linux/linux-5.4.31/arch/mips/math-emu/ieee754.c

84 lines
2.9 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/* ieee754 floating point arithmetic
* single and double precision
*
* BUGS
* not much dp done
* doesn't generate IEEE754_INEXACT
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*/
#include <linux/compiler.h>
#include "ieee754.h"
#include "ieee754sp.h"
#include "ieee754dp.h"
/*
* Special constants
*/
/*
* Older GCC requires the inner braces for initialization of union ieee754dp's
* anonymous struct member. Without an error will result.
*/
#define xPCNST(s, b, m, ebias) \
{ \
{ \
.sign = (s), \
.bexp = (b) + ebias, \
.mant = (m) \
} \
}
#define DPCNST(s, b, m) \
xPCNST(s, b, m, DP_EBIAS)
const union ieee754dp __ieee754dp_spcvals[] = {
DPCNST(0, DP_EMIN - 1, 0x0000000000000ULL), /* + zero */
DPCNST(1, DP_EMIN - 1, 0x0000000000000ULL), /* - zero */
DPCNST(0, 0, 0x0000000000000ULL), /* + 1.0 */
DPCNST(1, 0, 0x0000000000000ULL), /* - 1.0 */
DPCNST(0, 3, 0x4000000000000ULL), /* + 10.0 */
DPCNST(1, 3, 0x4000000000000ULL), /* - 10.0 */
DPCNST(0, DP_EMAX + 1, 0x0000000000000ULL), /* + infinity */
DPCNST(1, DP_EMAX + 1, 0x0000000000000ULL), /* - infinity */
DPCNST(0, DP_EMAX + 1, 0x7FFFFFFFFFFFFULL), /* + ind legacy qNaN */
DPCNST(0, DP_EMAX + 1, 0x8000000000000ULL), /* + indef 2008 qNaN */
DPCNST(0, DP_EMAX, 0xFFFFFFFFFFFFFULL), /* + max */
DPCNST(1, DP_EMAX, 0xFFFFFFFFFFFFFULL), /* - max */
DPCNST(0, DP_EMIN, 0x0000000000000ULL), /* + min normal */
DPCNST(1, DP_EMIN, 0x0000000000000ULL), /* - min normal */
DPCNST(0, DP_EMIN - 1, 0x0000000000001ULL), /* + min denormal */
DPCNST(1, DP_EMIN - 1, 0x0000000000001ULL), /* - min denormal */
DPCNST(0, 31, 0x0000000000000ULL), /* + 1.0e31 */
DPCNST(0, 63, 0x0000000000000ULL), /* + 1.0e63 */
};
#define SPCNST(s, b, m) \
xPCNST(s, b, m, SP_EBIAS)
const union ieee754sp __ieee754sp_spcvals[] = {
SPCNST(0, SP_EMIN - 1, 0x000000), /* + zero */
SPCNST(1, SP_EMIN - 1, 0x000000), /* - zero */
SPCNST(0, 0, 0x000000), /* + 1.0 */
SPCNST(1, 0, 0x000000), /* - 1.0 */
SPCNST(0, 3, 0x200000), /* + 10.0 */
SPCNST(1, 3, 0x200000), /* - 10.0 */
SPCNST(0, SP_EMAX + 1, 0x000000), /* + infinity */
SPCNST(1, SP_EMAX + 1, 0x000000), /* - infinity */
SPCNST(0, SP_EMAX + 1, 0x3FFFFF), /* + indef legacy quiet NaN */
SPCNST(0, SP_EMAX + 1, 0x400000), /* + indef 2008 quiet NaN */
SPCNST(0, SP_EMAX, 0x7FFFFF), /* + max normal */
SPCNST(1, SP_EMAX, 0x7FFFFF), /* - max normal */
SPCNST(0, SP_EMIN, 0x000000), /* + min normal */
SPCNST(1, SP_EMIN, 0x000000), /* - min normal */
SPCNST(0, SP_EMIN - 1, 0x000001), /* + min denormal */
SPCNST(1, SP_EMIN - 1, 0x000001), /* - min denormal */
SPCNST(0, 31, 0x000000), /* + 1.0e31 */
SPCNST(0, 63, 0x000000), /* + 1.0e63 */
};