linux/linux-5.4.31/drivers/gpu/drm/arm/malidp_crtc.c

558 lines
16 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
* Author: Liviu Dudau <Liviu.Dudau@arm.com>
*
* ARM Mali DP500/DP550/DP650 driver (crtc operations)
*/
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <video/videomode.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "malidp_drv.h"
#include "malidp_hw.h"
static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
/*
* check that the hardware can drive the required clock rate,
* but skip the check if the clock is meant to be disabled (req_rate = 0)
*/
long rate, req_rate = mode->crtc_clock * 1000;
if (req_rate) {
rate = clk_round_rate(hwdev->pxlclk, req_rate);
if (rate != req_rate) {
DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
req_rate);
return MODE_NOCLOCK;
}
}
return MODE_OK;
}
static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct videomode vm;
int err = pm_runtime_get_sync(crtc->dev->dev);
if (err < 0) {
DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
return;
}
drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
clk_prepare_enable(hwdev->pxlclk);
/* We rely on firmware to set mclk to a sensible level. */
clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
hwdev->hw->modeset(hwdev, &vm);
hwdev->hw->leave_config_mode(hwdev);
drm_crtc_vblank_on(crtc);
}
static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_crtc_state *old_state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
int err;
/* always disable planes on the CRTC that is being turned off */
drm_atomic_helper_disable_planes_on_crtc(old_state, false);
drm_crtc_vblank_off(crtc);
hwdev->hw->enter_config_mode(hwdev);
clk_disable_unprepare(hwdev->pxlclk);
err = pm_runtime_put(crtc->dev->dev);
if (err < 0) {
DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
}
}
static const struct gamma_curve_segment {
u16 start;
u16 end;
} segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
/* sector 0 */
{ 0, 0 }, { 1, 1 }, { 2, 2 }, { 3, 3 },
{ 4, 4 }, { 5, 5 }, { 6, 6 }, { 7, 7 },
{ 8, 8 }, { 9, 9 }, { 10, 10 }, { 11, 11 },
{ 12, 12 }, { 13, 13 }, { 14, 14 }, { 15, 15 },
/* sector 1 */
{ 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 },
/* sector 2 */
{ 32, 39 }, { 40, 47 }, { 48, 55 }, { 56, 63 },
/* sector 3 */
{ 64, 79 }, { 80, 95 }, { 96, 111 }, { 112, 127 },
/* sector 4 */
{ 128, 159 }, { 160, 191 }, { 192, 223 }, { 224, 255 },
/* sector 5 */
{ 256, 319 }, { 320, 383 }, { 384, 447 }, { 448, 511 },
/* sector 6 */
{ 512, 639 }, { 640, 767 }, { 768, 895 }, { 896, 1023 },
{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
};
#define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
{
struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
int i;
for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
u32 a, b, delta_in, out_start, out_end;
delta_in = segments[i].end - segments[i].start;
/* DP has 12-bit internal precision for its LUTs. */
out_start = drm_color_lut_extract(lut[segments[i].start].green,
12);
out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
b = out_start;
coeffs[i] = DE_COEFTAB_DATA(a, b);
}
}
/*
* Check if there is a new gamma LUT and if it is of an acceptable size. Also,
* reject any LUTs that use distinct red, green, and blue curves.
*/
static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
struct drm_color_lut *lut;
size_t lut_size;
int i;
if (!state->color_mgmt_changed || !state->gamma_lut)
return 0;
if (crtc->state->gamma_lut &&
(crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
return 0;
if (state->gamma_lut->length % sizeof(struct drm_color_lut))
return -EINVAL;
lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
if (lut_size != MALIDP_GAMMA_LUT_SIZE)
return -EINVAL;
lut = (struct drm_color_lut *)state->gamma_lut->data;
for (i = 0; i < lut_size; ++i)
if (!((lut[i].red == lut[i].green) &&
(lut[i].red == lut[i].blue)))
return -EINVAL;
if (!state->mode_changed) {
int ret;
state->mode_changed = true;
/*
* Kerneldoc for drm_atomic_helper_check_modeset mandates that
* it be invoked when the driver sets ->mode_changed. Since
* changing the gamma LUT doesn't depend on any external
* resources, it is safe to call it only once.
*/
ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
if (ret)
return ret;
}
malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
return 0;
}
/*
* Check if there is a new CTM and if it contains valid input. Valid here means
* that the number is inside the representable range for a Q3.12 number,
* excluding truncating the fractional part of the input data.
*
* The COLORADJ registers can be changed atomically.
*/
static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
struct drm_color_ctm *ctm;
int i;
if (!state->color_mgmt_changed)
return 0;
if (!state->ctm)
return 0;
if (crtc->state->ctm && (crtc->state->ctm->base.id ==
state->ctm->base.id))
return 0;
/*
* The size of the ctm is checked in
* drm_atomic_replace_property_blob_from_id.
*/
ctm = (struct drm_color_ctm *)state->ctm->data;
for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
/* Convert from S31.32 to Q3.12. */
s64 val = ctm->matrix[i];
u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
GENMASK_ULL(14, 0);
/*
* Convert to 2s complement and check the destination's top bit
* for overflow. NB: Can't check before converting or it'd
* incorrectly reject the case:
* sign == 1
* mag == 0x2000
*/
if (val & BIT_ULL(63))
mag = ~mag + 1;
if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
return -EINVAL;
mc->coloradj_coeffs[i] = mag;
}
return 0;
}
static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
struct malidp_se_config *s = &cs->scaler_config;
struct drm_plane *plane;
struct videomode vm;
const struct drm_plane_state *pstate;
u32 h_upscale_factor = 0; /* U16.16 */
u32 v_upscale_factor = 0; /* U16.16 */
u8 scaling = cs->scaled_planes_mask;
int ret;
if (!scaling) {
s->scale_enable = false;
goto mclk_calc;
}
/* The scaling engine can only handle one plane at a time. */
if (scaling & (scaling - 1))
return -EINVAL;
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct malidp_plane *mp = to_malidp_plane(plane);
u32 phase;
if (!(mp->layer->id & scaling))
continue;
/*
* Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
* to get the U16.16 result.
*/
h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
pstate->src_w);
v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
pstate->src_h);
s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
(v_upscale_factor >> 16) >= 2);
if (pstate->rotation & MALIDP_ROTATED_MASK) {
s->input_w = pstate->src_h >> 16;
s->input_h = pstate->src_w >> 16;
} else {
s->input_w = pstate->src_w >> 16;
s->input_h = pstate->src_h >> 16;
}
s->output_w = pstate->crtc_w;
s->output_h = pstate->crtc_h;
#define SE_N_PHASE 4
#define SE_SHIFT_N_PHASE 12
/* Calculate initial_phase and delta_phase for horizontal. */
phase = s->input_w;
s->h_init_phase =
((phase << SE_N_PHASE) / s->output_w + 1) / 2;
phase = s->input_w;
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
s->h_delta_phase = phase / s->output_w;
/* Same for vertical. */
phase = s->input_h;
s->v_init_phase =
((phase << SE_N_PHASE) / s->output_h + 1) / 2;
phase = s->input_h;
phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
s->v_delta_phase = phase / s->output_h;
#undef SE_N_PHASE
#undef SE_SHIFT_N_PHASE
s->plane_src_id = mp->layer->id;
}
s->scale_enable = true;
s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
mclk_calc:
drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
if (ret < 0)
return -EINVAL;
return 0;
}
static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
struct drm_plane *plane;
const struct drm_plane_state *pstate;
u32 rot_mem_free, rot_mem_usable;
int rotated_planes = 0;
int ret;
/*
* check if there is enough rotation memory available for planes
* that need 90° and 270° rotion or planes that are compressed.
* Each plane has set its required memory size in the ->plane_check()
* callback, here we only make sure that the sums are less that the
* total usable memory.
*
* The rotation memory allocation algorithm (for each plane):
* a. If no more rotated or compressed planes exist, all remaining
* rotate memory in the bank is available for use by the plane.
* b. If other rotated or compressed planes exist, and plane's
* layer ID is DE_VIDEO1, it can use all the memory from first bank
* if secondary rotation memory bank is available, otherwise it can
* use up to half the bank's memory.
* c. If other rotated or compressed planes exist, and plane's layer ID
* is not DE_VIDEO1, it can use half of the available memory.
*
* Note: this algorithm assumes that the order in which the planes are
* checked always has DE_VIDEO1 plane first in the list if it is
* rotated. Because that is how we create the planes in the first
* place, under current DRM version things work, but if ever the order
* in which drm_atomic_crtc_state_for_each_plane() iterates over planes
* changes, we need to pre-sort the planes before validation.
*/
/* first count the number of rotated planes */
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct drm_framebuffer *fb = pstate->fb;
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier)
rotated_planes++;
}
rot_mem_free = hwdev->rotation_memory[0];
/*
* if we have more than 1 plane using rotation memory, use the second
* block of rotation memory as well
*/
if (rotated_planes > 1)
rot_mem_free += hwdev->rotation_memory[1];
/* now validate the rotation memory requirements */
drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
struct malidp_plane *mp = to_malidp_plane(plane);
struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
struct drm_framebuffer *fb = pstate->fb;
if ((pstate->rotation & MALIDP_ROTATED_MASK) || fb->modifier) {
/* process current plane */
rotated_planes--;
if (!rotated_planes) {
/* no more rotated planes, we can use what's left */
rot_mem_usable = rot_mem_free;
} else {
if ((mp->layer->id != DE_VIDEO1) ||
(hwdev->rotation_memory[1] == 0))
rot_mem_usable = rot_mem_free / 2;
else
rot_mem_usable = hwdev->rotation_memory[0];
}
rot_mem_free -= rot_mem_usable;
if (ms->rotmem_size > rot_mem_usable)
return -EINVAL;
}
}
/* If only the writeback routing has changed, we don't need a modeset */
if (state->connectors_changed) {
u32 old_mask = crtc->state->connector_mask;
u32 new_mask = state->connector_mask;
if ((old_mask ^ new_mask) ==
(1 << drm_connector_index(&malidp->mw_connector.base)))
state->connectors_changed = false;
}
ret = malidp_crtc_atomic_check_gamma(crtc, state);
ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
return ret;
}
static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
.mode_valid = malidp_crtc_mode_valid,
.atomic_check = malidp_crtc_atomic_check,
.atomic_enable = malidp_crtc_atomic_enable,
.atomic_disable = malidp_crtc_atomic_disable,
};
static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
{
struct malidp_crtc_state *state, *old_state;
if (WARN_ON(!crtc->state))
return NULL;
old_state = to_malidp_crtc_state(crtc->state);
state = kmalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
sizeof(state->gamma_coeffs));
memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
sizeof(state->coloradj_coeffs));
memcpy(&state->scaler_config, &old_state->scaler_config,
sizeof(state->scaler_config));
state->scaled_planes_mask = 0;
return &state->base;
}
static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct malidp_crtc_state *mali_state = NULL;
if (state) {
mali_state = to_malidp_crtc_state(state);
__drm_atomic_helper_crtc_destroy_state(state);
}
kfree(mali_state);
}
static void malidp_crtc_reset(struct drm_crtc *crtc)
{
struct malidp_crtc_state *state =
kzalloc(sizeof(*state), GFP_KERNEL);
if (crtc->state)
malidp_crtc_destroy_state(crtc, crtc->state);
__drm_atomic_helper_crtc_reset(crtc, &state->base);
}
static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
hwdev->hw->map.de_irq_map.vsync_irq);
return 0;
}
static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
struct malidp_hw_device *hwdev = malidp->dev;
malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
hwdev->hw->map.de_irq_map.vsync_irq);
}
static const struct drm_crtc_funcs malidp_crtc_funcs = {
.gamma_set = drm_atomic_helper_legacy_gamma_set,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.reset = malidp_crtc_reset,
.atomic_duplicate_state = malidp_crtc_duplicate_state,
.atomic_destroy_state = malidp_crtc_destroy_state,
.enable_vblank = malidp_crtc_enable_vblank,
.disable_vblank = malidp_crtc_disable_vblank,
};
int malidp_crtc_init(struct drm_device *drm)
{
struct malidp_drm *malidp = drm->dev_private;
struct drm_plane *primary = NULL, *plane;
int ret;
ret = malidp_de_planes_init(drm);
if (ret < 0) {
DRM_ERROR("Failed to initialise planes\n");
return ret;
}
drm_for_each_plane(plane, drm) {
if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
primary = plane;
break;
}
}
if (!primary) {
DRM_ERROR("no primary plane found\n");
return -EINVAL;
}
ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
&malidp_crtc_funcs, NULL);
if (ret)
return ret;
drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
/* No inverse-gamma: it is per-plane. */
drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
malidp_se_set_enh_coeffs(malidp->dev);
return 0;
}