lvgl_cpp/lvgl/misc/lv_mem.c

553 lines
13 KiB
C

/**
* @file lv_mem.c
* General and portable implementation of malloc and free.
* The dynamic memory monitoring is also supported.
*/
/*********************
* INCLUDES
*********************/
#include "lv_mem.h"
#include "lv_tlsf.h"
#include "lv_gc.h"
#include "lv_assert.h"
#include "lv_log.h"
#if LV_MEM_CUSTOM != 0
#include LV_MEM_CUSTOM_INCLUDE
#endif
#ifdef LV_MEM_POOL_INCLUDE
#include LV_MEM_POOL_INCLUDE
#endif
/*********************
* DEFINES
*********************/
/*memset the allocated memories to 0xaa and freed memories to 0xbb (just for testing purposes)*/
#ifndef LV_MEM_ADD_JUNK
#define LV_MEM_ADD_JUNK 0
#endif
#ifdef LV_ARCH_64
#define MEM_UNIT uint64_t
#define ALIGN_MASK 0x7
#else
#define MEM_UNIT uint32_t
#define ALIGN_MASK 0x3
#endif
#define ZERO_MEM_SENTINEL 0xa1b2c3d4
/**********************
* TYPEDEFS
**********************/
/**********************
* STATIC PROTOTYPES
**********************/
#if LV_MEM_CUSTOM == 0
static void lv_mem_walker(void * ptr, size_t size, int used, void * user);
#endif
/**********************
* STATIC VARIABLES
**********************/
#if LV_MEM_CUSTOM == 0
static lv_tlsf_t tlsf;
#endif
static uint32_t zero_mem = ZERO_MEM_SENTINEL; /*Give the address of this variable if 0 byte should be allocated*/
/**********************
* MACROS
**********************/
#if LV_LOG_TRACE_MEM
#define MEM_TRACE(...) LV_LOG_TRACE(__VA_ARGS__)
#else
#define MEM_TRACE(...)
#endif
#define COPY32 *d32 = *s32; d32++; s32++;
#define COPY8 *d8 = *s8; d8++; s8++;
#define SET32(x) *d32 = x; d32++;
#define SET8(x) *d8 = x; d8++;
#define REPEAT8(expr) expr expr expr expr expr expr expr expr
/**********************
* GLOBAL FUNCTIONS
**********************/
/**
* Initialize the dyn_mem module (work memory and other variables)
*/
void lv_mem_init(void)
{
#if LV_MEM_CUSTOM == 0
#if LV_MEM_ADR == 0
#ifdef LV_MEM_POOL_ALLOC
tlsf = lv_tlsf_create_with_pool((void *)LV_MEM_POOL_ALLOC(LV_MEM_SIZE), LV_MEM_SIZE);
#else
/*Allocate a large array to store the dynamically allocated data*/
static LV_ATTRIBUTE_LARGE_RAM_ARRAY MEM_UNIT work_mem_int[LV_MEM_SIZE / sizeof(MEM_UNIT)];
tlsf = lv_tlsf_create_with_pool((void *)work_mem_int, LV_MEM_SIZE);
#endif
#else
tlsf = lv_tlsf_create_with_pool((void *)LV_MEM_ADR, LV_MEM_SIZE);
#endif
#endif
#if LV_MEM_ADD_JUNK
LV_LOG_WARN("LV_MEM_ADD_JUNK is enabled which makes LVGL much slower");
#endif
}
/**
* Clean up the memory buffer which frees all the allocated memories.
* @note It work only if `LV_MEM_CUSTOM == 0`
*/
void lv_mem_deinit(void)
{
#if LV_MEM_CUSTOM == 0
lv_tlsf_destroy(tlsf);
lv_mem_init();
#endif
}
/**
* Allocate a memory dynamically
* @param size size of the memory to allocate in bytes
* @return pointer to the allocated memory
*/
void * lv_mem_alloc(size_t size)
{
MEM_TRACE("allocating %lu bytes", (unsigned long)size);
if(size == 0) {
MEM_TRACE("using zero_mem");
return &zero_mem;
}
#if LV_MEM_CUSTOM == 0
void * alloc = lv_tlsf_malloc(tlsf, size);
#else
void * alloc = LV_MEM_CUSTOM_ALLOC(size);
#endif
if(alloc == NULL) {
LV_LOG_ERROR("couldn't allocate memory (%lu bytes)", (unsigned long)size);
lv_mem_monitor_t mon;
lv_mem_monitor(&mon);
LV_LOG_ERROR("used: %6d (%3d %%), frag: %3d %%, biggest free: %6d",
(int)(mon.total_size - mon.free_size), mon.used_pct, mon.frag_pct,
(int)mon.free_biggest_size);
}
#if LV_MEM_ADD_JUNK
else {
lv_memset(alloc, 0xaa, size);
}
#endif
MEM_TRACE("allocated at %p", alloc);
return alloc;
}
/**
* Free an allocated data
* @param data pointer to an allocated memory
*/
void lv_mem_free(void * data)
{
MEM_TRACE("freeing %p", data);
if(data == &zero_mem) return;
if(data == NULL) return;
#if LV_MEM_CUSTOM == 0
# if LV_MEM_ADD_JUNK
lv_memset(data, 0xbb, lv_tlsf_block_size(data));
# endif
lv_tlsf_free(tlsf, data);
#else
LV_MEM_CUSTOM_FREE(data);
#endif
}
/**
* Reallocate a memory with a new size. The old content will be kept.
* @param data pointer to an allocated memory.
* Its content will be copied to the new memory block and freed
* @param new_size the desired new size in byte
* @return pointer to the new memory
*/
void * lv_mem_realloc(void * data_p, size_t new_size)
{
MEM_TRACE("reallocating %p with %lu size", data_p, (unsigned long)new_size);
if(new_size == 0) {
MEM_TRACE("using zero_mem");
lv_mem_free(data_p);
return &zero_mem;
}
if(data_p == &zero_mem) return lv_mem_alloc(new_size);
#if LV_MEM_CUSTOM == 0
void * new_p = lv_tlsf_realloc(tlsf, data_p, new_size);
#else
void * new_p = LV_MEM_CUSTOM_REALLOC(data_p, new_size);
#endif
if(new_p == NULL) {
LV_LOG_ERROR("couldn't allocate memory");
return NULL;
}
MEM_TRACE("allocated at %p", new_p);
return new_p;
}
lv_res_t lv_mem_test(void)
{
if(zero_mem != ZERO_MEM_SENTINEL) {
LV_LOG_WARN("zero_mem is written");
return LV_RES_INV;
}
#if LV_MEM_CUSTOM == 0
if(lv_tlsf_check(tlsf)) {
LV_LOG_WARN("failed");
return LV_RES_INV;
}
if(lv_tlsf_check_pool(lv_tlsf_get_pool(tlsf))) {
LV_LOG_WARN("pool failed");
return LV_RES_INV;
}
#endif
MEM_TRACE("passed");
return LV_RES_OK;
}
/**
* Give information about the work memory of dynamic allocation
* @param mon_p pointer to a lv_mem_monitor_t variable,
* the result of the analysis will be stored here
*/
void lv_mem_monitor(lv_mem_monitor_t * mon_p)
{
/*Init the data*/
lv_memset(mon_p, 0, sizeof(lv_mem_monitor_t));
#if LV_MEM_CUSTOM == 0
MEM_TRACE("begin");
lv_tlsf_walk_pool(lv_tlsf_get_pool(tlsf), lv_mem_walker, mon_p);
mon_p->total_size = LV_MEM_SIZE;
mon_p->used_pct = 100 - (100U * mon_p->free_size) / mon_p->total_size;
if(mon_p->free_size > 0) {
mon_p->frag_pct = mon_p->free_biggest_size * 100U / mon_p->free_size;
mon_p->frag_pct = 100 - mon_p->frag_pct;
}
else {
mon_p->frag_pct = 0; /*no fragmentation if all the RAM is used*/
}
MEM_TRACE("finished");
#endif
}
/**
* Get a temporal buffer with the given size.
* @param size the required size
*/
void * lv_mem_buf_get(uint32_t size)
{
if(size == 0) return NULL;
MEM_TRACE("begin, getting %d bytes", size);
/*Try to find a free buffer with suitable size*/
int8_t i_guess = -1;
for(uint8_t i = 0; i < LV_MEM_BUF_MAX_NUM; i++) {
if(LV_GC_ROOT(lv_mem_buf[i]).used == 0 && LV_GC_ROOT(lv_mem_buf[i]).size >= size) {
if(LV_GC_ROOT(lv_mem_buf[i]).size == size) {
LV_GC_ROOT(lv_mem_buf[i]).used = 1;
return LV_GC_ROOT(lv_mem_buf[i]).p;
}
else if(i_guess < 0) {
i_guess = i;
}
/*If size of `i` is closer to `size` prefer it*/
else if(LV_GC_ROOT(lv_mem_buf[i]).size < LV_GC_ROOT(lv_mem_buf[i_guess]).size) {
i_guess = i;
}
}
}
if(i_guess >= 0) {
LV_GC_ROOT(lv_mem_buf[i_guess]).used = 1;
MEM_TRACE("returning already allocated buffer (buffer id: %d, address: %p)", i_guess,
LV_GC_ROOT(lv_mem_buf[i_guess]).p);
return LV_GC_ROOT(lv_mem_buf[i_guess]).p;
}
/*Reallocate a free buffer*/
for(uint8_t i = 0; i < LV_MEM_BUF_MAX_NUM; i++) {
if(LV_GC_ROOT(lv_mem_buf[i]).used == 0) {
/*if this fails you probably need to increase your LV_MEM_SIZE/heap size*/
void * buf = lv_mem_realloc(LV_GC_ROOT(lv_mem_buf[i]).p, size);
LV_ASSERT_MSG(buf != NULL, "Out of memory, can't allocate a new buffer (increase your LV_MEM_SIZE/heap size)");
if(buf == NULL) return NULL;
LV_GC_ROOT(lv_mem_buf[i]).used = 1;
LV_GC_ROOT(lv_mem_buf[i]).size = size;
LV_GC_ROOT(lv_mem_buf[i]).p = buf;
MEM_TRACE("allocated (buffer id: %d, address: %p)", i, LV_GC_ROOT(lv_mem_buf[i]).p);
return LV_GC_ROOT(lv_mem_buf[i]).p;
}
}
LV_LOG_ERROR("no more buffers. (increase LV_MEM_BUF_MAX_NUM)");
LV_ASSERT_MSG(false, "No more buffers. Increase LV_MEM_BUF_MAX_NUM.");
return NULL;
}
/**
* Release a memory buffer
* @param p buffer to release
*/
void lv_mem_buf_release(void * p)
{
MEM_TRACE("begin (address: %p)", p);
for(uint8_t i = 0; i < LV_MEM_BUF_MAX_NUM; i++) {
if(LV_GC_ROOT(lv_mem_buf[i]).p == p) {
LV_GC_ROOT(lv_mem_buf[i]).used = 0;
return;
}
}
LV_LOG_ERROR("p is not a known buffer");
}
/**
* Free all memory buffers
*/
void lv_mem_buf_free_all(void)
{
for(uint8_t i = 0; i < LV_MEM_BUF_MAX_NUM; i++) {
if(LV_GC_ROOT(lv_mem_buf[i]).p) {
lv_mem_free(LV_GC_ROOT(lv_mem_buf[i]).p);
LV_GC_ROOT(lv_mem_buf[i]).p = NULL;
LV_GC_ROOT(lv_mem_buf[i]).used = 0;
LV_GC_ROOT(lv_mem_buf[i]).size = 0;
}
}
}
#if LV_MEMCPY_MEMSET_STD == 0
/**
* Same as `memcpy` but optimized for 4 byte operation.
* @param dst pointer to the destination buffer
* @param src pointer to the source buffer
* @param len number of byte to copy
*/
LV_ATTRIBUTE_FAST_MEM void * lv_memcpy(void * dst, const void * src, size_t len)
{
uint8_t * d8 = dst;
const uint8_t * s8 = src;
lv_uintptr_t d_align = (lv_uintptr_t)d8 & ALIGN_MASK;
lv_uintptr_t s_align = (lv_uintptr_t)s8 & ALIGN_MASK;
/*Byte copy for unaligned memories*/
if(s_align != d_align) {
while(len > 32) {
REPEAT8(COPY8);
REPEAT8(COPY8);
REPEAT8(COPY8);
REPEAT8(COPY8);
len -= 32;
}
while(len) {
COPY8
len--;
}
return dst;
}
/*Make the memories aligned*/
if(d_align) {
d_align = ALIGN_MASK + 1 - d_align;
while(d_align && len) {
COPY8;
d_align--;
len--;
}
}
uint32_t * d32 = (uint32_t *)d8;
const uint32_t * s32 = (uint32_t *)s8;
while(len > 32) {
REPEAT8(COPY32)
len -= 32;
}
while(len > 4) {
COPY32;
len -= 4;
}
d8 = (uint8_t *)d32;
s8 = (const uint8_t *)s32;
while(len) {
COPY8
len--;
}
return dst;
}
/**
* Same as `memset` but optimized for 4 byte operation.
* @param dst pointer to the destination buffer
* @param v value to set [0..255]
* @param len number of byte to set
*/
LV_ATTRIBUTE_FAST_MEM void lv_memset(void * dst, uint8_t v, size_t len)
{
uint8_t * d8 = (uint8_t *)dst;
uintptr_t d_align = (lv_uintptr_t) d8 & ALIGN_MASK;
/*Make the address aligned*/
if(d_align) {
d_align = ALIGN_MASK + 1 - d_align;
while(d_align && len) {
SET8(v);
len--;
d_align--;
}
}
uint32_t v32 = (uint32_t)v + ((uint32_t)v << 8) + ((uint32_t)v << 16) + ((uint32_t)v << 24);
uint32_t * d32 = (uint32_t *)d8;
while(len > 32) {
REPEAT8(SET32(v32));
len -= 32;
}
while(len > 4) {
SET32(v32);
len -= 4;
}
d8 = (uint8_t *)d32;
while(len) {
SET8(v);
len--;
}
}
/**
* Same as `memset(dst, 0x00, len)` but optimized for 4 byte operation.
* @param dst pointer to the destination buffer
* @param len number of byte to set
*/
LV_ATTRIBUTE_FAST_MEM void lv_memset_00(void * dst, size_t len)
{
uint8_t * d8 = (uint8_t *)dst;
uintptr_t d_align = (lv_uintptr_t) d8 & ALIGN_MASK;
/*Make the address aligned*/
if(d_align) {
d_align = ALIGN_MASK + 1 - d_align;
while(d_align && len) {
SET8(0);
len--;
d_align--;
}
}
uint32_t * d32 = (uint32_t *)d8;
while(len > 32) {
REPEAT8(SET32(0));
len -= 32;
}
while(len > 4) {
SET32(0);
len -= 4;
}
d8 = (uint8_t *)d32;
while(len) {
SET8(0);
len--;
}
}
/**
* Same as `memset(dst, 0xFF, len)` but optimized for 4 byte operation.
* @param dst pointer to the destination buffer
* @param len number of byte to set
*/
LV_ATTRIBUTE_FAST_MEM void lv_memset_ff(void * dst, size_t len)
{
uint8_t * d8 = (uint8_t *)dst;
uintptr_t d_align = (lv_uintptr_t) d8 & ALIGN_MASK;
/*Make the address aligned*/
if(d_align) {
d_align = ALIGN_MASK + 1 - d_align;
while(d_align && len) {
SET8(0xFF);
len--;
d_align--;
}
}
uint32_t * d32 = (uint32_t *)d8;
while(len > 32) {
REPEAT8(SET32(0xFFFFFFFF));
len -= 32;
}
while(len > 4) {
SET32(0xFFFFFFFF);
len -= 4;
}
d8 = (uint8_t *)d32;
while(len) {
SET8(0xFF);
len--;
}
}
#endif /*LV_MEMCPY_MEMSET_STD*/
/**********************
* STATIC FUNCTIONS
**********************/
#if LV_MEM_CUSTOM == 0
static void lv_mem_walker(void * ptr, size_t size, int used, void * user)
{
LV_UNUSED(ptr);
lv_mem_monitor_t * mon_p = user;
if(used) {
mon_p->used_cnt++;
}
else {
mon_p->free_cnt++;
mon_p->free_size += size;
if(size > mon_p->free_biggest_size)
mon_p->free_biggest_size = size;
}
}
#endif