274 lines
8.1 KiB
C
274 lines
8.1 KiB
C
/**
|
|
* @file lv_math.c
|
|
*
|
|
*/
|
|
|
|
/*********************
|
|
* INCLUDES
|
|
*********************/
|
|
#include "lv_math.h"
|
|
|
|
/*********************
|
|
* DEFINES
|
|
*********************/
|
|
|
|
/**********************
|
|
* TYPEDEFS
|
|
**********************/
|
|
|
|
/**********************
|
|
* STATIC PROTOTYPES
|
|
**********************/
|
|
|
|
/**********************
|
|
* STATIC VARIABLES
|
|
**********************/
|
|
static const int16_t sin0_90_table[] = {
|
|
0, 572, 1144, 1715, 2286, 2856, 3425, 3993, 4560, 5126, 5690, 6252, 6813, 7371, 7927, 8481,
|
|
9032, 9580, 10126, 10668, 11207, 11743, 12275, 12803, 13328, 13848, 14364, 14876, 15383, 15886, 16383, 16876,
|
|
17364, 17846, 18323, 18794, 19260, 19720, 20173, 20621, 21062, 21497, 21925, 22347, 22762, 23170, 23571, 23964,
|
|
24351, 24730, 25101, 25465, 25821, 26169, 26509, 26841, 27165, 27481, 27788, 28087, 28377, 28659, 28932, 29196,
|
|
29451, 29697, 29934, 30162, 30381, 30591, 30791, 30982, 31163, 31335, 31498, 31650, 31794, 31927, 32051, 32165,
|
|
32269, 32364, 32448, 32523, 32587, 32642, 32687, 32722, 32747, 32762, 32767
|
|
};
|
|
|
|
/**********************
|
|
* MACROS
|
|
**********************/
|
|
|
|
/**********************
|
|
* GLOBAL FUNCTIONS
|
|
**********************/
|
|
|
|
/**
|
|
* Return with sinus of an angle
|
|
* @param angle
|
|
* @return sinus of 'angle'. sin(-90) = -32767, sin(90) = 32767
|
|
*/
|
|
LV_ATTRIBUTE_FAST_MEM int16_t lv_trigo_sin(int16_t angle)
|
|
{
|
|
int16_t ret = 0;
|
|
angle = angle % 360;
|
|
|
|
if(angle < 0) angle = 360 + angle;
|
|
|
|
if(angle < 90) {
|
|
ret = sin0_90_table[angle];
|
|
}
|
|
else if(angle >= 90 && angle < 180) {
|
|
angle = 180 - angle;
|
|
ret = sin0_90_table[angle];
|
|
}
|
|
else if(angle >= 180 && angle < 270) {
|
|
angle = angle - 180;
|
|
ret = -sin0_90_table[angle];
|
|
}
|
|
else { /*angle >=270*/
|
|
angle = 360 - angle;
|
|
ret = -sin0_90_table[angle];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Calculate a value of a Cubic Bezier function.
|
|
* @param t time in range of [0..LV_BEZIER_VAL_MAX]
|
|
* @param u0 start values in range of [0..LV_BEZIER_VAL_MAX]
|
|
* @param u1 control value 1 values in range of [0..LV_BEZIER_VAL_MAX]
|
|
* @param u2 control value 2 in range of [0..LV_BEZIER_VAL_MAX]
|
|
* @param u3 end values in range of [0..LV_BEZIER_VAL_MAX]
|
|
* @return the value calculated from the given parameters in range of [0..LV_BEZIER_VAL_MAX]
|
|
*/
|
|
uint32_t lv_bezier3(uint32_t t, uint32_t u0, uint32_t u1, uint32_t u2, uint32_t u3)
|
|
{
|
|
uint32_t t_rem = 1024 - t;
|
|
uint32_t t_rem2 = (t_rem * t_rem) >> 10;
|
|
uint32_t t_rem3 = (t_rem2 * t_rem) >> 10;
|
|
uint32_t t2 = (t * t) >> 10;
|
|
uint32_t t3 = (t2 * t) >> 10;
|
|
|
|
uint32_t v1 = (t_rem3 * u0) >> 10;
|
|
uint32_t v2 = (3 * t_rem2 * t * u1) >> 20;
|
|
uint32_t v3 = (3 * t_rem * t2 * u2) >> 20;
|
|
uint32_t v4 = (t3 * u3) >> 10;
|
|
|
|
return v1 + v2 + v3 + v4;
|
|
}
|
|
|
|
/**
|
|
* Get the square root of a number
|
|
* @param x integer which square root should be calculated
|
|
* @param q store the result here. q->i: integer part, q->f: fractional part in 1/256 unit
|
|
* @param mask optional to skip some iterations if the magnitude of the root is known.
|
|
* Set to 0x8000 by default.
|
|
* If root < 16: mask = 0x80
|
|
* If root < 256: mask = 0x800
|
|
* Else: mask = 0x8000
|
|
*/
|
|
LV_ATTRIBUTE_FAST_MEM void lv_sqrt(uint32_t x, lv_sqrt_res_t * q, uint32_t mask)
|
|
{
|
|
x = x << 8; /*To get 4 bit precision. (sqrt(256) = 16 = 4 bit)*/
|
|
|
|
uint32_t root = 0;
|
|
uint32_t trial;
|
|
// http://ww1.microchip.com/...en/AppNotes/91040a.pdf
|
|
do {
|
|
trial = root + mask;
|
|
if(trial * trial <= x) root = trial;
|
|
mask = mask >> 1;
|
|
} while(mask);
|
|
|
|
q->i = root >> 4;
|
|
q->f = (root & 0xf) << 4;
|
|
}
|
|
|
|
/**
|
|
* Calculate the atan2 of a vector.
|
|
* @param x
|
|
* @param y
|
|
* @return the angle in degree calculated from the given parameters in range of [0..360]
|
|
*/
|
|
uint16_t lv_atan2(int x, int y)
|
|
{
|
|
// Fast XY vector to integer degree algorithm - Jan 2011 www.RomanBlack.com
|
|
// Converts any XY values including 0 to a degree value that should be
|
|
// within +/- 1 degree of the accurate value without needing
|
|
// large slow trig functions like ArcTan() or ArcCos().
|
|
// NOTE! at least one of the X or Y values must be non-zero!
|
|
// This is the full version, for all 4 quadrants and will generate
|
|
// the angle in integer degrees from 0-360.
|
|
// Any values of X and Y are usable including negative values provided
|
|
// they are between -1456 and 1456 so the 16bit multiply does not overflow.
|
|
|
|
unsigned char negflag;
|
|
unsigned char tempdegree;
|
|
unsigned char comp;
|
|
unsigned int degree; // this will hold the result
|
|
unsigned int ux;
|
|
unsigned int uy;
|
|
|
|
// Save the sign flags then remove signs and get XY as unsigned ints
|
|
negflag = 0;
|
|
if(x < 0) {
|
|
negflag += 0x01; // x flag bit
|
|
x = (0 - x); // is now +
|
|
}
|
|
ux = x; // copy to unsigned var before multiply
|
|
if(y < 0) {
|
|
negflag += 0x02; // y flag bit
|
|
y = (0 - y); // is now +
|
|
}
|
|
uy = y; // copy to unsigned var before multiply
|
|
|
|
// 1. Calc the scaled "degrees"
|
|
if(ux > uy) {
|
|
degree = (uy * 45) / ux; // degree result will be 0-45 range
|
|
negflag += 0x10; // octant flag bit
|
|
}
|
|
else {
|
|
degree = (ux * 45) / uy; // degree result will be 0-45 range
|
|
}
|
|
|
|
// 2. Compensate for the 4 degree error curve
|
|
comp = 0;
|
|
tempdegree = degree; // use an unsigned char for speed!
|
|
if(tempdegree > 22) { // if top half of range
|
|
if(tempdegree <= 44) comp++;
|
|
if(tempdegree <= 41) comp++;
|
|
if(tempdegree <= 37) comp++;
|
|
if(tempdegree <= 32) comp++; // max is 4 degrees compensated
|
|
}
|
|
else { // else is lower half of range
|
|
if(tempdegree >= 2) comp++;
|
|
if(tempdegree >= 6) comp++;
|
|
if(tempdegree >= 10) comp++;
|
|
if(tempdegree >= 15) comp++; // max is 4 degrees compensated
|
|
}
|
|
degree += comp; // degree is now accurate to +/- 1 degree!
|
|
|
|
// Invert degree if it was X>Y octant, makes 0-45 into 90-45
|
|
if(negflag & 0x10) degree = (90 - degree);
|
|
|
|
// 3. Degree is now 0-90 range for this quadrant,
|
|
// need to invert it for whichever quadrant it was in
|
|
if(negflag & 0x02) { // if -Y
|
|
if(negflag & 0x01) // if -Y -X
|
|
degree = (180 + degree);
|
|
else // else is -Y +X
|
|
degree = (180 - degree);
|
|
}
|
|
else { // else is +Y
|
|
if(negflag & 0x01) // if +Y -X
|
|
degree = (360 - degree);
|
|
}
|
|
return degree;
|
|
}
|
|
|
|
/**
|
|
* Calculate the integer exponents.
|
|
* @param base
|
|
* @param power
|
|
* @return base raised to the power exponent
|
|
*/
|
|
int64_t lv_pow(int64_t base, int8_t exp)
|
|
{
|
|
int64_t result = 1;
|
|
while(exp) {
|
|
if(exp & 1)
|
|
result *= base;
|
|
exp >>= 1;
|
|
base *= base;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Get the mapped of a number given an input and output range
|
|
* @param x integer which mapped value should be calculated
|
|
* @param min_in min input range
|
|
* @param max_in max input range
|
|
* @param min_out max output range
|
|
* @param max_out max output range
|
|
* @return the mapped number
|
|
*/
|
|
int32_t lv_map(int32_t x, int32_t min_in, int32_t max_in, int32_t min_out, int32_t max_out)
|
|
{
|
|
if(max_in >= min_in && x >= max_in) return max_out;
|
|
if(max_in >= min_in && x <= min_in) return min_out;
|
|
|
|
if(max_in <= min_in && x <= max_in) return max_out;
|
|
if(max_in <= min_in && x >= min_in) return min_out;
|
|
|
|
/**
|
|
* The equation should be:
|
|
* ((x - min_in) * delta_out) / delta in) + min_out
|
|
* To avoid rounding error reorder the operations:
|
|
* (x - min_in) * (delta_out / delta_min) + min_out
|
|
*/
|
|
|
|
int32_t delta_in = max_in - min_in;
|
|
int32_t delta_out = max_out - min_out;
|
|
|
|
return ((x - min_in) * delta_out) / delta_in + min_out;
|
|
}
|
|
|
|
uint32_t lv_rand(uint32_t min, uint32_t max)
|
|
{
|
|
static uint32_t a = 0x1234ABCD; /*Seed*/
|
|
|
|
/*Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"*/
|
|
uint32_t x = a;
|
|
x ^= x << 13;
|
|
x ^= x >> 17;
|
|
x ^= x << 5;
|
|
a = x;
|
|
|
|
return (a % (max - min + 1)) + min;
|
|
}
|
|
|
|
/**********************
|
|
* STATIC FUNCTIONS
|
|
**********************/
|