linux/linux-5.4.31/arch/c6x/platforms/dscr.c

596 lines
16 KiB
C
Raw Permalink Normal View History

2024-01-30 10:43:28 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Device State Control Registers driver
*
* Copyright (C) 2011 Texas Instruments Incorporated
* Author: Mark Salter <msalter@redhat.com>
*/
/*
* The Device State Control Registers (DSCR) provide SoC level control over
* a number of peripherals. Details vary considerably among the various SoC
* parts. In general, the DSCR block will provide one or more configuration
* registers often protected by a lock register. One or more key values must
* be written to a lock register in order to unlock the configuration register.
* The configuration register may be used to enable (and disable in some
* cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
* In some cases, a configuration register is write once or the individual
* bits are write once. That is, you may be able to enable a device, but
* will not be able to disable it.
*
* In addition to device configuration, the DSCR block may provide registers
* which are used to reset SoC peripherals, provide device ID information,
* provide MAC addresses, and other miscellaneous functions.
*/
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <asm/soc.h>
#include <asm/dscr.h>
#define MAX_DEVSTATE_IDS 32
#define MAX_DEVCTL_REGS 8
#define MAX_DEVSTAT_REGS 8
#define MAX_LOCKED_REGS 4
#define MAX_SOC_EMACS 2
struct rmii_reset_reg {
u32 reg;
u32 mask;
};
/*
* Some registerd may be locked. In order to write to these
* registers, the key value must first be written to the lockreg.
*/
struct locked_reg {
u32 reg; /* offset from base */
u32 lockreg; /* offset from base */
u32 key; /* unlock key */
};
/*
* This describes a contiguous area of like control bits used to enable/disable
* SoC devices. Each controllable device is given an ID which is used by the
* individual device drivers to control the device state. These IDs start at
* zero and are assigned sequentially to the control bitfield ranges described
* by this structure.
*/
struct devstate_ctl_reg {
u32 reg; /* register holding the control bits */
u8 start_id; /* start id of this range */
u8 num_ids; /* number of devices in this range */
u8 enable_only; /* bits are write-once to enable only */
u8 enable; /* value used to enable device */
u8 disable; /* value used to disable device */
u8 shift; /* starting (rightmost) bit in range */
u8 nbits; /* number of bits per device */
};
/*
* This describes a region of status bits indicating the state of
* various devices. This is used internally to wait for status
* change completion when enabling/disabling a device. Status is
* optional and not all device controls will have a corresponding
* status.
*/
struct devstate_stat_reg {
u32 reg; /* register holding the status bits */
u8 start_id; /* start id of this range */
u8 num_ids; /* number of devices in this range */
u8 enable; /* value indicating enabled state */
u8 disable; /* value indicating disabled state */
u8 shift; /* starting (rightmost) bit in range */
u8 nbits; /* number of bits per device */
};
struct devstate_info {
struct devstate_ctl_reg *ctl;
struct devstate_stat_reg *stat;
};
/* These are callbacks to SOC-specific code. */
struct dscr_ops {
void (*init)(struct device_node *node);
};
struct dscr_regs {
spinlock_t lock;
void __iomem *base;
u32 kick_reg[2];
u32 kick_key[2];
struct locked_reg locked[MAX_LOCKED_REGS];
struct devstate_info devstate_info[MAX_DEVSTATE_IDS];
struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS];
struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
};
static struct dscr_regs dscr;
static struct locked_reg *find_locked_reg(u32 reg)
{
int i;
for (i = 0; i < MAX_LOCKED_REGS; i++)
if (dscr.locked[i].key && reg == dscr.locked[i].reg)
return &dscr.locked[i];
return NULL;
}
/*
* Write to a register with one lock
*/
static void dscr_write_locked1(u32 reg, u32 val,
u32 lock, u32 key)
{
void __iomem *reg_addr = dscr.base + reg;
void __iomem *lock_addr = dscr.base + lock;
/*
* For some registers, the lock is relocked after a short number
* of cycles. We have to put the lock write and register write in
* the same fetch packet to meet this timing. The .align ensures
* the two stw instructions are in the same fetch packet.
*/
asm volatile ("b .s2 0f\n"
"nop 5\n"
" .align 5\n"
"0:\n"
"stw .D1T2 %3,*%2\n"
"stw .D1T2 %1,*%0\n"
:
: "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
);
/* in case the hw doesn't reset the lock */
soc_writel(0, lock_addr);
}
/*
* Write to a register protected by two lock registers
*/
static void dscr_write_locked2(u32 reg, u32 val,
u32 lock0, u32 key0,
u32 lock1, u32 key1)
{
soc_writel(key0, dscr.base + lock0);
soc_writel(key1, dscr.base + lock1);
soc_writel(val, dscr.base + reg);
soc_writel(0, dscr.base + lock0);
soc_writel(0, dscr.base + lock1);
}
static void dscr_write(u32 reg, u32 val)
{
struct locked_reg *lock;
lock = find_locked_reg(reg);
if (lock)
dscr_write_locked1(reg, val, lock->lockreg, lock->key);
else if (dscr.kick_key[0])
dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
dscr.kick_reg[1], dscr.kick_key[1]);
else
soc_writel(val, dscr.base + reg);
}
/*
* Drivers can use this interface to enable/disable SoC IP blocks.
*/
void dscr_set_devstate(int id, enum dscr_devstate_t state)
{
struct devstate_ctl_reg *ctl;
struct devstate_stat_reg *stat;
struct devstate_info *info;
u32 ctl_val, val;
int ctl_shift, ctl_mask;
unsigned long flags;
if (!dscr.base)
return;
if (id < 0 || id >= MAX_DEVSTATE_IDS)
return;
info = &dscr.devstate_info[id];
ctl = info->ctl;
stat = info->stat;
if (ctl == NULL)
return;
ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
switch (state) {
case DSCR_DEVSTATE_ENABLED:
ctl_val = ctl->enable << ctl_shift;
break;
case DSCR_DEVSTATE_DISABLED:
if (ctl->enable_only)
return;
ctl_val = ctl->disable << ctl_shift;
break;
default:
return;
}
spin_lock_irqsave(&dscr.lock, flags);
val = soc_readl(dscr.base + ctl->reg);
val &= ~ctl_mask;
val |= ctl_val;
dscr_write(ctl->reg, val);
spin_unlock_irqrestore(&dscr.lock, flags);
if (!stat)
return;
ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
if (state == DSCR_DEVSTATE_ENABLED)
ctl_val = stat->enable;
else
ctl_val = stat->disable;
do {
val = soc_readl(dscr.base + stat->reg);
val >>= ctl_shift;
val &= ((1 << stat->nbits) - 1);
} while (val != ctl_val);
}
EXPORT_SYMBOL(dscr_set_devstate);
/*
* Drivers can use this to reset RMII module.
*/
void dscr_rmii_reset(int id, int assert)
{
struct rmii_reset_reg *r;
unsigned long flags;
u32 val;
if (id < 0 || id >= MAX_SOC_EMACS)
return;
r = &dscr.rmii_resets[id];
if (r->mask == 0)
return;
spin_lock_irqsave(&dscr.lock, flags);
val = soc_readl(dscr.base + r->reg);
if (assert)
dscr_write(r->reg, val | r->mask);
else
dscr_write(r->reg, val & ~(r->mask));
spin_unlock_irqrestore(&dscr.lock, flags);
}
EXPORT_SYMBOL(dscr_rmii_reset);
static void __init dscr_parse_devstat(struct device_node *node,
void __iomem *base)
{
u32 val;
int err;
err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
if (!err)
c6x_devstat = soc_readl(base + val);
printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
}
static void __init dscr_parse_silicon_rev(struct device_node *node,
void __iomem *base)
{
u32 vals[3];
int err;
err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
if (!err) {
c6x_silicon_rev = soc_readl(base + vals[0]);
c6x_silicon_rev >>= vals[1];
c6x_silicon_rev &= vals[2];
}
}
/*
* Some SoCs will have a pair of fuse registers which hold
* an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
* property is a mapping from fuse register bytes to MAC
* address bytes. The expected format is:
*
* ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
* reg1 b3 b2 b1 b0>
*
* reg0 and reg1 are the offsets of the two fuse registers.
* b3-b0 positionally represent bytes within the fuse register.
* b3 is the most significant byte and b0 is the least.
* Allowable values for b3-b0 are:
*
* 0 = fuse register byte not used in MAC address
* 1-6 = index+1 into c6x_fuse_mac[]
*/
static void __init dscr_parse_mac_fuse(struct device_node *node,
void __iomem *base)
{
u32 vals[10], fuse;
int f, i, j, err;
err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
vals, 10);
if (err)
return;
for (f = 0; f < 2; f++) {
fuse = soc_readl(base + vals[f * 5]);
for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
if (vals[j] && vals[j] <= 6)
c6x_fuse_mac[vals[j] - 1] = fuse >> i;
}
}
static void __init dscr_parse_rmii_resets(struct device_node *node,
void __iomem *base)
{
const __be32 *p;
int i, size;
/* look for RMII reset registers */
p = of_get_property(node, "ti,dscr-rmii-resets", &size);
if (p) {
/* parse all the reg/mask pairs we can handle */
size /= (sizeof(*p) * 2);
if (size > MAX_SOC_EMACS)
size = MAX_SOC_EMACS;
for (i = 0; i < size; i++) {
dscr.rmii_resets[i].reg = be32_to_cpup(p++);
dscr.rmii_resets[i].mask = be32_to_cpup(p++);
}
}
}
static void __init dscr_parse_privperm(struct device_node *node,
void __iomem *base)
{
u32 vals[2];
int err;
err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
if (err)
return;
dscr_write(vals[0], vals[1]);
}
/*
* SoCs may have "locked" DSCR registers which can only be written
* to only after writing a key value to a lock registers. These
* regisers can be described with the "ti,dscr-locked-regs" property.
* This property provides a list of register descriptions with each
* description consisting of three values.
*
* ti,dscr-locked-regs = <reg0 lockreg0 key0
* ...
* regN lockregN keyN>;
*
* reg is the offset of the locked register
* lockreg is the offset of the lock register
* key is the unlock key written to lockreg
*
*/
static void __init dscr_parse_locked_regs(struct device_node *node,
void __iomem *base)
{
struct locked_reg *r;
const __be32 *p;
int i, size;
p = of_get_property(node, "ti,dscr-locked-regs", &size);
if (p) {
/* parse all the register descriptions we can handle */
size /= (sizeof(*p) * 3);
if (size > MAX_LOCKED_REGS)
size = MAX_LOCKED_REGS;
for (i = 0; i < size; i++) {
r = &dscr.locked[i];
r->reg = be32_to_cpup(p++);
r->lockreg = be32_to_cpup(p++);
r->key = be32_to_cpup(p++);
}
}
}
/*
* SoCs may have DSCR registers which are only write enabled after
* writing specific key values to two registers. The two key registers
* and the key values can be parsed from a "ti,dscr-kick-regs"
* propety with the following layout:
*
* ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
*
* kickreg is the offset of the "kick" register
* key is the value which unlocks writing for protected regs
*/
static void __init dscr_parse_kick_regs(struct device_node *node,
void __iomem *base)
{
u32 vals[4];
int err;
err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
if (!err) {
dscr.kick_reg[0] = vals[0];
dscr.kick_key[0] = vals[1];
dscr.kick_reg[1] = vals[2];
dscr.kick_key[1] = vals[3];
}
}
/*
* SoCs may provide controls to enable/disable individual IP blocks. These
* controls in the DSCR usually control pin drivers but also may control
* clocking and or resets. The device tree is used to describe the bitfields
* in registers used to control device state. The number of bits and their
* values may vary even within the same register.
*
* The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
* property. This property is a list where each element describes a contiguous
* range of control fields with like properties. Each element of the list
* consists of 7 cells with the following values:
*
* start_id num_ids reg enable disable start_bit nbits
*
* start_id is device id for the first device control in the range
* num_ids is the number of device controls in the range
* reg is the offset of the register holding the control bits
* enable is the value to enable a device
* disable is the value to disable a device (0xffffffff if cannot disable)
* start_bit is the bit number of the first bit in the range
* nbits is the number of bits per device control
*/
static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
void __iomem *base)
{
struct devstate_ctl_reg *r;
const __be32 *p;
int i, j, size;
p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
if (p) {
/* parse all the ranges we can handle */
size /= (sizeof(*p) * 7);
if (size > MAX_DEVCTL_REGS)
size = MAX_DEVCTL_REGS;
for (i = 0; i < size; i++) {
r = &dscr.devctl[i];
r->start_id = be32_to_cpup(p++);
r->num_ids = be32_to_cpup(p++);
r->reg = be32_to_cpup(p++);
r->enable = be32_to_cpup(p++);
r->disable = be32_to_cpup(p++);
if (r->disable == 0xffffffff)
r->enable_only = 1;
r->shift = be32_to_cpup(p++);
r->nbits = be32_to_cpup(p++);
for (j = r->start_id;
j < (r->start_id + r->num_ids);
j++)
dscr.devstate_info[j].ctl = r;
}
}
}
/*
* SoCs may provide status registers indicating the state (enabled/disabled) of
* devices on the SoC. The device tree is used to describe the bitfields in
* registers used to provide device status. The number of bits and their
* values used to provide status may vary even within the same register.
*
* The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
* property. This property is a list where each element describes a contiguous
* range of status fields with like properties. Each element of the list
* consists of 7 cells with the following values:
*
* start_id num_ids reg enable disable start_bit nbits
*
* start_id is device id for the first device status in the range
* num_ids is the number of devices covered by the range
* reg is the offset of the register holding the status bits
* enable is the value indicating device is enabled
* disable is the value indicating device is disabled
* start_bit is the bit number of the first bit in the range
* nbits is the number of bits per device status
*/
static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
void __iomem *base)
{
struct devstate_stat_reg *r;
const __be32 *p;
int i, j, size;
p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
if (p) {
/* parse all the ranges we can handle */
size /= (sizeof(*p) * 7);
if (size > MAX_DEVSTAT_REGS)
size = MAX_DEVSTAT_REGS;
for (i = 0; i < size; i++) {
r = &dscr.devstat[i];
r->start_id = be32_to_cpup(p++);
r->num_ids = be32_to_cpup(p++);
r->reg = be32_to_cpup(p++);
r->enable = be32_to_cpup(p++);
r->disable = be32_to_cpup(p++);
r->shift = be32_to_cpup(p++);
r->nbits = be32_to_cpup(p++);
for (j = r->start_id;
j < (r->start_id + r->num_ids);
j++)
dscr.devstate_info[j].stat = r;
}
}
}
static struct of_device_id dscr_ids[] __initdata = {
{ .compatible = "ti,c64x+dscr" },
{}
};
/*
* Probe for DSCR area.
*
* This has to be done early on in case timer or interrupt controller
* needs something. e.g. On C6455 SoC, timer must be enabled through
* DSCR before it is functional.
*/
void __init dscr_probe(void)
{
struct device_node *node;
void __iomem *base;
spin_lock_init(&dscr.lock);
node = of_find_matching_node(NULL, dscr_ids);
if (!node)
return;
base = of_iomap(node, 0);
if (!base) {
of_node_put(node);
return;
}
dscr.base = base;
dscr_parse_devstat(node, base);
dscr_parse_silicon_rev(node, base);
dscr_parse_mac_fuse(node, base);
dscr_parse_rmii_resets(node, base);
dscr_parse_locked_regs(node, base);
dscr_parse_kick_regs(node, base);
dscr_parse_devstate_ctl_regs(node, base);
dscr_parse_devstate_stat_regs(node, base);
dscr_parse_privperm(node, base);
}