1537 lines
39 KiB
C
1537 lines
39 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/sched/clock.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/timer.h>
|
||
|
#include <linux/acpi_pmtmr.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/timex.h>
|
||
|
#include <linux/static_key.h>
|
||
|
|
||
|
#include <asm/hpet.h>
|
||
|
#include <asm/timer.h>
|
||
|
#include <asm/vgtod.h>
|
||
|
#include <asm/time.h>
|
||
|
#include <asm/delay.h>
|
||
|
#include <asm/hypervisor.h>
|
||
|
#include <asm/nmi.h>
|
||
|
#include <asm/x86_init.h>
|
||
|
#include <asm/geode.h>
|
||
|
#include <asm/apic.h>
|
||
|
#include <asm/intel-family.h>
|
||
|
#include <asm/i8259.h>
|
||
|
#include <asm/uv/uv.h>
|
||
|
|
||
|
unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
|
||
|
EXPORT_SYMBOL(cpu_khz);
|
||
|
|
||
|
unsigned int __read_mostly tsc_khz;
|
||
|
EXPORT_SYMBOL(tsc_khz);
|
||
|
|
||
|
#define KHZ 1000
|
||
|
|
||
|
/*
|
||
|
* TSC can be unstable due to cpufreq or due to unsynced TSCs
|
||
|
*/
|
||
|
static int __read_mostly tsc_unstable;
|
||
|
|
||
|
static DEFINE_STATIC_KEY_FALSE(__use_tsc);
|
||
|
|
||
|
int tsc_clocksource_reliable;
|
||
|
|
||
|
static u32 art_to_tsc_numerator;
|
||
|
static u32 art_to_tsc_denominator;
|
||
|
static u64 art_to_tsc_offset;
|
||
|
struct clocksource *art_related_clocksource;
|
||
|
|
||
|
struct cyc2ns {
|
||
|
struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
|
||
|
seqcount_t seq; /* 32 + 4 = 36 */
|
||
|
|
||
|
}; /* fits one cacheline */
|
||
|
|
||
|
static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
|
||
|
|
||
|
__always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
|
||
|
{
|
||
|
int seq, idx;
|
||
|
|
||
|
preempt_disable_notrace();
|
||
|
|
||
|
do {
|
||
|
seq = this_cpu_read(cyc2ns.seq.sequence);
|
||
|
idx = seq & 1;
|
||
|
|
||
|
data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
|
||
|
data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
|
||
|
data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
|
||
|
|
||
|
} while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
|
||
|
}
|
||
|
|
||
|
__always_inline void cyc2ns_read_end(void)
|
||
|
{
|
||
|
preempt_enable_notrace();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Accelerators for sched_clock()
|
||
|
* convert from cycles(64bits) => nanoseconds (64bits)
|
||
|
* basic equation:
|
||
|
* ns = cycles / (freq / ns_per_sec)
|
||
|
* ns = cycles * (ns_per_sec / freq)
|
||
|
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||
|
* ns = cycles * (10^6 / cpu_khz)
|
||
|
*
|
||
|
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||
|
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||
|
* ns = cycles * cyc2ns_scale / SC
|
||
|
*
|
||
|
* And since SC is a constant power of two, we can convert the div
|
||
|
* into a shift. The larger SC is, the more accurate the conversion, but
|
||
|
* cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
|
||
|
* (64-bit result) can be used.
|
||
|
*
|
||
|
* We can use khz divisor instead of mhz to keep a better precision.
|
||
|
* (mathieu.desnoyers@polymtl.ca)
|
||
|
*
|
||
|
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||
|
*/
|
||
|
|
||
|
static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
||
|
{
|
||
|
struct cyc2ns_data data;
|
||
|
unsigned long long ns;
|
||
|
|
||
|
cyc2ns_read_begin(&data);
|
||
|
|
||
|
ns = data.cyc2ns_offset;
|
||
|
ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
|
||
|
|
||
|
cyc2ns_read_end();
|
||
|
|
||
|
return ns;
|
||
|
}
|
||
|
|
||
|
static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
|
||
|
{
|
||
|
unsigned long long ns_now;
|
||
|
struct cyc2ns_data data;
|
||
|
struct cyc2ns *c2n;
|
||
|
|
||
|
ns_now = cycles_2_ns(tsc_now);
|
||
|
|
||
|
/*
|
||
|
* Compute a new multiplier as per the above comment and ensure our
|
||
|
* time function is continuous; see the comment near struct
|
||
|
* cyc2ns_data.
|
||
|
*/
|
||
|
clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
|
||
|
NSEC_PER_MSEC, 0);
|
||
|
|
||
|
/*
|
||
|
* cyc2ns_shift is exported via arch_perf_update_userpage() where it is
|
||
|
* not expected to be greater than 31 due to the original published
|
||
|
* conversion algorithm shifting a 32-bit value (now specifies a 64-bit
|
||
|
* value) - refer perf_event_mmap_page documentation in perf_event.h.
|
||
|
*/
|
||
|
if (data.cyc2ns_shift == 32) {
|
||
|
data.cyc2ns_shift = 31;
|
||
|
data.cyc2ns_mul >>= 1;
|
||
|
}
|
||
|
|
||
|
data.cyc2ns_offset = ns_now -
|
||
|
mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
|
||
|
|
||
|
c2n = per_cpu_ptr(&cyc2ns, cpu);
|
||
|
|
||
|
raw_write_seqcount_latch(&c2n->seq);
|
||
|
c2n->data[0] = data;
|
||
|
raw_write_seqcount_latch(&c2n->seq);
|
||
|
c2n->data[1] = data;
|
||
|
}
|
||
|
|
||
|
static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
sched_clock_idle_sleep_event();
|
||
|
|
||
|
if (khz)
|
||
|
__set_cyc2ns_scale(khz, cpu, tsc_now);
|
||
|
|
||
|
sched_clock_idle_wakeup_event();
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize cyc2ns for boot cpu
|
||
|
*/
|
||
|
static void __init cyc2ns_init_boot_cpu(void)
|
||
|
{
|
||
|
struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
|
||
|
|
||
|
seqcount_init(&c2n->seq);
|
||
|
__set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Secondary CPUs do not run through tsc_init(), so set up
|
||
|
* all the scale factors for all CPUs, assuming the same
|
||
|
* speed as the bootup CPU.
|
||
|
*/
|
||
|
static void __init cyc2ns_init_secondary_cpus(void)
|
||
|
{
|
||
|
unsigned int cpu, this_cpu = smp_processor_id();
|
||
|
struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
|
||
|
struct cyc2ns_data *data = c2n->data;
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
if (cpu != this_cpu) {
|
||
|
seqcount_init(&c2n->seq);
|
||
|
c2n = per_cpu_ptr(&cyc2ns, cpu);
|
||
|
c2n->data[0] = data[0];
|
||
|
c2n->data[1] = data[1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Scheduler clock - returns current time in nanosec units.
|
||
|
*/
|
||
|
u64 native_sched_clock(void)
|
||
|
{
|
||
|
if (static_branch_likely(&__use_tsc)) {
|
||
|
u64 tsc_now = rdtsc();
|
||
|
|
||
|
/* return the value in ns */
|
||
|
return cycles_2_ns(tsc_now);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Fall back to jiffies if there's no TSC available:
|
||
|
* ( But note that we still use it if the TSC is marked
|
||
|
* unstable. We do this because unlike Time Of Day,
|
||
|
* the scheduler clock tolerates small errors and it's
|
||
|
* very important for it to be as fast as the platform
|
||
|
* can achieve it. )
|
||
|
*/
|
||
|
|
||
|
/* No locking but a rare wrong value is not a big deal: */
|
||
|
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Generate a sched_clock if you already have a TSC value.
|
||
|
*/
|
||
|
u64 native_sched_clock_from_tsc(u64 tsc)
|
||
|
{
|
||
|
return cycles_2_ns(tsc);
|
||
|
}
|
||
|
|
||
|
/* We need to define a real function for sched_clock, to override the
|
||
|
weak default version */
|
||
|
#ifdef CONFIG_PARAVIRT
|
||
|
unsigned long long sched_clock(void)
|
||
|
{
|
||
|
return paravirt_sched_clock();
|
||
|
}
|
||
|
|
||
|
bool using_native_sched_clock(void)
|
||
|
{
|
||
|
return pv_ops.time.sched_clock == native_sched_clock;
|
||
|
}
|
||
|
#else
|
||
|
unsigned long long
|
||
|
sched_clock(void) __attribute__((alias("native_sched_clock")));
|
||
|
|
||
|
bool using_native_sched_clock(void) { return true; }
|
||
|
#endif
|
||
|
|
||
|
int check_tsc_unstable(void)
|
||
|
{
|
||
|
return tsc_unstable;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(check_tsc_unstable);
|
||
|
|
||
|
#ifdef CONFIG_X86_TSC
|
||
|
int __init notsc_setup(char *str)
|
||
|
{
|
||
|
mark_tsc_unstable("boot parameter notsc");
|
||
|
return 1;
|
||
|
}
|
||
|
#else
|
||
|
/*
|
||
|
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
|
||
|
* in cpu/common.c
|
||
|
*/
|
||
|
int __init notsc_setup(char *str)
|
||
|
{
|
||
|
setup_clear_cpu_cap(X86_FEATURE_TSC);
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
__setup("notsc", notsc_setup);
|
||
|
|
||
|
static int no_sched_irq_time;
|
||
|
static int no_tsc_watchdog;
|
||
|
|
||
|
static int __init tsc_setup(char *str)
|
||
|
{
|
||
|
if (!strcmp(str, "reliable"))
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
if (!strncmp(str, "noirqtime", 9))
|
||
|
no_sched_irq_time = 1;
|
||
|
if (!strcmp(str, "unstable"))
|
||
|
mark_tsc_unstable("boot parameter");
|
||
|
if (!strcmp(str, "nowatchdog"))
|
||
|
no_tsc_watchdog = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("tsc=", tsc_setup);
|
||
|
|
||
|
#define MAX_RETRIES 5
|
||
|
#define TSC_DEFAULT_THRESHOLD 0x20000
|
||
|
|
||
|
/*
|
||
|
* Read TSC and the reference counters. Take care of any disturbances
|
||
|
*/
|
||
|
static u64 tsc_read_refs(u64 *p, int hpet)
|
||
|
{
|
||
|
u64 t1, t2;
|
||
|
u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < MAX_RETRIES; i++) {
|
||
|
t1 = get_cycles();
|
||
|
if (hpet)
|
||
|
*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
|
||
|
else
|
||
|
*p = acpi_pm_read_early();
|
||
|
t2 = get_cycles();
|
||
|
if ((t2 - t1) < thresh)
|
||
|
return t2;
|
||
|
}
|
||
|
return ULLONG_MAX;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the TSC frequency from HPET reference
|
||
|
*/
|
||
|
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
|
||
|
{
|
||
|
u64 tmp;
|
||
|
|
||
|
if (hpet2 < hpet1)
|
||
|
hpet2 += 0x100000000ULL;
|
||
|
hpet2 -= hpet1;
|
||
|
tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
|
||
|
do_div(tmp, 1000000);
|
||
|
deltatsc = div64_u64(deltatsc, tmp);
|
||
|
|
||
|
return (unsigned long) deltatsc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the TSC frequency from PMTimer reference
|
||
|
*/
|
||
|
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
|
||
|
{
|
||
|
u64 tmp;
|
||
|
|
||
|
if (!pm1 && !pm2)
|
||
|
return ULONG_MAX;
|
||
|
|
||
|
if (pm2 < pm1)
|
||
|
pm2 += (u64)ACPI_PM_OVRRUN;
|
||
|
pm2 -= pm1;
|
||
|
tmp = pm2 * 1000000000LL;
|
||
|
do_div(tmp, PMTMR_TICKS_PER_SEC);
|
||
|
do_div(deltatsc, tmp);
|
||
|
|
||
|
return (unsigned long) deltatsc;
|
||
|
}
|
||
|
|
||
|
#define CAL_MS 10
|
||
|
#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
|
||
|
#define CAL_PIT_LOOPS 1000
|
||
|
|
||
|
#define CAL2_MS 50
|
||
|
#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
|
||
|
#define CAL2_PIT_LOOPS 5000
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Try to calibrate the TSC against the Programmable
|
||
|
* Interrupt Timer and return the frequency of the TSC
|
||
|
* in kHz.
|
||
|
*
|
||
|
* Return ULONG_MAX on failure to calibrate.
|
||
|
*/
|
||
|
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
|
||
|
{
|
||
|
u64 tsc, t1, t2, delta;
|
||
|
unsigned long tscmin, tscmax;
|
||
|
int pitcnt;
|
||
|
|
||
|
if (!has_legacy_pic()) {
|
||
|
/*
|
||
|
* Relies on tsc_early_delay_calibrate() to have given us semi
|
||
|
* usable udelay(), wait for the same 50ms we would have with
|
||
|
* the PIT loop below.
|
||
|
*/
|
||
|
udelay(10 * USEC_PER_MSEC);
|
||
|
udelay(10 * USEC_PER_MSEC);
|
||
|
udelay(10 * USEC_PER_MSEC);
|
||
|
udelay(10 * USEC_PER_MSEC);
|
||
|
udelay(10 * USEC_PER_MSEC);
|
||
|
return ULONG_MAX;
|
||
|
}
|
||
|
|
||
|
/* Set the Gate high, disable speaker */
|
||
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||
|
|
||
|
/*
|
||
|
* Setup CTC channel 2* for mode 0, (interrupt on terminal
|
||
|
* count mode), binary count. Set the latch register to 50ms
|
||
|
* (LSB then MSB) to begin countdown.
|
||
|
*/
|
||
|
outb(0xb0, 0x43);
|
||
|
outb(latch & 0xff, 0x42);
|
||
|
outb(latch >> 8, 0x42);
|
||
|
|
||
|
tsc = t1 = t2 = get_cycles();
|
||
|
|
||
|
pitcnt = 0;
|
||
|
tscmax = 0;
|
||
|
tscmin = ULONG_MAX;
|
||
|
while ((inb(0x61) & 0x20) == 0) {
|
||
|
t2 = get_cycles();
|
||
|
delta = t2 - tsc;
|
||
|
tsc = t2;
|
||
|
if ((unsigned long) delta < tscmin)
|
||
|
tscmin = (unsigned int) delta;
|
||
|
if ((unsigned long) delta > tscmax)
|
||
|
tscmax = (unsigned int) delta;
|
||
|
pitcnt++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sanity checks:
|
||
|
*
|
||
|
* If we were not able to read the PIT more than loopmin
|
||
|
* times, then we have been hit by a massive SMI
|
||
|
*
|
||
|
* If the maximum is 10 times larger than the minimum,
|
||
|
* then we got hit by an SMI as well.
|
||
|
*/
|
||
|
if (pitcnt < loopmin || tscmax > 10 * tscmin)
|
||
|
return ULONG_MAX;
|
||
|
|
||
|
/* Calculate the PIT value */
|
||
|
delta = t2 - t1;
|
||
|
do_div(delta, ms);
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This reads the current MSB of the PIT counter, and
|
||
|
* checks if we are running on sufficiently fast and
|
||
|
* non-virtualized hardware.
|
||
|
*
|
||
|
* Our expectations are:
|
||
|
*
|
||
|
* - the PIT is running at roughly 1.19MHz
|
||
|
*
|
||
|
* - each IO is going to take about 1us on real hardware,
|
||
|
* but we allow it to be much faster (by a factor of 10) or
|
||
|
* _slightly_ slower (ie we allow up to a 2us read+counter
|
||
|
* update - anything else implies a unacceptably slow CPU
|
||
|
* or PIT for the fast calibration to work.
|
||
|
*
|
||
|
* - with 256 PIT ticks to read the value, we have 214us to
|
||
|
* see the same MSB (and overhead like doing a single TSC
|
||
|
* read per MSB value etc).
|
||
|
*
|
||
|
* - We're doing 2 reads per loop (LSB, MSB), and we expect
|
||
|
* them each to take about a microsecond on real hardware.
|
||
|
* So we expect a count value of around 100. But we'll be
|
||
|
* generous, and accept anything over 50.
|
||
|
*
|
||
|
* - if the PIT is stuck, and we see *many* more reads, we
|
||
|
* return early (and the next caller of pit_expect_msb()
|
||
|
* then consider it a failure when they don't see the
|
||
|
* next expected value).
|
||
|
*
|
||
|
* These expectations mean that we know that we have seen the
|
||
|
* transition from one expected value to another with a fairly
|
||
|
* high accuracy, and we didn't miss any events. We can thus
|
||
|
* use the TSC value at the transitions to calculate a pretty
|
||
|
* good value for the TSC frequencty.
|
||
|
*/
|
||
|
static inline int pit_verify_msb(unsigned char val)
|
||
|
{
|
||
|
/* Ignore LSB */
|
||
|
inb(0x42);
|
||
|
return inb(0x42) == val;
|
||
|
}
|
||
|
|
||
|
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
|
||
|
{
|
||
|
int count;
|
||
|
u64 tsc = 0, prev_tsc = 0;
|
||
|
|
||
|
for (count = 0; count < 50000; count++) {
|
||
|
if (!pit_verify_msb(val))
|
||
|
break;
|
||
|
prev_tsc = tsc;
|
||
|
tsc = get_cycles();
|
||
|
}
|
||
|
*deltap = get_cycles() - prev_tsc;
|
||
|
*tscp = tsc;
|
||
|
|
||
|
/*
|
||
|
* We require _some_ success, but the quality control
|
||
|
* will be based on the error terms on the TSC values.
|
||
|
*/
|
||
|
return count > 5;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* How many MSB values do we want to see? We aim for
|
||
|
* a maximum error rate of 500ppm (in practice the
|
||
|
* real error is much smaller), but refuse to spend
|
||
|
* more than 50ms on it.
|
||
|
*/
|
||
|
#define MAX_QUICK_PIT_MS 50
|
||
|
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
|
||
|
|
||
|
static unsigned long quick_pit_calibrate(void)
|
||
|
{
|
||
|
int i;
|
||
|
u64 tsc, delta;
|
||
|
unsigned long d1, d2;
|
||
|
|
||
|
if (!has_legacy_pic())
|
||
|
return 0;
|
||
|
|
||
|
/* Set the Gate high, disable speaker */
|
||
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||
|
|
||
|
/*
|
||
|
* Counter 2, mode 0 (one-shot), binary count
|
||
|
*
|
||
|
* NOTE! Mode 2 decrements by two (and then the
|
||
|
* output is flipped each time, giving the same
|
||
|
* final output frequency as a decrement-by-one),
|
||
|
* so mode 0 is much better when looking at the
|
||
|
* individual counts.
|
||
|
*/
|
||
|
outb(0xb0, 0x43);
|
||
|
|
||
|
/* Start at 0xffff */
|
||
|
outb(0xff, 0x42);
|
||
|
outb(0xff, 0x42);
|
||
|
|
||
|
/*
|
||
|
* The PIT starts counting at the next edge, so we
|
||
|
* need to delay for a microsecond. The easiest way
|
||
|
* to do that is to just read back the 16-bit counter
|
||
|
* once from the PIT.
|
||
|
*/
|
||
|
pit_verify_msb(0);
|
||
|
|
||
|
if (pit_expect_msb(0xff, &tsc, &d1)) {
|
||
|
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
|
||
|
if (!pit_expect_msb(0xff-i, &delta, &d2))
|
||
|
break;
|
||
|
|
||
|
delta -= tsc;
|
||
|
|
||
|
/*
|
||
|
* Extrapolate the error and fail fast if the error will
|
||
|
* never be below 500 ppm.
|
||
|
*/
|
||
|
if (i == 1 &&
|
||
|
d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Iterate until the error is less than 500 ppm
|
||
|
*/
|
||
|
if (d1+d2 >= delta >> 11)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Check the PIT one more time to verify that
|
||
|
* all TSC reads were stable wrt the PIT.
|
||
|
*
|
||
|
* This also guarantees serialization of the
|
||
|
* last cycle read ('d2') in pit_expect_msb.
|
||
|
*/
|
||
|
if (!pit_verify_msb(0xfe - i))
|
||
|
break;
|
||
|
goto success;
|
||
|
}
|
||
|
}
|
||
|
pr_info("Fast TSC calibration failed\n");
|
||
|
return 0;
|
||
|
|
||
|
success:
|
||
|
/*
|
||
|
* Ok, if we get here, then we've seen the
|
||
|
* MSB of the PIT decrement 'i' times, and the
|
||
|
* error has shrunk to less than 500 ppm.
|
||
|
*
|
||
|
* As a result, we can depend on there not being
|
||
|
* any odd delays anywhere, and the TSC reads are
|
||
|
* reliable (within the error).
|
||
|
*
|
||
|
* kHz = ticks / time-in-seconds / 1000;
|
||
|
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
|
||
|
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
|
||
|
*/
|
||
|
delta *= PIT_TICK_RATE;
|
||
|
do_div(delta, i*256*1000);
|
||
|
pr_info("Fast TSC calibration using PIT\n");
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* native_calibrate_tsc
|
||
|
* Determine TSC frequency via CPUID, else return 0.
|
||
|
*/
|
||
|
unsigned long native_calibrate_tsc(void)
|
||
|
{
|
||
|
unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
|
||
|
unsigned int crystal_khz;
|
||
|
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
||
|
return 0;
|
||
|
|
||
|
if (boot_cpu_data.cpuid_level < 0x15)
|
||
|
return 0;
|
||
|
|
||
|
eax_denominator = ebx_numerator = ecx_hz = edx = 0;
|
||
|
|
||
|
/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
|
||
|
cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
|
||
|
|
||
|
if (ebx_numerator == 0 || eax_denominator == 0)
|
||
|
return 0;
|
||
|
|
||
|
crystal_khz = ecx_hz / 1000;
|
||
|
|
||
|
/*
|
||
|
* Denverton SoCs don't report crystal clock, and also don't support
|
||
|
* CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
|
||
|
* clock.
|
||
|
*/
|
||
|
if (crystal_khz == 0 &&
|
||
|
boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
|
||
|
crystal_khz = 25000;
|
||
|
|
||
|
/*
|
||
|
* TSC frequency reported directly by CPUID is a "hardware reported"
|
||
|
* frequency and is the most accurate one so far we have. This
|
||
|
* is considered a known frequency.
|
||
|
*/
|
||
|
if (crystal_khz != 0)
|
||
|
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
|
||
|
|
||
|
/*
|
||
|
* Some Intel SoCs like Skylake and Kabylake don't report the crystal
|
||
|
* clock, but we can easily calculate it to a high degree of accuracy
|
||
|
* by considering the crystal ratio and the CPU speed.
|
||
|
*/
|
||
|
if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
|
||
|
unsigned int eax_base_mhz, ebx, ecx, edx;
|
||
|
|
||
|
cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
|
||
|
crystal_khz = eax_base_mhz * 1000 *
|
||
|
eax_denominator / ebx_numerator;
|
||
|
}
|
||
|
|
||
|
if (crystal_khz == 0)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* For Atom SoCs TSC is the only reliable clocksource.
|
||
|
* Mark TSC reliable so no watchdog on it.
|
||
|
*/
|
||
|
if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
|
||
|
setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
|
||
|
|
||
|
#ifdef CONFIG_X86_LOCAL_APIC
|
||
|
/*
|
||
|
* The local APIC appears to be fed by the core crystal clock
|
||
|
* (which sounds entirely sensible). We can set the global
|
||
|
* lapic_timer_period here to avoid having to calibrate the APIC
|
||
|
* timer later.
|
||
|
*/
|
||
|
lapic_timer_period = crystal_khz * 1000 / HZ;
|
||
|
#endif
|
||
|
|
||
|
return crystal_khz * ebx_numerator / eax_denominator;
|
||
|
}
|
||
|
|
||
|
static unsigned long cpu_khz_from_cpuid(void)
|
||
|
{
|
||
|
unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
|
||
|
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
|
||
|
return 0;
|
||
|
|
||
|
if (boot_cpu_data.cpuid_level < 0x16)
|
||
|
return 0;
|
||
|
|
||
|
eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
|
||
|
|
||
|
cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
|
||
|
|
||
|
return eax_base_mhz * 1000;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* calibrate cpu using pit, hpet, and ptimer methods. They are available
|
||
|
* later in boot after acpi is initialized.
|
||
|
*/
|
||
|
static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
|
||
|
{
|
||
|
u64 tsc1, tsc2, delta, ref1, ref2;
|
||
|
unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
|
||
|
unsigned long flags, latch, ms;
|
||
|
int hpet = is_hpet_enabled(), i, loopmin;
|
||
|
|
||
|
/*
|
||
|
* Run 5 calibration loops to get the lowest frequency value
|
||
|
* (the best estimate). We use two different calibration modes
|
||
|
* here:
|
||
|
*
|
||
|
* 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
|
||
|
* load a timeout of 50ms. We read the time right after we
|
||
|
* started the timer and wait until the PIT count down reaches
|
||
|
* zero. In each wait loop iteration we read the TSC and check
|
||
|
* the delta to the previous read. We keep track of the min
|
||
|
* and max values of that delta. The delta is mostly defined
|
||
|
* by the IO time of the PIT access, so we can detect when
|
||
|
* any disturbance happened between the two reads. If the
|
||
|
* maximum time is significantly larger than the minimum time,
|
||
|
* then we discard the result and have another try.
|
||
|
*
|
||
|
* 2) Reference counter. If available we use the HPET or the
|
||
|
* PMTIMER as a reference to check the sanity of that value.
|
||
|
* We use separate TSC readouts and check inside of the
|
||
|
* reference read for any possible disturbance. We dicard
|
||
|
* disturbed values here as well. We do that around the PIT
|
||
|
* calibration delay loop as we have to wait for a certain
|
||
|
* amount of time anyway.
|
||
|
*/
|
||
|
|
||
|
/* Preset PIT loop values */
|
||
|
latch = CAL_LATCH;
|
||
|
ms = CAL_MS;
|
||
|
loopmin = CAL_PIT_LOOPS;
|
||
|
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
unsigned long tsc_pit_khz;
|
||
|
|
||
|
/*
|
||
|
* Read the start value and the reference count of
|
||
|
* hpet/pmtimer when available. Then do the PIT
|
||
|
* calibration, which will take at least 50ms, and
|
||
|
* read the end value.
|
||
|
*/
|
||
|
local_irq_save(flags);
|
||
|
tsc1 = tsc_read_refs(&ref1, hpet);
|
||
|
tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
|
||
|
tsc2 = tsc_read_refs(&ref2, hpet);
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
/* Pick the lowest PIT TSC calibration so far */
|
||
|
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
|
||
|
|
||
|
/* hpet or pmtimer available ? */
|
||
|
if (ref1 == ref2)
|
||
|
continue;
|
||
|
|
||
|
/* Check, whether the sampling was disturbed */
|
||
|
if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
|
||
|
continue;
|
||
|
|
||
|
tsc2 = (tsc2 - tsc1) * 1000000LL;
|
||
|
if (hpet)
|
||
|
tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
|
||
|
else
|
||
|
tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
|
||
|
|
||
|
tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
|
||
|
|
||
|
/* Check the reference deviation */
|
||
|
delta = ((u64) tsc_pit_min) * 100;
|
||
|
do_div(delta, tsc_ref_min);
|
||
|
|
||
|
/*
|
||
|
* If both calibration results are inside a 10% window
|
||
|
* then we can be sure, that the calibration
|
||
|
* succeeded. We break out of the loop right away. We
|
||
|
* use the reference value, as it is more precise.
|
||
|
*/
|
||
|
if (delta >= 90 && delta <= 110) {
|
||
|
pr_info("PIT calibration matches %s. %d loops\n",
|
||
|
hpet ? "HPET" : "PMTIMER", i + 1);
|
||
|
return tsc_ref_min;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether PIT failed more than once. This
|
||
|
* happens in virtualized environments. We need to
|
||
|
* give the virtual PC a slightly longer timeframe for
|
||
|
* the HPET/PMTIMER to make the result precise.
|
||
|
*/
|
||
|
if (i == 1 && tsc_pit_min == ULONG_MAX) {
|
||
|
latch = CAL2_LATCH;
|
||
|
ms = CAL2_MS;
|
||
|
loopmin = CAL2_PIT_LOOPS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now check the results.
|
||
|
*/
|
||
|
if (tsc_pit_min == ULONG_MAX) {
|
||
|
/* PIT gave no useful value */
|
||
|
pr_warn("Unable to calibrate against PIT\n");
|
||
|
|
||
|
/* We don't have an alternative source, disable TSC */
|
||
|
if (!hpet && !ref1 && !ref2) {
|
||
|
pr_notice("No reference (HPET/PMTIMER) available\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The alternative source failed as well, disable TSC */
|
||
|
if (tsc_ref_min == ULONG_MAX) {
|
||
|
pr_warn("HPET/PMTIMER calibration failed\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Use the alternative source */
|
||
|
pr_info("using %s reference calibration\n",
|
||
|
hpet ? "HPET" : "PMTIMER");
|
||
|
|
||
|
return tsc_ref_min;
|
||
|
}
|
||
|
|
||
|
/* We don't have an alternative source, use the PIT calibration value */
|
||
|
if (!hpet && !ref1 && !ref2) {
|
||
|
pr_info("Using PIT calibration value\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
/* The alternative source failed, use the PIT calibration value */
|
||
|
if (tsc_ref_min == ULONG_MAX) {
|
||
|
pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The calibration values differ too much. In doubt, we use
|
||
|
* the PIT value as we know that there are PMTIMERs around
|
||
|
* running at double speed. At least we let the user know:
|
||
|
*/
|
||
|
pr_warn("PIT calibration deviates from %s: %lu %lu\n",
|
||
|
hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
|
||
|
pr_info("Using PIT calibration value\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* native_calibrate_cpu_early - can calibrate the cpu early in boot
|
||
|
*/
|
||
|
unsigned long native_calibrate_cpu_early(void)
|
||
|
{
|
||
|
unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
|
||
|
|
||
|
if (!fast_calibrate)
|
||
|
fast_calibrate = cpu_khz_from_msr();
|
||
|
if (!fast_calibrate) {
|
||
|
local_irq_save(flags);
|
||
|
fast_calibrate = quick_pit_calibrate();
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
return fast_calibrate;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* native_calibrate_cpu - calibrate the cpu
|
||
|
*/
|
||
|
static unsigned long native_calibrate_cpu(void)
|
||
|
{
|
||
|
unsigned long tsc_freq = native_calibrate_cpu_early();
|
||
|
|
||
|
if (!tsc_freq)
|
||
|
tsc_freq = pit_hpet_ptimer_calibrate_cpu();
|
||
|
|
||
|
return tsc_freq;
|
||
|
}
|
||
|
|
||
|
void recalibrate_cpu_khz(void)
|
||
|
{
|
||
|
#ifndef CONFIG_SMP
|
||
|
unsigned long cpu_khz_old = cpu_khz;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC))
|
||
|
return;
|
||
|
|
||
|
cpu_khz = x86_platform.calibrate_cpu();
|
||
|
tsc_khz = x86_platform.calibrate_tsc();
|
||
|
if (tsc_khz == 0)
|
||
|
tsc_khz = cpu_khz;
|
||
|
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
|
||
|
cpu_khz = tsc_khz;
|
||
|
cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
|
||
|
cpu_khz_old, cpu_khz);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
||
|
|
||
|
|
||
|
static unsigned long long cyc2ns_suspend;
|
||
|
|
||
|
void tsc_save_sched_clock_state(void)
|
||
|
{
|
||
|
if (!sched_clock_stable())
|
||
|
return;
|
||
|
|
||
|
cyc2ns_suspend = sched_clock();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Even on processors with invariant TSC, TSC gets reset in some the
|
||
|
* ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
|
||
|
* arbitrary value (still sync'd across cpu's) during resume from such sleep
|
||
|
* states. To cope up with this, recompute the cyc2ns_offset for each cpu so
|
||
|
* that sched_clock() continues from the point where it was left off during
|
||
|
* suspend.
|
||
|
*/
|
||
|
void tsc_restore_sched_clock_state(void)
|
||
|
{
|
||
|
unsigned long long offset;
|
||
|
unsigned long flags;
|
||
|
int cpu;
|
||
|
|
||
|
if (!sched_clock_stable())
|
||
|
return;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
/*
|
||
|
* We're coming out of suspend, there's no concurrency yet; don't
|
||
|
* bother being nice about the RCU stuff, just write to both
|
||
|
* data fields.
|
||
|
*/
|
||
|
|
||
|
this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
|
||
|
this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
|
||
|
|
||
|
offset = cyc2ns_suspend - sched_clock();
|
||
|
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
|
||
|
per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
|
||
|
}
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_CPU_FREQ
|
||
|
/*
|
||
|
* Frequency scaling support. Adjust the TSC based timer when the CPU frequency
|
||
|
* changes.
|
||
|
*
|
||
|
* NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
|
||
|
* as unstable and give up in those cases.
|
||
|
*
|
||
|
* Should fix up last_tsc too. Currently gettimeofday in the
|
||
|
* first tick after the change will be slightly wrong.
|
||
|
*/
|
||
|
|
||
|
static unsigned int ref_freq;
|
||
|
static unsigned long loops_per_jiffy_ref;
|
||
|
static unsigned long tsc_khz_ref;
|
||
|
|
||
|
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||
|
void *data)
|
||
|
{
|
||
|
struct cpufreq_freqs *freq = data;
|
||
|
|
||
|
if (num_online_cpus() > 1) {
|
||
|
mark_tsc_unstable("cpufreq changes on SMP");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!ref_freq) {
|
||
|
ref_freq = freq->old;
|
||
|
loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
|
||
|
tsc_khz_ref = tsc_khz;
|
||
|
}
|
||
|
|
||
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
|
||
|
boot_cpu_data.loops_per_jiffy =
|
||
|
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||
|
|
||
|
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
|
||
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||
|
mark_tsc_unstable("cpufreq changes");
|
||
|
|
||
|
set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block time_cpufreq_notifier_block = {
|
||
|
.notifier_call = time_cpufreq_notifier
|
||
|
};
|
||
|
|
||
|
static int __init cpufreq_register_tsc_scaling(void)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC))
|
||
|
return 0;
|
||
|
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||
|
CPUFREQ_TRANSITION_NOTIFIER);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
core_initcall(cpufreq_register_tsc_scaling);
|
||
|
|
||
|
#endif /* CONFIG_CPU_FREQ */
|
||
|
|
||
|
#define ART_CPUID_LEAF (0x15)
|
||
|
#define ART_MIN_DENOMINATOR (1)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* If ART is present detect the numerator:denominator to convert to TSC
|
||
|
*/
|
||
|
static void __init detect_art(void)
|
||
|
{
|
||
|
unsigned int unused[2];
|
||
|
|
||
|
if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
|
||
|
* and the TSC counter resets must not occur asynchronously.
|
||
|
*/
|
||
|
if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
|
||
|
!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
|
||
|
!boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
|
||
|
tsc_async_resets)
|
||
|
return;
|
||
|
|
||
|
cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
|
||
|
&art_to_tsc_numerator, unused, unused+1);
|
||
|
|
||
|
if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
|
||
|
return;
|
||
|
|
||
|
rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
|
||
|
|
||
|
/* Make this sticky over multiple CPU init calls */
|
||
|
setup_force_cpu_cap(X86_FEATURE_ART);
|
||
|
}
|
||
|
|
||
|
|
||
|
/* clocksource code */
|
||
|
|
||
|
static void tsc_resume(struct clocksource *cs)
|
||
|
{
|
||
|
tsc_verify_tsc_adjust(true);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We used to compare the TSC to the cycle_last value in the clocksource
|
||
|
* structure to avoid a nasty time-warp. This can be observed in a
|
||
|
* very small window right after one CPU updated cycle_last under
|
||
|
* xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
|
||
|
* is smaller than the cycle_last reference value due to a TSC which
|
||
|
* is slighty behind. This delta is nowhere else observable, but in
|
||
|
* that case it results in a forward time jump in the range of hours
|
||
|
* due to the unsigned delta calculation of the time keeping core
|
||
|
* code, which is necessary to support wrapping clocksources like pm
|
||
|
* timer.
|
||
|
*
|
||
|
* This sanity check is now done in the core timekeeping code.
|
||
|
* checking the result of read_tsc() - cycle_last for being negative.
|
||
|
* That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
|
||
|
*/
|
||
|
static u64 read_tsc(struct clocksource *cs)
|
||
|
{
|
||
|
return (u64)rdtsc_ordered();
|
||
|
}
|
||
|
|
||
|
static void tsc_cs_mark_unstable(struct clocksource *cs)
|
||
|
{
|
||
|
if (tsc_unstable)
|
||
|
return;
|
||
|
|
||
|
tsc_unstable = 1;
|
||
|
if (using_native_sched_clock())
|
||
|
clear_sched_clock_stable();
|
||
|
disable_sched_clock_irqtime();
|
||
|
pr_info("Marking TSC unstable due to clocksource watchdog\n");
|
||
|
}
|
||
|
|
||
|
static void tsc_cs_tick_stable(struct clocksource *cs)
|
||
|
{
|
||
|
if (tsc_unstable)
|
||
|
return;
|
||
|
|
||
|
if (using_native_sched_clock())
|
||
|
sched_clock_tick_stable();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
|
||
|
*/
|
||
|
static struct clocksource clocksource_tsc_early = {
|
||
|
.name = "tsc-early",
|
||
|
.rating = 299,
|
||
|
.read = read_tsc,
|
||
|
.mask = CLOCKSOURCE_MASK(64),
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
|
||
|
CLOCK_SOURCE_MUST_VERIFY,
|
||
|
.archdata = { .vclock_mode = VCLOCK_TSC },
|
||
|
.resume = tsc_resume,
|
||
|
.mark_unstable = tsc_cs_mark_unstable,
|
||
|
.tick_stable = tsc_cs_tick_stable,
|
||
|
.list = LIST_HEAD_INIT(clocksource_tsc_early.list),
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Must mark VALID_FOR_HRES early such that when we unregister tsc_early
|
||
|
* this one will immediately take over. We will only register if TSC has
|
||
|
* been found good.
|
||
|
*/
|
||
|
static struct clocksource clocksource_tsc = {
|
||
|
.name = "tsc",
|
||
|
.rating = 300,
|
||
|
.read = read_tsc,
|
||
|
.mask = CLOCKSOURCE_MASK(64),
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
|
||
|
CLOCK_SOURCE_VALID_FOR_HRES |
|
||
|
CLOCK_SOURCE_MUST_VERIFY,
|
||
|
.archdata = { .vclock_mode = VCLOCK_TSC },
|
||
|
.resume = tsc_resume,
|
||
|
.mark_unstable = tsc_cs_mark_unstable,
|
||
|
.tick_stable = tsc_cs_tick_stable,
|
||
|
.list = LIST_HEAD_INIT(clocksource_tsc.list),
|
||
|
};
|
||
|
|
||
|
void mark_tsc_unstable(char *reason)
|
||
|
{
|
||
|
if (tsc_unstable)
|
||
|
return;
|
||
|
|
||
|
tsc_unstable = 1;
|
||
|
if (using_native_sched_clock())
|
||
|
clear_sched_clock_stable();
|
||
|
disable_sched_clock_irqtime();
|
||
|
pr_info("Marking TSC unstable due to %s\n", reason);
|
||
|
|
||
|
clocksource_mark_unstable(&clocksource_tsc_early);
|
||
|
clocksource_mark_unstable(&clocksource_tsc);
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
|
||
|
|
||
|
static void __init check_system_tsc_reliable(void)
|
||
|
{
|
||
|
#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
|
||
|
if (is_geode_lx()) {
|
||
|
/* RTSC counts during suspend */
|
||
|
#define RTSC_SUSP 0x100
|
||
|
unsigned long res_low, res_high;
|
||
|
|
||
|
rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
|
||
|
/* Geode_LX - the OLPC CPU has a very reliable TSC */
|
||
|
if (res_low & RTSC_SUSP)
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
}
|
||
|
#endif
|
||
|
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make an educated guess if the TSC is trustworthy and synchronized
|
||
|
* over all CPUs.
|
||
|
*/
|
||
|
int unsynchronized_tsc(void)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
|
||
|
return 1;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (apic_is_clustered_box())
|
||
|
return 1;
|
||
|
#endif
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
|
||
|
if (tsc_clocksource_reliable)
|
||
|
return 0;
|
||
|
/*
|
||
|
* Intel systems are normally all synchronized.
|
||
|
* Exceptions must mark TSC as unstable:
|
||
|
*/
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
|
||
|
/* assume multi socket systems are not synchronized: */
|
||
|
if (num_possible_cpus() > 1)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert ART to TSC given numerator/denominator found in detect_art()
|
||
|
*/
|
||
|
struct system_counterval_t convert_art_to_tsc(u64 art)
|
||
|
{
|
||
|
u64 tmp, res, rem;
|
||
|
|
||
|
rem = do_div(art, art_to_tsc_denominator);
|
||
|
|
||
|
res = art * art_to_tsc_numerator;
|
||
|
tmp = rem * art_to_tsc_numerator;
|
||
|
|
||
|
do_div(tmp, art_to_tsc_denominator);
|
||
|
res += tmp + art_to_tsc_offset;
|
||
|
|
||
|
return (struct system_counterval_t) {.cs = art_related_clocksource,
|
||
|
.cycles = res};
|
||
|
}
|
||
|
EXPORT_SYMBOL(convert_art_to_tsc);
|
||
|
|
||
|
/**
|
||
|
* convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
|
||
|
* @art_ns: ART (Always Running Timer) in unit of nanoseconds
|
||
|
*
|
||
|
* PTM requires all timestamps to be in units of nanoseconds. When user
|
||
|
* software requests a cross-timestamp, this function converts system timestamp
|
||
|
* to TSC.
|
||
|
*
|
||
|
* This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
|
||
|
* indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
|
||
|
* that this flag is set before conversion to TSC is attempted.
|
||
|
*
|
||
|
* Return:
|
||
|
* struct system_counterval_t - system counter value with the pointer to the
|
||
|
* corresponding clocksource
|
||
|
* @cycles: System counter value
|
||
|
* @cs: Clocksource corresponding to system counter value. Used
|
||
|
* by timekeeping code to verify comparibility of two cycle
|
||
|
* values.
|
||
|
*/
|
||
|
|
||
|
struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
|
||
|
{
|
||
|
u64 tmp, res, rem;
|
||
|
|
||
|
rem = do_div(art_ns, USEC_PER_SEC);
|
||
|
|
||
|
res = art_ns * tsc_khz;
|
||
|
tmp = rem * tsc_khz;
|
||
|
|
||
|
do_div(tmp, USEC_PER_SEC);
|
||
|
res += tmp;
|
||
|
|
||
|
return (struct system_counterval_t) { .cs = art_related_clocksource,
|
||
|
.cycles = res};
|
||
|
}
|
||
|
EXPORT_SYMBOL(convert_art_ns_to_tsc);
|
||
|
|
||
|
|
||
|
static void tsc_refine_calibration_work(struct work_struct *work);
|
||
|
static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
|
||
|
/**
|
||
|
* tsc_refine_calibration_work - Further refine tsc freq calibration
|
||
|
* @work - ignored.
|
||
|
*
|
||
|
* This functions uses delayed work over a period of a
|
||
|
* second to further refine the TSC freq value. Since this is
|
||
|
* timer based, instead of loop based, we don't block the boot
|
||
|
* process while this longer calibration is done.
|
||
|
*
|
||
|
* If there are any calibration anomalies (too many SMIs, etc),
|
||
|
* or the refined calibration is off by 1% of the fast early
|
||
|
* calibration, we throw out the new calibration and use the
|
||
|
* early calibration.
|
||
|
*/
|
||
|
static void tsc_refine_calibration_work(struct work_struct *work)
|
||
|
{
|
||
|
static u64 tsc_start = ULLONG_MAX, ref_start;
|
||
|
static int hpet;
|
||
|
u64 tsc_stop, ref_stop, delta;
|
||
|
unsigned long freq;
|
||
|
int cpu;
|
||
|
|
||
|
/* Don't bother refining TSC on unstable systems */
|
||
|
if (tsc_unstable)
|
||
|
goto unreg;
|
||
|
|
||
|
/*
|
||
|
* Since the work is started early in boot, we may be
|
||
|
* delayed the first time we expire. So set the workqueue
|
||
|
* again once we know timers are working.
|
||
|
*/
|
||
|
if (tsc_start == ULLONG_MAX) {
|
||
|
restart:
|
||
|
/*
|
||
|
* Only set hpet once, to avoid mixing hardware
|
||
|
* if the hpet becomes enabled later.
|
||
|
*/
|
||
|
hpet = is_hpet_enabled();
|
||
|
tsc_start = tsc_read_refs(&ref_start, hpet);
|
||
|
schedule_delayed_work(&tsc_irqwork, HZ);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
tsc_stop = tsc_read_refs(&ref_stop, hpet);
|
||
|
|
||
|
/* hpet or pmtimer available ? */
|
||
|
if (ref_start == ref_stop)
|
||
|
goto out;
|
||
|
|
||
|
/* Check, whether the sampling was disturbed */
|
||
|
if (tsc_stop == ULLONG_MAX)
|
||
|
goto restart;
|
||
|
|
||
|
delta = tsc_stop - tsc_start;
|
||
|
delta *= 1000000LL;
|
||
|
if (hpet)
|
||
|
freq = calc_hpet_ref(delta, ref_start, ref_stop);
|
||
|
else
|
||
|
freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
|
||
|
|
||
|
/* Make sure we're within 1% */
|
||
|
if (abs(tsc_khz - freq) > tsc_khz/100)
|
||
|
goto out;
|
||
|
|
||
|
tsc_khz = freq;
|
||
|
pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
|
||
|
(unsigned long)tsc_khz / 1000,
|
||
|
(unsigned long)tsc_khz % 1000);
|
||
|
|
||
|
/* Inform the TSC deadline clockevent devices about the recalibration */
|
||
|
lapic_update_tsc_freq();
|
||
|
|
||
|
/* Update the sched_clock() rate to match the clocksource one */
|
||
|
for_each_possible_cpu(cpu)
|
||
|
set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
|
||
|
|
||
|
out:
|
||
|
if (tsc_unstable)
|
||
|
goto unreg;
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_ART))
|
||
|
art_related_clocksource = &clocksource_tsc;
|
||
|
clocksource_register_khz(&clocksource_tsc, tsc_khz);
|
||
|
unreg:
|
||
|
clocksource_unregister(&clocksource_tsc_early);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int __init init_tsc_clocksource(void)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
|
||
|
return 0;
|
||
|
|
||
|
if (tsc_unstable)
|
||
|
goto unreg;
|
||
|
|
||
|
if (tsc_clocksource_reliable || no_tsc_watchdog)
|
||
|
clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
|
||
|
clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
|
||
|
|
||
|
/*
|
||
|
* When TSC frequency is known (retrieved via MSR or CPUID), we skip
|
||
|
* the refined calibration and directly register it as a clocksource.
|
||
|
*/
|
||
|
if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
|
||
|
if (boot_cpu_has(X86_FEATURE_ART))
|
||
|
art_related_clocksource = &clocksource_tsc;
|
||
|
clocksource_register_khz(&clocksource_tsc, tsc_khz);
|
||
|
unreg:
|
||
|
clocksource_unregister(&clocksource_tsc_early);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
schedule_delayed_work(&tsc_irqwork, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
/*
|
||
|
* We use device_initcall here, to ensure we run after the hpet
|
||
|
* is fully initialized, which may occur at fs_initcall time.
|
||
|
*/
|
||
|
device_initcall(init_tsc_clocksource);
|
||
|
|
||
|
static bool __init determine_cpu_tsc_frequencies(bool early)
|
||
|
{
|
||
|
/* Make sure that cpu and tsc are not already calibrated */
|
||
|
WARN_ON(cpu_khz || tsc_khz);
|
||
|
|
||
|
if (early) {
|
||
|
cpu_khz = x86_platform.calibrate_cpu();
|
||
|
tsc_khz = x86_platform.calibrate_tsc();
|
||
|
} else {
|
||
|
/* We should not be here with non-native cpu calibration */
|
||
|
WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
|
||
|
cpu_khz = pit_hpet_ptimer_calibrate_cpu();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Trust non-zero tsc_khz as authoritative,
|
||
|
* and use it to sanity check cpu_khz,
|
||
|
* which will be off if system timer is off.
|
||
|
*/
|
||
|
if (tsc_khz == 0)
|
||
|
tsc_khz = cpu_khz;
|
||
|
else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
|
||
|
cpu_khz = tsc_khz;
|
||
|
|
||
|
if (tsc_khz == 0)
|
||
|
return false;
|
||
|
|
||
|
pr_info("Detected %lu.%03lu MHz processor\n",
|
||
|
(unsigned long)cpu_khz / KHZ,
|
||
|
(unsigned long)cpu_khz % KHZ);
|
||
|
|
||
|
if (cpu_khz != tsc_khz) {
|
||
|
pr_info("Detected %lu.%03lu MHz TSC",
|
||
|
(unsigned long)tsc_khz / KHZ,
|
||
|
(unsigned long)tsc_khz % KHZ);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static unsigned long __init get_loops_per_jiffy(void)
|
||
|
{
|
||
|
u64 lpj = (u64)tsc_khz * KHZ;
|
||
|
|
||
|
do_div(lpj, HZ);
|
||
|
return lpj;
|
||
|
}
|
||
|
|
||
|
static void __init tsc_enable_sched_clock(void)
|
||
|
{
|
||
|
/* Sanitize TSC ADJUST before cyc2ns gets initialized */
|
||
|
tsc_store_and_check_tsc_adjust(true);
|
||
|
cyc2ns_init_boot_cpu();
|
||
|
static_branch_enable(&__use_tsc);
|
||
|
}
|
||
|
|
||
|
void __init tsc_early_init(void)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC))
|
||
|
return;
|
||
|
/* Don't change UV TSC multi-chassis synchronization */
|
||
|
if (is_early_uv_system())
|
||
|
return;
|
||
|
if (!determine_cpu_tsc_frequencies(true))
|
||
|
return;
|
||
|
loops_per_jiffy = get_loops_per_jiffy();
|
||
|
|
||
|
tsc_enable_sched_clock();
|
||
|
}
|
||
|
|
||
|
void __init tsc_init(void)
|
||
|
{
|
||
|
/*
|
||
|
* native_calibrate_cpu_early can only calibrate using methods that are
|
||
|
* available early in boot.
|
||
|
*/
|
||
|
if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
|
||
|
x86_platform.calibrate_cpu = native_calibrate_cpu;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_TSC)) {
|
||
|
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!tsc_khz) {
|
||
|
/* We failed to determine frequencies earlier, try again */
|
||
|
if (!determine_cpu_tsc_frequencies(false)) {
|
||
|
mark_tsc_unstable("could not calculate TSC khz");
|
||
|
setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
|
||
|
return;
|
||
|
}
|
||
|
tsc_enable_sched_clock();
|
||
|
}
|
||
|
|
||
|
cyc2ns_init_secondary_cpus();
|
||
|
|
||
|
if (!no_sched_irq_time)
|
||
|
enable_sched_clock_irqtime();
|
||
|
|
||
|
lpj_fine = get_loops_per_jiffy();
|
||
|
use_tsc_delay();
|
||
|
|
||
|
check_system_tsc_reliable();
|
||
|
|
||
|
if (unsynchronized_tsc()) {
|
||
|
mark_tsc_unstable("TSCs unsynchronized");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tsc_clocksource_reliable || no_tsc_watchdog)
|
||
|
clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
|
||
|
|
||
|
clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
|
||
|
detect_art();
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/*
|
||
|
* If we have a constant TSC and are using the TSC for the delay loop,
|
||
|
* we can skip clock calibration if another cpu in the same socket has already
|
||
|
* been calibrated. This assumes that CONSTANT_TSC applies to all
|
||
|
* cpus in the socket - this should be a safe assumption.
|
||
|
*/
|
||
|
unsigned long calibrate_delay_is_known(void)
|
||
|
{
|
||
|
int sibling, cpu = smp_processor_id();
|
||
|
int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
|
||
|
const struct cpumask *mask = topology_core_cpumask(cpu);
|
||
|
|
||
|
if (!constant_tsc || !mask)
|
||
|
return 0;
|
||
|
|
||
|
sibling = cpumask_any_but(mask, cpu);
|
||
|
if (sibling < nr_cpu_ids)
|
||
|
return cpu_data(sibling).loops_per_jiffy;
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|