linux/linux-5.4.31/drivers/memory/pl353-smc.c

464 lines
12 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* ARM PL353 SMC driver
*
* Copyright (C) 2012 - 2018 Xilinx, Inc
* Author: Punnaiah Choudary Kalluri <punnaiah@xilinx.com>
* Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pl353-smc.h>
#include <linux/amba/bus.h>
/* Register definitions */
#define PL353_SMC_MEMC_STATUS_OFFS 0 /* Controller status reg, RO */
#define PL353_SMC_CFG_CLR_OFFS 0xC /* Clear config reg, WO */
#define PL353_SMC_DIRECT_CMD_OFFS 0x10 /* Direct command reg, WO */
#define PL353_SMC_SET_CYCLES_OFFS 0x14 /* Set cycles register, WO */
#define PL353_SMC_SET_OPMODE_OFFS 0x18 /* Set opmode register, WO */
#define PL353_SMC_ECC_STATUS_OFFS 0x400 /* ECC status register */
#define PL353_SMC_ECC_MEMCFG_OFFS 0x404 /* ECC mem config reg */
#define PL353_SMC_ECC_MEMCMD1_OFFS 0x408 /* ECC mem cmd1 reg */
#define PL353_SMC_ECC_MEMCMD2_OFFS 0x40C /* ECC mem cmd2 reg */
#define PL353_SMC_ECC_VALUE0_OFFS 0x418 /* ECC value 0 reg */
/* Controller status register specific constants */
#define PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT 6
/* Clear configuration register specific constants */
#define PL353_SMC_CFG_CLR_INT_CLR_1 0x10
#define PL353_SMC_CFG_CLR_ECC_INT_DIS_1 0x40
#define PL353_SMC_CFG_CLR_INT_DIS_1 0x2
#define PL353_SMC_CFG_CLR_DEFAULT_MASK (PL353_SMC_CFG_CLR_INT_CLR_1 | \
PL353_SMC_CFG_CLR_ECC_INT_DIS_1 | \
PL353_SMC_CFG_CLR_INT_DIS_1)
/* Set cycles register specific constants */
#define PL353_SMC_SET_CYCLES_T0_MASK 0xF
#define PL353_SMC_SET_CYCLES_T0_SHIFT 0
#define PL353_SMC_SET_CYCLES_T1_MASK 0xF
#define PL353_SMC_SET_CYCLES_T1_SHIFT 4
#define PL353_SMC_SET_CYCLES_T2_MASK 0x7
#define PL353_SMC_SET_CYCLES_T2_SHIFT 8
#define PL353_SMC_SET_CYCLES_T3_MASK 0x7
#define PL353_SMC_SET_CYCLES_T3_SHIFT 11
#define PL353_SMC_SET_CYCLES_T4_MASK 0x7
#define PL353_SMC_SET_CYCLES_T4_SHIFT 14
#define PL353_SMC_SET_CYCLES_T5_MASK 0x7
#define PL353_SMC_SET_CYCLES_T5_SHIFT 17
#define PL353_SMC_SET_CYCLES_T6_MASK 0xF
#define PL353_SMC_SET_CYCLES_T6_SHIFT 20
/* ECC status register specific constants */
#define PL353_SMC_ECC_STATUS_BUSY BIT(6)
#define PL353_SMC_ECC_REG_SIZE_OFFS 4
/* ECC memory config register specific constants */
#define PL353_SMC_ECC_MEMCFG_MODE_MASK 0xC
#define PL353_SMC_ECC_MEMCFG_MODE_SHIFT 2
#define PL353_SMC_ECC_MEMCFG_PGSIZE_MASK 0xC
#define PL353_SMC_DC_UPT_NAND_REGS ((4 << 23) | /* CS: NAND chip */ \
(2 << 21)) /* UpdateRegs operation */
#define PL353_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
(0 << 8) | /* Read command */ \
(0x30 << 16) | /* Read End command */ \
(1 << 24)) /* Read End command calid */
#define PL353_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
(5 << 8) | /* Read col change cmd */ \
(0xE0 << 16) | /* Read col change end cmd */ \
(1 << 24)) /* Read col change end cmd valid */
#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
/**
* struct pl353_smc_data - Private smc driver structure
* @memclk: Pointer to the peripheral clock
* @aclk: Pointer to the APER clock
*/
struct pl353_smc_data {
struct clk *memclk;
struct clk *aclk;
};
/* SMC virtual register base */
static void __iomem *pl353_smc_base;
/**
* pl353_smc_set_buswidth - Set memory buswidth
* @bw: Memory buswidth (8 | 16)
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_buswidth(unsigned int bw)
{
if (bw != PL353_SMC_MEM_WIDTH_8 && bw != PL353_SMC_MEM_WIDTH_16)
return -EINVAL;
writel(bw, pl353_smc_base + PL353_SMC_SET_OPMODE_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_buswidth);
/**
* pl353_smc_set_cycles - Set memory timing parameters
* @timings: NAND controller timing parameters
*
* Sets NAND chip specific timing parameters.
*/
void pl353_smc_set_cycles(u32 timings[])
{
/*
* Set write pulse timing. This one is easy to extract:
*
* NWE_PULSE = tWP
*/
timings[0] &= PL353_SMC_SET_CYCLES_T0_MASK;
timings[1] = (timings[1] & PL353_SMC_SET_CYCLES_T1_MASK) <<
PL353_SMC_SET_CYCLES_T1_SHIFT;
timings[2] = (timings[2] & PL353_SMC_SET_CYCLES_T2_MASK) <<
PL353_SMC_SET_CYCLES_T2_SHIFT;
timings[3] = (timings[3] & PL353_SMC_SET_CYCLES_T3_MASK) <<
PL353_SMC_SET_CYCLES_T3_SHIFT;
timings[4] = (timings[4] & PL353_SMC_SET_CYCLES_T4_MASK) <<
PL353_SMC_SET_CYCLES_T4_SHIFT;
timings[5] = (timings[5] & PL353_SMC_SET_CYCLES_T5_MASK) <<
PL353_SMC_SET_CYCLES_T5_SHIFT;
timings[6] = (timings[6] & PL353_SMC_SET_CYCLES_T6_MASK) <<
PL353_SMC_SET_CYCLES_T6_SHIFT;
timings[0] |= timings[1] | timings[2] | timings[3] |
timings[4] | timings[5] | timings[6];
writel(timings[0], pl353_smc_base + PL353_SMC_SET_CYCLES_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_set_cycles);
/**
* pl353_smc_ecc_is_busy - Read ecc busy flag
* Return: the ecc_status bit from the ecc_status register. 1 = busy, 0 = idle
*/
bool pl353_smc_ecc_is_busy(void)
{
return ((readl(pl353_smc_base + PL353_SMC_ECC_STATUS_OFFS) &
PL353_SMC_ECC_STATUS_BUSY) == PL353_SMC_ECC_STATUS_BUSY);
}
EXPORT_SYMBOL_GPL(pl353_smc_ecc_is_busy);
/**
* pl353_smc_get_ecc_val - Read ecc_valueN registers
* @ecc_reg: Index of the ecc_value reg (0..3)
* Return: the content of the requested ecc_value register.
*
* There are four valid ecc_value registers. The argument is truncated to stay
* within this valid boundary.
*/
u32 pl353_smc_get_ecc_val(int ecc_reg)
{
u32 addr, reg;
addr = PL353_SMC_ECC_VALUE0_OFFS +
(ecc_reg * PL353_SMC_ECC_REG_SIZE_OFFS);
reg = readl(pl353_smc_base + addr);
return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_ecc_val);
/**
* pl353_smc_get_nand_int_status_raw - Get NAND interrupt status bit
* Return: the raw_int_status1 bit from the memc_status register
*/
int pl353_smc_get_nand_int_status_raw(void)
{
u32 reg;
reg = readl(pl353_smc_base + PL353_SMC_MEMC_STATUS_OFFS);
reg >>= PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT;
reg &= 1;
return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_nand_int_status_raw);
/**
* pl353_smc_clr_nand_int - Clear NAND interrupt
*/
void pl353_smc_clr_nand_int(void)
{
writel(PL353_SMC_CFG_CLR_INT_CLR_1,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_clr_nand_int);
/**
* pl353_smc_set_ecc_mode - Set SMC ECC mode
* @mode: ECC mode (BYPASS, APB, MEM)
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode)
{
u32 reg;
int ret = 0;
switch (mode) {
case PL353_SMC_ECCMODE_BYPASS:
case PL353_SMC_ECCMODE_APB:
case PL353_SMC_ECCMODE_MEM:
reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
reg &= ~PL353_SMC_ECC_MEMCFG_MODE_MASK;
reg |= mode << PL353_SMC_ECC_MEMCFG_MODE_SHIFT;
writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_mode);
/**
* pl353_smc_set_ecc_pg_size - Set SMC ECC page size
* @pg_sz: ECC page size
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_ecc_pg_size(unsigned int pg_sz)
{
u32 reg, sz;
switch (pg_sz) {
case 0:
sz = 0;
break;
case SZ_512:
sz = 1;
break;
case SZ_1K:
sz = 2;
break;
case SZ_2K:
sz = 3;
break;
default:
return -EINVAL;
}
reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
reg &= ~PL353_SMC_ECC_MEMCFG_PGSIZE_MASK;
reg |= sz;
writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_pg_size);
static int __maybe_unused pl353_smc_suspend(struct device *dev)
{
struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
clk_disable(pl353_smc->memclk);
clk_disable(pl353_smc->aclk);
return 0;
}
static int __maybe_unused pl353_smc_resume(struct device *dev)
{
int ret;
struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
ret = clk_enable(pl353_smc->aclk);
if (ret) {
dev_err(dev, "Cannot enable axi domain clock.\n");
return ret;
}
ret = clk_enable(pl353_smc->memclk);
if (ret) {
dev_err(dev, "Cannot enable memory clock.\n");
clk_disable(pl353_smc->aclk);
return ret;
}
return ret;
}
static struct amba_driver pl353_smc_driver;
static SIMPLE_DEV_PM_OPS(pl353_smc_dev_pm_ops, pl353_smc_suspend,
pl353_smc_resume);
/**
* pl353_smc_init_nand_interface - Initialize the NAND interface
* @adev: Pointer to the amba_device struct
* @nand_node: Pointer to the pl353_nand device_node struct
*/
static void pl353_smc_init_nand_interface(struct amba_device *adev,
struct device_node *nand_node)
{
unsigned long timeout;
pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
writel(PL353_SMC_CFG_CLR_INT_CLR_1,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
/* Wait till the ECC operation is complete */
do {
if (pl353_smc_ecc_is_busy())
cpu_relax();
else
break;
} while (!time_after_eq(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
return;
writel(PL353_NAND_ECC_CMD1,
pl353_smc_base + PL353_SMC_ECC_MEMCMD1_OFFS);
writel(PL353_NAND_ECC_CMD2,
pl353_smc_base + PL353_SMC_ECC_MEMCMD2_OFFS);
}
static const struct of_device_id pl353_smc_supported_children[] = {
{
.compatible = "cfi-flash"
},
{
.compatible = "arm,pl353-nand-r2p1",
.data = pl353_smc_init_nand_interface
},
{}
};
static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id)
{
struct pl353_smc_data *pl353_smc;
struct device_node *child;
struct resource *res;
int err;
struct device_node *of_node = adev->dev.of_node;
static void (*init)(struct amba_device *adev,
struct device_node *nand_node);
const struct of_device_id *match = NULL;
pl353_smc = devm_kzalloc(&adev->dev, sizeof(*pl353_smc), GFP_KERNEL);
if (!pl353_smc)
return -ENOMEM;
/* Get the NAND controller virtual address */
res = &adev->res;
pl353_smc_base = devm_ioremap_resource(&adev->dev, res);
if (IS_ERR(pl353_smc_base))
return PTR_ERR(pl353_smc_base);
pl353_smc->aclk = devm_clk_get(&adev->dev, "apb_pclk");
if (IS_ERR(pl353_smc->aclk)) {
dev_err(&adev->dev, "aclk clock not found.\n");
return PTR_ERR(pl353_smc->aclk);
}
pl353_smc->memclk = devm_clk_get(&adev->dev, "memclk");
if (IS_ERR(pl353_smc->memclk)) {
dev_err(&adev->dev, "memclk clock not found.\n");
return PTR_ERR(pl353_smc->memclk);
}
err = clk_prepare_enable(pl353_smc->aclk);
if (err) {
dev_err(&adev->dev, "Unable to enable AXI clock.\n");
return err;
}
err = clk_prepare_enable(pl353_smc->memclk);
if (err) {
dev_err(&adev->dev, "Unable to enable memory clock.\n");
goto out_clk_dis_aper;
}
amba_set_drvdata(adev, pl353_smc);
/* clear interrupts */
writel(PL353_SMC_CFG_CLR_DEFAULT_MASK,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
/* Find compatible children. Only a single child is supported */
for_each_available_child_of_node(of_node, child) {
match = of_match_node(pl353_smc_supported_children, child);
if (!match) {
dev_warn(&adev->dev, "unsupported child node\n");
continue;
}
break;
}
if (!match) {
dev_err(&adev->dev, "no matching children\n");
goto out_clk_disable;
}
init = match->data;
if (init)
init(adev, child);
of_platform_device_create(child, NULL, &adev->dev);
return 0;
out_clk_disable:
clk_disable_unprepare(pl353_smc->memclk);
out_clk_dis_aper:
clk_disable_unprepare(pl353_smc->aclk);
return err;
}
static int pl353_smc_remove(struct amba_device *adev)
{
struct pl353_smc_data *pl353_smc = amba_get_drvdata(adev);
clk_disable_unprepare(pl353_smc->memclk);
clk_disable_unprepare(pl353_smc->aclk);
return 0;
}
static const struct amba_id pl353_ids[] = {
{
.id = 0x00041353,
.mask = 0x000fffff,
},
{ 0, 0 },
};
MODULE_DEVICE_TABLE(amba, pl353_ids);
static struct amba_driver pl353_smc_driver = {
.drv = {
.owner = THIS_MODULE,
.name = "pl353-smc",
.pm = &pl353_smc_dev_pm_ops,
},
.id_table = pl353_ids,
.probe = pl353_smc_probe,
.remove = pl353_smc_remove,
};
module_amba_driver(pl353_smc_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("ARM PL353 SMC Driver");
MODULE_LICENSE("GPL");