSETS;
tot_entries += CXGB4_ULD_MAX * MAX_ULD_QSETS * 2;
tot_size += CXGB4_TX_MAX * MAX_OFLD_QSETS * MAX_TXQ_ENTRIES *
MAX_TXQ_DESC_SIZE;
tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * MAX_RSPQ_ENTRIES *
MAX_RXQ_DESC_SIZE;
tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * MAX_RX_BUFFERS *
MAX_FL_DESC_SIZE;
/* ULD CIQ */
tot_entries += CXGB4_ULD_MAX * MAX_ULD_QSETS;
tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * SGE_MAX_IQ_SIZE *
MAX_RXQ_DESC_SIZE;
tot_size += sizeof(struct cudbg_ver_hdr) +
sizeof(struct cudbg_qdesc_info) +
sizeof(struct cudbg_qdesc_entry) * tot_entries;
if (num)
*num = tot_entries;
if (size)
*size = tot_size;
}
int cudbg_collect_qdesc(struct cudbg_init *pdbg_init,
struct cudbg_buffer *dbg_buff,
struct cudbg_error *cudbg_err)
{
u32 num_queues = 0, tot_entries = 0, size = 0;
struct adapter *padap = pdbg_init->adap;
struct cudbg_buffer temp_buff = { 0 };
struct cudbg_qdesc_entry *qdesc_entry;
struct cudbg_qdesc_info *qdesc_info;
struct cudbg_ver_hdr *ver_hdr;
struct sge *s = &padap->sge;
u32 i, j, cur_off, tot_len;
u8 *data;
int rc;
cudbg_fill_qdesc_num_and_size(padap, &tot_entries, &size);
size = min_t(u32, size, CUDBG_DUMP_BUFF_SIZE);
tot_len = size;
data = kvzalloc(size, GFP_KERNEL);
if (!data)
return -ENOMEM;
ver_hdr = (struct cudbg_ver_hdr *)data;
ver_hdr->signature = CUDBG_ENTITY_SIGNATURE;
ver_hdr->revision = CUDBG_QDESC_REV;
ver_hdr->size = sizeof(struct cudbg_qdesc_info);
size -= sizeof(*ver_hdr);
qdesc_info = (struct cudbg_qdesc_info *)(data +
sizeof(*ver_hdr));
size -= sizeof(*qdesc_info);
qdesc_entry = (struct cudbg_qdesc_entry *)qdesc_info->data;
#define QDESC_GET(q, desc, type, label) do { \
if (size <= 0) { \
goto label; \
} \
if (desc) { \
cudbg_fill_qdesc_##q(q, type, qdesc_entry); \
size -= sizeof(*qdesc_entry) + qdesc_entry->data_size; \
num_queues++; \
qdesc_entry = cudbg_next_qdesc(qdesc_entry); \
} \
} while (0)
#define QDESC_GET_TXQ(q, type, label) do { \
struct sge_txq *txq = (struct sge_txq *)q; \
QDESC_GET(txq, txq->desc, type, label); \
} while (0)
#define QDESC_GET_RXQ(q, type, label) do { \
struct sge_rspq *rxq = (struct sge_rspq *)q; \
QDESC_GET(rxq, rxq->desc, type, label); \
} while (0)
#define QDESC_GET_FLQ(q, type, label) do { \
struct sge_fl *flq = (struct sge_fl *)q; \
QDESC_GET(flq, flq->desc, type, label); \
} while (0)
/* NIC TXQ */
for (i = 0; i < s->ethqsets; i++)
QDESC_GET_TXQ(&s->ethtxq[i].q, CUDBG_QTYPE_NIC_TXQ, out);
/* NIC RXQ */
for (i = 0; i < s->ethqsets; i++)
QDESC_GET_RXQ(&s->ethrxq[i].rspq, CUDBG_QTYPE_NIC_RXQ, out);
/* NIC FLQ */
for (i = 0; i < s->ethqsets; i++)
QDESC_GET_FLQ(&s->ethrxq[i].fl, CUDBG_QTYPE_NIC_FLQ, out);
/* NIC CTRLQ */
for (i = 0; i < padap->params.nports; i++)
QDESC_GET_TXQ(&s->ctrlq[i].q, CUDBG_QTYPE_CTRLQ, out);
/* FW_EVTQ */
QDESC_GET_RXQ(&s->fw_evtq, CUDBG_QTYPE_FWEVTQ, out);
/* INTRQ */
QDESC_GET_RXQ(&s->intrq, CUDBG_QTYPE_INTRQ, out);
/* PTP_TXQ */
QDESC_GET_TXQ(&s->ptptxq.q, CUDBG_QTYPE_PTP_TXQ, out);
/* ULD Queues */
mutex_lock(&uld_mutex);
if (s->uld_txq_info) {
struct sge_uld_txq_info *utxq;
/* ULD TXQ */
for (j = 0; j < CXGB4_TX_MAX; j++) {
if (!s->uld_txq_info[j])
continue;
utxq = s->uld_txq_info[j];
for (i = 0; i < utxq->ntxq; i++)
QDESC_GET_TXQ(&utxq->uldtxq[i].q,
cudbg_uld_txq_to_qtype(j),
out_unlock);
}
}
if (s->uld_rxq_info) {
struct sge_uld_rxq_info *urxq;
u32 base;
/* ULD RXQ */
for (j = 0; j < CXGB4_ULD_MAX; j++) {
if (!s->uld_rxq_info[j])
continue;
urxq = s->uld_rxq_info[j];
for (i = 0; i < urxq->nrxq; i++)
QDESC_GET_RXQ(&urxq->uldrxq[i].rspq,
cudbg_uld_rxq_to_qtype(j),
out_unlock);
}
/* ULD FLQ */
for (j = 0; j < CXGB4_ULD_MAX; j++) {
if (!s->uld_rxq_info[j])
continue;
urxq = s->uld_rxq_info[j];
for (i = 0; i < urxq->nrxq; i++)
QDESC_GET_FLQ(&urxq->uldrxq[i].fl,
cudbg_uld_flq_to_qtype(j),
out_unlock);
}
/* ULD CIQ */
for (j = 0; j < CXGB4_ULD_MAX; j++) {
if (!s->uld_rxq_info[j])
continue;
urxq = s->uld_rxq_info[j];
base = urxq->nrxq;
for (i = 0; i < urxq->nciq; i++)
QDESC_GET_RXQ(&urxq->uldrxq[base + i].rspq,
cudbg_uld_ciq_to_qtype(j),
out_unlock);
}
}
out_unlock:
mutex_unlock(&uld_mutex);
out:
qdesc_info->qdesc_entry_size = sizeof(*qdesc_entry);
qdesc_info->num_queues = num_queues;
cur_off = 0;
while (tot_len) {
u32 chunk_size = min_t(u32, tot_len, CUDBG_CHUNK_SIZE);
rc = cudbg_get_buff(pdbg_init, dbg_buff, chunk_size,
&temp_buff);
if (rc) {
cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA;
goto out_free;
}
memcpy(temp_buff.data, data + cur_off, chunk_size);
tot_len -= chunk_size;
cur_off += chunk_size;
rc = cudbg_write_and_release_buff(pdbg_init, &temp_buff,
dbg_buff);
if (rc) {
cudbg_put_buff(pdbg_init, &temp_buff);
cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA;
goto out_free;
}
}
out_free:
if (data)
kvfree(data);
#undef QDESC_GET_FLQ
#undef QDESC_GET_RXQ
#undef QDESC_GET_TXQ
#undef QDESC_GET
return rc;
}