linux/linux-5.4.31/drivers/greybus/es2.c

1466 lines
33 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Greybus "AP" USB driver for "ES2" controller chips
*
* Copyright 2014-2015 Google Inc.
* Copyright 2014-2015 Linaro Ltd.
*/
#include <linux/kthread.h>
#include <linux/sizes.h>
#include <linux/usb.h>
#include <linux/kfifo.h>
#include <linux/debugfs.h>
#include <linux/list.h>
#include <linux/greybus.h>
#include <asm/unaligned.h>
#include "arpc.h"
#include "greybus_trace.h"
/* Default timeout for USB vendor requests. */
#define ES2_USB_CTRL_TIMEOUT 500
/* Default timeout for ARPC CPort requests */
#define ES2_ARPC_CPORT_TIMEOUT 500
/* Fixed CPort numbers */
#define ES2_CPORT_CDSI0 16
#define ES2_CPORT_CDSI1 17
/* Memory sizes for the buffers sent to/from the ES2 controller */
#define ES2_GBUF_MSG_SIZE_MAX 2048
/* Memory sizes for the ARPC buffers */
#define ARPC_OUT_SIZE_MAX U16_MAX
#define ARPC_IN_SIZE_MAX 128
static const struct usb_device_id id_table[] = {
{ USB_DEVICE(0x18d1, 0x1eaf) },
{ },
};
MODULE_DEVICE_TABLE(usb, id_table);
#define APB1_LOG_SIZE SZ_16K
/*
* Number of CPort IN urbs in flight at any point in time.
* Adjust if we are having stalls in the USB buffer due to not enough urbs in
* flight.
*/
#define NUM_CPORT_IN_URB 4
/* Number of CPort OUT urbs in flight at any point in time.
* Adjust if we get messages saying we are out of urbs in the system log.
*/
#define NUM_CPORT_OUT_URB 8
/*
* Number of ARPC in urbs in flight at any point in time.
*/
#define NUM_ARPC_IN_URB 2
/*
* @endpoint: bulk in endpoint for CPort data
* @urb: array of urbs for the CPort in messages
* @buffer: array of buffers for the @cport_in_urb urbs
*/
struct es2_cport_in {
__u8 endpoint;
struct urb *urb[NUM_CPORT_IN_URB];
u8 *buffer[NUM_CPORT_IN_URB];
};
/**
* es2_ap_dev - ES2 USB Bridge to AP structure
* @usb_dev: pointer to the USB device we are.
* @usb_intf: pointer to the USB interface we are bound to.
* @hd: pointer to our gb_host_device structure
* @cport_in: endpoint, urbs and buffer for cport in messages
* @cport_out_endpoint: endpoint for for cport out messages
* @cport_out_urb: array of urbs for the CPort out messages
* @cport_out_urb_busy: array of flags to see if the @cport_out_urb is busy or
* not.
* @cport_out_urb_cancelled: array of flags indicating whether the
* corresponding @cport_out_urb is being cancelled
* @cport_out_urb_lock: locks the @cport_out_urb_busy "list"
*
* @apb_log_task: task pointer for logging thread
* @apb_log_dentry: file system entry for the log file interface
* @apb_log_enable_dentry: file system entry for enabling logging
* @apb_log_fifo: kernel FIFO to carry logged data
* @arpc_urb: array of urbs for the ARPC in messages
* @arpc_buffer: array of buffers for the @arpc_urb urbs
* @arpc_endpoint_in: bulk in endpoint for APBridgeA RPC
* @arpc_id_cycle: gives an unique id to ARPC
* @arpc_lock: locks ARPC list
* @arpcs: list of in progress ARPCs
*/
struct es2_ap_dev {
struct usb_device *usb_dev;
struct usb_interface *usb_intf;
struct gb_host_device *hd;
struct es2_cport_in cport_in;
__u8 cport_out_endpoint;
struct urb *cport_out_urb[NUM_CPORT_OUT_URB];
bool cport_out_urb_busy[NUM_CPORT_OUT_URB];
bool cport_out_urb_cancelled[NUM_CPORT_OUT_URB];
spinlock_t cport_out_urb_lock;
bool cdsi1_in_use;
struct task_struct *apb_log_task;
struct dentry *apb_log_dentry;
struct dentry *apb_log_enable_dentry;
DECLARE_KFIFO(apb_log_fifo, char, APB1_LOG_SIZE);
__u8 arpc_endpoint_in;
struct urb *arpc_urb[NUM_ARPC_IN_URB];
u8 *arpc_buffer[NUM_ARPC_IN_URB];
int arpc_id_cycle;
spinlock_t arpc_lock;
struct list_head arpcs;
};
struct arpc {
struct list_head list;
struct arpc_request_message *req;
struct arpc_response_message *resp;
struct completion response_received;
bool active;
};
static inline struct es2_ap_dev *hd_to_es2(struct gb_host_device *hd)
{
return (struct es2_ap_dev *)&hd->hd_priv;
}
static void cport_out_callback(struct urb *urb);
static void usb_log_enable(struct es2_ap_dev *es2);
static void usb_log_disable(struct es2_ap_dev *es2);
static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload,
size_t size, int *result, unsigned int timeout);
static int output_sync(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd)
{
struct usb_device *udev = es2->usb_dev;
u8 *data;
int retval;
data = kmemdup(req, size, GFP_KERNEL);
if (!data)
return -ENOMEM;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
cmd,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0, 0, data, size, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "%s: return error %d\n", __func__, retval);
else
retval = 0;
kfree(data);
return retval;
}
static void ap_urb_complete(struct urb *urb)
{
struct usb_ctrlrequest *dr = urb->context;
kfree(dr);
usb_free_urb(urb);
}
static int output_async(struct es2_ap_dev *es2, void *req, u16 size, u8 cmd)
{
struct usb_device *udev = es2->usb_dev;
struct urb *urb;
struct usb_ctrlrequest *dr;
u8 *buf;
int retval;
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb)
return -ENOMEM;
dr = kmalloc(sizeof(*dr) + size, GFP_ATOMIC);
if (!dr) {
usb_free_urb(urb);
return -ENOMEM;
}
buf = (u8 *)dr + sizeof(*dr);
memcpy(buf, req, size);
dr->bRequest = cmd;
dr->bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE;
dr->wValue = 0;
dr->wIndex = 0;
dr->wLength = cpu_to_le16(size);
usb_fill_control_urb(urb, udev, usb_sndctrlpipe(udev, 0),
(unsigned char *)dr, buf, size,
ap_urb_complete, dr);
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval) {
usb_free_urb(urb);
kfree(dr);
}
return retval;
}
static int output(struct gb_host_device *hd, void *req, u16 size, u8 cmd,
bool async)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
if (async)
return output_async(es2, req, size, cmd);
return output_sync(es2, req, size, cmd);
}
static int es2_cport_in_enable(struct es2_ap_dev *es2,
struct es2_cport_in *cport_in)
{
struct urb *urb;
int ret;
int i;
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
urb = cport_in->urb[i];
ret = usb_submit_urb(urb, GFP_KERNEL);
if (ret) {
dev_err(&es2->usb_dev->dev,
"failed to submit in-urb: %d\n", ret);
goto err_kill_urbs;
}
}
return 0;
err_kill_urbs:
for (--i; i >= 0; --i) {
urb = cport_in->urb[i];
usb_kill_urb(urb);
}
return ret;
}
static void es2_cport_in_disable(struct es2_ap_dev *es2,
struct es2_cport_in *cport_in)
{
struct urb *urb;
int i;
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
urb = cport_in->urb[i];
usb_kill_urb(urb);
}
}
static int es2_arpc_in_enable(struct es2_ap_dev *es2)
{
struct urb *urb;
int ret;
int i;
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
urb = es2->arpc_urb[i];
ret = usb_submit_urb(urb, GFP_KERNEL);
if (ret) {
dev_err(&es2->usb_dev->dev,
"failed to submit arpc in-urb: %d\n", ret);
goto err_kill_urbs;
}
}
return 0;
err_kill_urbs:
for (--i; i >= 0; --i) {
urb = es2->arpc_urb[i];
usb_kill_urb(urb);
}
return ret;
}
static void es2_arpc_in_disable(struct es2_ap_dev *es2)
{
struct urb *urb;
int i;
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
urb = es2->arpc_urb[i];
usb_kill_urb(urb);
}
}
static struct urb *next_free_urb(struct es2_ap_dev *es2, gfp_t gfp_mask)
{
struct urb *urb = NULL;
unsigned long flags;
int i;
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
/* Look in our pool of allocated urbs first, as that's the "fastest" */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (!es2->cport_out_urb_busy[i] &&
!es2->cport_out_urb_cancelled[i]) {
es2->cport_out_urb_busy[i] = true;
urb = es2->cport_out_urb[i];
break;
}
}
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
if (urb)
return urb;
/*
* Crap, pool is empty, complain to the syslog and go allocate one
* dynamically as we have to succeed.
*/
dev_dbg(&es2->usb_dev->dev,
"No free CPort OUT urbs, having to dynamically allocate one!\n");
return usb_alloc_urb(0, gfp_mask);
}
static void free_urb(struct es2_ap_dev *es2, struct urb *urb)
{
unsigned long flags;
int i;
/*
* See if this was an urb in our pool, if so mark it "free", otherwise
* we need to free it ourselves.
*/
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es2->cport_out_urb[i]) {
es2->cport_out_urb_busy[i] = false;
urb = NULL;
break;
}
}
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/* If urb is not NULL, then we need to free this urb */
usb_free_urb(urb);
}
/*
* We (ab)use the operation-message header pad bytes to transfer the
* cport id in order to minimise overhead.
*/
static void
gb_message_cport_pack(struct gb_operation_msg_hdr *header, u16 cport_id)
{
header->pad[0] = cport_id;
}
/* Clear the pad bytes used for the CPort id */
static void gb_message_cport_clear(struct gb_operation_msg_hdr *header)
{
header->pad[0] = 0;
}
/* Extract the CPort id packed into the header, and clear it */
static u16 gb_message_cport_unpack(struct gb_operation_msg_hdr *header)
{
u16 cport_id = header->pad[0];
gb_message_cport_clear(header);
return cport_id;
}
/*
* Returns zero if the message was successfully queued, or a negative errno
* otherwise.
*/
static int message_send(struct gb_host_device *hd, u16 cport_id,
struct gb_message *message, gfp_t gfp_mask)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
size_t buffer_size;
int retval;
struct urb *urb;
unsigned long flags;
/*
* The data actually transferred will include an indication
* of where the data should be sent. Do one last check of
* the target CPort id before filling it in.
*/
if (!cport_id_valid(hd, cport_id)) {
dev_err(&udev->dev, "invalid cport %u\n", cport_id);
return -EINVAL;
}
/* Find a free urb */
urb = next_free_urb(es2, gfp_mask);
if (!urb)
return -ENOMEM;
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = urb;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/* Pack the cport id into the message header */
gb_message_cport_pack(message->header, cport_id);
buffer_size = sizeof(*message->header) + message->payload_size;
usb_fill_bulk_urb(urb, udev,
usb_sndbulkpipe(udev,
es2->cport_out_endpoint),
message->buffer, buffer_size,
cport_out_callback, message);
urb->transfer_flags |= URB_ZERO_PACKET;
trace_gb_message_submit(message);
retval = usb_submit_urb(urb, gfp_mask);
if (retval) {
dev_err(&udev->dev, "failed to submit out-urb: %d\n", retval);
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
free_urb(es2, urb);
gb_message_cport_clear(message->header);
return retval;
}
return 0;
}
/*
* Can not be called in atomic context.
*/
static void message_cancel(struct gb_message *message)
{
struct gb_host_device *hd = message->operation->connection->hd;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct urb *urb;
int i;
might_sleep();
spin_lock_irq(&es2->cport_out_urb_lock);
urb = message->hcpriv;
/* Prevent dynamically allocated urb from being deallocated. */
usb_get_urb(urb);
/* Prevent pre-allocated urb from being reused. */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
if (urb == es2->cport_out_urb[i]) {
es2->cport_out_urb_cancelled[i] = true;
break;
}
}
spin_unlock_irq(&es2->cport_out_urb_lock);
usb_kill_urb(urb);
if (i < NUM_CPORT_OUT_URB) {
spin_lock_irq(&es2->cport_out_urb_lock);
es2->cport_out_urb_cancelled[i] = false;
spin_unlock_irq(&es2->cport_out_urb_lock);
}
usb_free_urb(urb);
}
static int es2_cport_allocate(struct gb_host_device *hd, int cport_id,
unsigned long flags)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct ida *id_map = &hd->cport_id_map;
int ida_start, ida_end;
switch (cport_id) {
case ES2_CPORT_CDSI0:
case ES2_CPORT_CDSI1:
dev_err(&hd->dev, "cport %d not available\n", cport_id);
return -EBUSY;
}
if (flags & GB_CONNECTION_FLAG_OFFLOADED &&
flags & GB_CONNECTION_FLAG_CDSI1) {
if (es2->cdsi1_in_use) {
dev_err(&hd->dev, "CDSI1 already in use\n");
return -EBUSY;
}
es2->cdsi1_in_use = true;
return ES2_CPORT_CDSI1;
}
if (cport_id < 0) {
ida_start = 0;
ida_end = hd->num_cports;
} else if (cport_id < hd->num_cports) {
ida_start = cport_id;
ida_end = cport_id + 1;
} else {
dev_err(&hd->dev, "cport %d not available\n", cport_id);
return -EINVAL;
}
return ida_simple_get(id_map, ida_start, ida_end, GFP_KERNEL);
}
static void es2_cport_release(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
switch (cport_id) {
case ES2_CPORT_CDSI1:
es2->cdsi1_in_use = false;
return;
}
ida_simple_remove(&hd->cport_id_map, cport_id);
}
static int cport_enable(struct gb_host_device *hd, u16 cport_id,
unsigned long flags)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
struct gb_apb_request_cport_flags *req;
u32 connection_flags;
int ret;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
connection_flags = 0;
if (flags & GB_CONNECTION_FLAG_CONTROL)
connection_flags |= GB_APB_CPORT_FLAG_CONTROL;
if (flags & GB_CONNECTION_FLAG_HIGH_PRIO)
connection_flags |= GB_APB_CPORT_FLAG_HIGH_PRIO;
req->flags = cpu_to_le32(connection_flags);
dev_dbg(&hd->dev, "%s - cport = %u, flags = %02x\n", __func__,
cport_id, connection_flags);
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_CPORT_FLAGS,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0,
req, sizeof(*req), ES2_USB_CTRL_TIMEOUT);
if (ret != sizeof(*req)) {
dev_err(&udev->dev, "failed to set cport flags for port %d\n",
cport_id);
if (ret >= 0)
ret = -EIO;
goto out;
}
ret = 0;
out:
kfree(req);
return ret;
}
static int es2_cport_connected(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_connected_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_CONNECTED, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to set connected state for cport %u: %d\n",
cport_id, ret);
return ret;
}
return 0;
}
static int es2_cport_flush(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_flush_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_FLUSH, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to flush cport %u: %d\n", cport_id, ret);
return ret;
}
return 0;
}
static int es2_cport_shutdown(struct gb_host_device *hd, u16 cport_id,
u8 phase, unsigned int timeout)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_shutdown_req req;
int result;
int ret;
if (timeout > U16_MAX)
return -EINVAL;
req.cport_id = cpu_to_le16(cport_id);
req.timeout = cpu_to_le16(timeout);
req.phase = phase;
ret = arpc_sync(es2, ARPC_TYPE_CPORT_SHUTDOWN, &req, sizeof(req),
&result, ES2_ARPC_CPORT_TIMEOUT + timeout);
if (ret) {
dev_err(dev, "failed to send shutdown over cport %u: %d (%d)\n",
cport_id, ret, result);
return ret;
}
return 0;
}
static int es2_cport_quiesce(struct gb_host_device *hd, u16 cport_id,
size_t peer_space, unsigned int timeout)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_quiesce_req req;
int result;
int ret;
if (peer_space > U16_MAX)
return -EINVAL;
if (timeout > U16_MAX)
return -EINVAL;
req.cport_id = cpu_to_le16(cport_id);
req.peer_space = cpu_to_le16(peer_space);
req.timeout = cpu_to_le16(timeout);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_QUIESCE, &req, sizeof(req),
&result, ES2_ARPC_CPORT_TIMEOUT + timeout);
if (ret) {
dev_err(dev, "failed to quiesce cport %u: %d (%d)\n",
cport_id, ret, result);
return ret;
}
return 0;
}
static int es2_cport_clear(struct gb_host_device *hd, u16 cport_id)
{
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct device *dev = &es2->usb_dev->dev;
struct arpc_cport_clear_req req;
int ret;
req.cport_id = cpu_to_le16(cport_id);
ret = arpc_sync(es2, ARPC_TYPE_CPORT_CLEAR, &req, sizeof(req),
NULL, ES2_ARPC_CPORT_TIMEOUT);
if (ret) {
dev_err(dev, "failed to clear cport %u: %d\n", cport_id, ret);
return ret;
}
return 0;
}
static int latency_tag_enable(struct gb_host_device *hd, u16 cport_id)
{
int retval;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_LATENCY_TAG_EN,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0, NULL,
0, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "Cannot enable latency tag for cport %d\n",
cport_id);
return retval;
}
static int latency_tag_disable(struct gb_host_device *hd, u16 cport_id)
{
int retval;
struct es2_ap_dev *es2 = hd_to_es2(hd);
struct usb_device *udev = es2->usb_dev;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_LATENCY_TAG_DIS,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, cport_id, 0, NULL,
0, ES2_USB_CTRL_TIMEOUT);
if (retval < 0)
dev_err(&udev->dev, "Cannot disable latency tag for cport %d\n",
cport_id);
return retval;
}
static struct gb_hd_driver es2_driver = {
.hd_priv_size = sizeof(struct es2_ap_dev),
.message_send = message_send,
.message_cancel = message_cancel,
.cport_allocate = es2_cport_allocate,
.cport_release = es2_cport_release,
.cport_enable = cport_enable,
.cport_connected = es2_cport_connected,
.cport_flush = es2_cport_flush,
.cport_shutdown = es2_cport_shutdown,
.cport_quiesce = es2_cport_quiesce,
.cport_clear = es2_cport_clear,
.latency_tag_enable = latency_tag_enable,
.latency_tag_disable = latency_tag_disable,
.output = output,
};
/* Common function to report consistent warnings based on URB status */
static int check_urb_status(struct urb *urb)
{
struct device *dev = &urb->dev->dev;
int status = urb->status;
switch (status) {
case 0:
return 0;
case -EOVERFLOW:
dev_err(dev, "%s: overflow actual length is %d\n",
__func__, urb->actual_length);
/* fall through */
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
case -EILSEQ:
case -EPROTO:
/* device is gone, stop sending */
return status;
}
dev_err(dev, "%s: unknown status %d\n", __func__, status);
return -EAGAIN;
}
static void es2_destroy(struct es2_ap_dev *es2)
{
struct usb_device *udev;
struct urb *urb;
int i;
debugfs_remove(es2->apb_log_enable_dentry);
usb_log_disable(es2);
/* Tear down everything! */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
urb = es2->cport_out_urb[i];
usb_kill_urb(urb);
usb_free_urb(urb);
es2->cport_out_urb[i] = NULL;
es2->cport_out_urb_busy[i] = false; /* just to be anal */
}
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
usb_free_urb(es2->arpc_urb[i]);
kfree(es2->arpc_buffer[i]);
es2->arpc_buffer[i] = NULL;
}
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
usb_free_urb(es2->cport_in.urb[i]);
kfree(es2->cport_in.buffer[i]);
es2->cport_in.buffer[i] = NULL;
}
/* release reserved CDSI0 and CDSI1 cports */
gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI1);
gb_hd_cport_release_reserved(es2->hd, ES2_CPORT_CDSI0);
udev = es2->usb_dev;
gb_hd_put(es2->hd);
usb_put_dev(udev);
}
static void cport_in_callback(struct urb *urb)
{
struct gb_host_device *hd = urb->context;
struct device *dev = &urb->dev->dev;
struct gb_operation_msg_hdr *header;
int status = check_urb_status(urb);
int retval;
u16 cport_id;
if (status) {
if ((status == -EAGAIN) || (status == -EPROTO))
goto exit;
/* The urb is being unlinked */
if (status == -ENOENT || status == -ESHUTDOWN)
return;
dev_err(dev, "urb cport in error %d (dropped)\n", status);
return;
}
if (urb->actual_length < sizeof(*header)) {
dev_err(dev, "short message received\n");
goto exit;
}
/* Extract the CPort id, which is packed in the message header */
header = urb->transfer_buffer;
cport_id = gb_message_cport_unpack(header);
if (cport_id_valid(hd, cport_id)) {
greybus_data_rcvd(hd, cport_id, urb->transfer_buffer,
urb->actual_length);
} else {
dev_err(dev, "invalid cport id %u received\n", cport_id);
}
exit:
/* put our urb back in the request pool */
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(dev, "failed to resubmit in-urb: %d\n", retval);
}
static void cport_out_callback(struct urb *urb)
{
struct gb_message *message = urb->context;
struct gb_host_device *hd = message->operation->connection->hd;
struct es2_ap_dev *es2 = hd_to_es2(hd);
int status = check_urb_status(urb);
unsigned long flags;
gb_message_cport_clear(message->header);
spin_lock_irqsave(&es2->cport_out_urb_lock, flags);
message->hcpriv = NULL;
spin_unlock_irqrestore(&es2->cport_out_urb_lock, flags);
/*
* Tell the submitter that the message send (attempt) is
* complete, and report the status.
*/
greybus_message_sent(hd, message, status);
free_urb(es2, urb);
}
static struct arpc *arpc_alloc(void *payload, u16 size, u8 type)
{
struct arpc *rpc;
if (size + sizeof(*rpc->req) > ARPC_OUT_SIZE_MAX)
return NULL;
rpc = kzalloc(sizeof(*rpc), GFP_KERNEL);
if (!rpc)
return NULL;
INIT_LIST_HEAD(&rpc->list);
rpc->req = kzalloc(sizeof(*rpc->req) + size, GFP_KERNEL);
if (!rpc->req)
goto err_free_rpc;
rpc->resp = kzalloc(sizeof(*rpc->resp), GFP_KERNEL);
if (!rpc->resp)
goto err_free_req;
rpc->req->type = type;
rpc->req->size = cpu_to_le16(sizeof(*rpc->req) + size);
memcpy(rpc->req->data, payload, size);
init_completion(&rpc->response_received);
return rpc;
err_free_req:
kfree(rpc->req);
err_free_rpc:
kfree(rpc);
return NULL;
}
static void arpc_free(struct arpc *rpc)
{
kfree(rpc->req);
kfree(rpc->resp);
kfree(rpc);
}
static struct arpc *arpc_find(struct es2_ap_dev *es2, __le16 id)
{
struct arpc *rpc;
list_for_each_entry(rpc, &es2->arpcs, list) {
if (rpc->req->id == id)
return rpc;
}
return NULL;
}
static void arpc_add(struct es2_ap_dev *es2, struct arpc *rpc)
{
rpc->active = true;
rpc->req->id = cpu_to_le16(es2->arpc_id_cycle++);
list_add_tail(&rpc->list, &es2->arpcs);
}
static void arpc_del(struct es2_ap_dev *es2, struct arpc *rpc)
{
if (rpc->active) {
rpc->active = false;
list_del(&rpc->list);
}
}
static int arpc_send(struct es2_ap_dev *es2, struct arpc *rpc, int timeout)
{
struct usb_device *udev = es2->usb_dev;
int retval;
retval = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
GB_APB_REQUEST_ARPC_RUN,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0, 0,
rpc->req, le16_to_cpu(rpc->req->size),
ES2_USB_CTRL_TIMEOUT);
if (retval != le16_to_cpu(rpc->req->size)) {
dev_err(&udev->dev,
"failed to send ARPC request %d: %d\n",
rpc->req->type, retval);
if (retval > 0)
retval = -EIO;
return retval;
}
return 0;
}
static int arpc_sync(struct es2_ap_dev *es2, u8 type, void *payload,
size_t size, int *result, unsigned int timeout)
{
struct arpc *rpc;
unsigned long flags;
int retval;
if (result)
*result = 0;
rpc = arpc_alloc(payload, size, type);
if (!rpc)
return -ENOMEM;
spin_lock_irqsave(&es2->arpc_lock, flags);
arpc_add(es2, rpc);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
retval = arpc_send(es2, rpc, timeout);
if (retval)
goto out_arpc_del;
retval = wait_for_completion_interruptible_timeout(
&rpc->response_received,
msecs_to_jiffies(timeout));
if (retval <= 0) {
if (!retval)
retval = -ETIMEDOUT;
goto out_arpc_del;
}
if (rpc->resp->result) {
retval = -EREMOTEIO;
if (result)
*result = rpc->resp->result;
} else {
retval = 0;
}
out_arpc_del:
spin_lock_irqsave(&es2->arpc_lock, flags);
arpc_del(es2, rpc);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
arpc_free(rpc);
if (retval < 0 && retval != -EREMOTEIO) {
dev_err(&es2->usb_dev->dev,
"failed to execute ARPC: %d\n", retval);
}
return retval;
}
static void arpc_in_callback(struct urb *urb)
{
struct es2_ap_dev *es2 = urb->context;
struct device *dev = &urb->dev->dev;
int status = check_urb_status(urb);
struct arpc *rpc;
struct arpc_response_message *resp;
unsigned long flags;
int retval;
if (status) {
if ((status == -EAGAIN) || (status == -EPROTO))
goto exit;
/* The urb is being unlinked */
if (status == -ENOENT || status == -ESHUTDOWN)
return;
dev_err(dev, "arpc in-urb error %d (dropped)\n", status);
return;
}
if (urb->actual_length < sizeof(*resp)) {
dev_err(dev, "short aprc response received\n");
goto exit;
}
resp = urb->transfer_buffer;
spin_lock_irqsave(&es2->arpc_lock, flags);
rpc = arpc_find(es2, resp->id);
if (!rpc) {
dev_err(dev, "invalid arpc response id received: %u\n",
le16_to_cpu(resp->id));
spin_unlock_irqrestore(&es2->arpc_lock, flags);
goto exit;
}
arpc_del(es2, rpc);
memcpy(rpc->resp, resp, sizeof(*resp));
complete(&rpc->response_received);
spin_unlock_irqrestore(&es2->arpc_lock, flags);
exit:
/* put our urb back in the request pool */
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval)
dev_err(dev, "failed to resubmit arpc in-urb: %d\n", retval);
}
#define APB1_LOG_MSG_SIZE 64
static void apb_log_get(struct es2_ap_dev *es2, char *buf)
{
int retval;
do {
retval = usb_control_msg(es2->usb_dev,
usb_rcvctrlpipe(es2->usb_dev, 0),
GB_APB_REQUEST_LOG,
USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE,
0x00, 0x00,
buf,
APB1_LOG_MSG_SIZE,
ES2_USB_CTRL_TIMEOUT);
if (retval > 0)
kfifo_in(&es2->apb_log_fifo, buf, retval);
} while (retval > 0);
}
static int apb_log_poll(void *data)
{
struct es2_ap_dev *es2 = data;
char *buf;
buf = kmalloc(APB1_LOG_MSG_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
while (!kthread_should_stop()) {
msleep(1000);
apb_log_get(es2, buf);
}
kfree(buf);
return 0;
}
static ssize_t apb_log_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct es2_ap_dev *es2 = file_inode(f)->i_private;
ssize_t ret;
size_t copied;
char *tmp_buf;
if (count > APB1_LOG_SIZE)
count = APB1_LOG_SIZE;
tmp_buf = kmalloc(count, GFP_KERNEL);
if (!tmp_buf)
return -ENOMEM;
copied = kfifo_out(&es2->apb_log_fifo, tmp_buf, count);
ret = simple_read_from_buffer(buf, count, ppos, tmp_buf, copied);
kfree(tmp_buf);
return ret;
}
static const struct file_operations apb_log_fops = {
.read = apb_log_read,
};
static void usb_log_enable(struct es2_ap_dev *es2)
{
if (!IS_ERR_OR_NULL(es2->apb_log_task))
return;
/* get log from APB1 */
es2->apb_log_task = kthread_run(apb_log_poll, es2, "apb_log");
if (IS_ERR(es2->apb_log_task))
return;
/* XXX We will need to rename this per APB */
es2->apb_log_dentry = debugfs_create_file("apb_log", 0444,
gb_debugfs_get(), es2,
&apb_log_fops);
}
static void usb_log_disable(struct es2_ap_dev *es2)
{
if (IS_ERR_OR_NULL(es2->apb_log_task))
return;
debugfs_remove(es2->apb_log_dentry);
es2->apb_log_dentry = NULL;
kthread_stop(es2->apb_log_task);
es2->apb_log_task = NULL;
}
static ssize_t apb_log_enable_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct es2_ap_dev *es2 = file_inode(f)->i_private;
int enable = !IS_ERR_OR_NULL(es2->apb_log_task);
char tmp_buf[3];
sprintf(tmp_buf, "%d\n", enable);
return simple_read_from_buffer(buf, count, ppos, tmp_buf, 3);
}
static ssize_t apb_log_enable_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
int enable;
ssize_t retval;
struct es2_ap_dev *es2 = file_inode(f)->i_private;
retval = kstrtoint_from_user(buf, count, 10, &enable);
if (retval)
return retval;
if (enable)
usb_log_enable(es2);
else
usb_log_disable(es2);
return count;
}
static const struct file_operations apb_log_enable_fops = {
.read = apb_log_enable_read,
.write = apb_log_enable_write,
};
static int apb_get_cport_count(struct usb_device *udev)
{
int retval;
__le16 *cport_count;
cport_count = kzalloc(sizeof(*cport_count), GFP_KERNEL);
if (!cport_count)
return -ENOMEM;
retval = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
GB_APB_REQUEST_CPORT_COUNT,
USB_DIR_IN | USB_TYPE_VENDOR |
USB_RECIP_INTERFACE, 0, 0, cport_count,
sizeof(*cport_count), ES2_USB_CTRL_TIMEOUT);
if (retval != sizeof(*cport_count)) {
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
retval);
if (retval >= 0)
retval = -EIO;
goto out;
}
retval = le16_to_cpu(*cport_count);
/* We need to fit a CPort ID in one byte of a message header */
if (retval > U8_MAX) {
retval = U8_MAX;
dev_warn(&udev->dev, "Limiting number of CPorts to U8_MAX\n");
}
out:
kfree(cport_count);
return retval;
}
/*
* The ES2 USB Bridge device has 15 endpoints
* 1 Control - usual USB stuff + AP -> APBridgeA messages
* 7 Bulk IN - CPort data in
* 7 Bulk OUT - CPort data out
*/
static int ap_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct es2_ap_dev *es2;
struct gb_host_device *hd;
struct usb_device *udev;
struct usb_host_interface *iface_desc;
struct usb_endpoint_descriptor *endpoint;
__u8 ep_addr;
int retval;
int i;
int num_cports;
bool bulk_out_found = false;
bool bulk_in_found = false;
bool arpc_in_found = false;
udev = usb_get_dev(interface_to_usbdev(interface));
num_cports = apb_get_cport_count(udev);
if (num_cports < 0) {
usb_put_dev(udev);
dev_err(&udev->dev, "Cannot retrieve CPort count: %d\n",
num_cports);
return num_cports;
}
hd = gb_hd_create(&es2_driver, &udev->dev, ES2_GBUF_MSG_SIZE_MAX,
num_cports);
if (IS_ERR(hd)) {
usb_put_dev(udev);
return PTR_ERR(hd);
}
es2 = hd_to_es2(hd);
es2->hd = hd;
es2->usb_intf = interface;
es2->usb_dev = udev;
spin_lock_init(&es2->cport_out_urb_lock);
INIT_KFIFO(es2->apb_log_fifo);
usb_set_intfdata(interface, es2);
/*
* Reserve the CDSI0 and CDSI1 CPorts so they won't be allocated
* dynamically.
*/
retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI0);
if (retval)
goto error;
retval = gb_hd_cport_reserve(hd, ES2_CPORT_CDSI1);
if (retval)
goto error;
/* find all bulk endpoints */
iface_desc = interface->cur_altsetting;
for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface_desc->endpoint[i].desc;
ep_addr = endpoint->bEndpointAddress;
if (usb_endpoint_is_bulk_in(endpoint)) {
if (!bulk_in_found) {
es2->cport_in.endpoint = ep_addr;
bulk_in_found = true;
} else if (!arpc_in_found) {
es2->arpc_endpoint_in = ep_addr;
arpc_in_found = true;
} else {
dev_warn(&udev->dev,
"Unused bulk IN endpoint found: 0x%02x\n",
ep_addr);
}
continue;
}
if (usb_endpoint_is_bulk_out(endpoint)) {
if (!bulk_out_found) {
es2->cport_out_endpoint = ep_addr;
bulk_out_found = true;
} else {
dev_warn(&udev->dev,
"Unused bulk OUT endpoint found: 0x%02x\n",
ep_addr);
}
continue;
}
dev_warn(&udev->dev,
"Unknown endpoint type found, address 0x%02x\n",
ep_addr);
}
if (!bulk_in_found || !arpc_in_found || !bulk_out_found) {
dev_err(&udev->dev, "Not enough endpoints found in device, aborting!\n");
retval = -ENODEV;
goto error;
}
/* Allocate buffers for our cport in messages */
for (i = 0; i < NUM_CPORT_IN_URB; ++i) {
struct urb *urb;
u8 *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->cport_in.urb[i] = urb;
buffer = kmalloc(ES2_GBUF_MSG_SIZE_MAX, GFP_KERNEL);
if (!buffer) {
retval = -ENOMEM;
goto error;
}
usb_fill_bulk_urb(urb, udev,
usb_rcvbulkpipe(udev, es2->cport_in.endpoint),
buffer, ES2_GBUF_MSG_SIZE_MAX,
cport_in_callback, hd);
es2->cport_in.buffer[i] = buffer;
}
/* Allocate buffers for ARPC in messages */
for (i = 0; i < NUM_ARPC_IN_URB; ++i) {
struct urb *urb;
u8 *buffer;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->arpc_urb[i] = urb;
buffer = kmalloc(ARPC_IN_SIZE_MAX, GFP_KERNEL);
if (!buffer) {
retval = -ENOMEM;
goto error;
}
usb_fill_bulk_urb(urb, udev,
usb_rcvbulkpipe(udev,
es2->arpc_endpoint_in),
buffer, ARPC_IN_SIZE_MAX,
arpc_in_callback, es2);
es2->arpc_buffer[i] = buffer;
}
/* Allocate urbs for our CPort OUT messages */
for (i = 0; i < NUM_CPORT_OUT_URB; ++i) {
struct urb *urb;
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
retval = -ENOMEM;
goto error;
}
es2->cport_out_urb[i] = urb;
es2->cport_out_urb_busy[i] = false; /* just to be anal */
}
/* XXX We will need to rename this per APB */
es2->apb_log_enable_dentry = debugfs_create_file("apb_log_enable",
0644,
gb_debugfs_get(), es2,
&apb_log_enable_fops);
INIT_LIST_HEAD(&es2->arpcs);
spin_lock_init(&es2->arpc_lock);
retval = es2_arpc_in_enable(es2);
if (retval)
goto error;
retval = gb_hd_add(hd);
if (retval)
goto err_disable_arpc_in;
retval = es2_cport_in_enable(es2, &es2->cport_in);
if (retval)
goto err_hd_del;
return 0;
err_hd_del:
gb_hd_del(hd);
err_disable_arpc_in:
es2_arpc_in_disable(es2);
error:
es2_destroy(es2);
return retval;
}
static void ap_disconnect(struct usb_interface *interface)
{
struct es2_ap_dev *es2 = usb_get_intfdata(interface);
gb_hd_del(es2->hd);
es2_cport_in_disable(es2, &es2->cport_in);
es2_arpc_in_disable(es2);
es2_destroy(es2);
}
static struct usb_driver es2_ap_driver = {
.name = "es2_ap_driver",
.probe = ap_probe,
.disconnect = ap_disconnect,
.id_table = id_table,
.soft_unbind = 1,
};
module_usb_driver(es2_ap_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Greg Kroah-Hartman <gregkh@linuxfoundation.org>");