Next: , Previous: , Up: Target Builtins   [Contents][Index]


6.59.20 PowerPC Built-in Functions

The following built-in functions are always available and can be used to check the PowerPC target platform type:

Built-in Function: void __builtin_cpu_init (void)

This function is a nop on the PowerPC platform and is included solely to maintain API compatibility with the x86 builtins.

Built-in Function: int __builtin_cpu_is (const char *cpuname)

This function returns a value of 1 if the run-time CPU is of type cpuname and returns 0 otherwise. The following CPU names can be detected:

power9

IBM POWER9 Server CPU.

power8

IBM POWER8 Server CPU.

power7

IBM POWER7 Server CPU.

power6x

IBM POWER6 Server CPU (RAW mode).

power6

IBM POWER6 Server CPU (Architected mode).

power5+

IBM POWER5+ Server CPU.

power5

IBM POWER5 Server CPU.

ppc970

IBM 970 Server CPU (ie, Apple G5).

power4

IBM POWER4 Server CPU.

ppca2

IBM A2 64-bit Embedded CPU

ppc476

IBM PowerPC 476FP 32-bit Embedded CPU.

ppc464

IBM PowerPC 464 32-bit Embedded CPU.

ppc440

PowerPC 440 32-bit Embedded CPU.

ppc405

PowerPC 405 32-bit Embedded CPU.

ppc-cell-be

IBM PowerPC Cell Broadband Engine Architecture CPU.

Here is an example:

if (__builtin_cpu_is ("power8"))
  {
     do_power8 (); // POWER8 specific implementation.
  }
else
  {
     do_generic (); // Generic implementation.
  }
Built-in Function: int __builtin_cpu_supports (const char *feature)

This function returns a value of 1 if the run-time CPU supports the HWCAP feature feature and returns 0 otherwise. The following features can be detected:

4xxmac

4xx CPU has a Multiply Accumulator.

altivec

CPU has a SIMD/Vector Unit.

arch_2_05

CPU supports ISA 2.05 (eg, POWER6)

arch_2_06

CPU supports ISA 2.06 (eg, POWER7)

arch_2_07

CPU supports ISA 2.07 (eg, POWER8)

arch_3_00

CPU supports ISA 3.00 (eg, POWER9)

archpmu

CPU supports the set of compatible performance monitoring events.

booke

CPU supports the Embedded ISA category.

cellbe

CPU has a CELL broadband engine.

dfp

CPU has a decimal floating point unit.

dscr

CPU supports the data stream control register.

ebb

CPU supports event base branching.

efpdouble

CPU has a SPE double precision floating point unit.

efpsingle

CPU has a SPE single precision floating point unit.

fpu

CPU has a floating point unit.

htm

CPU has hardware transaction memory instructions.

htm-nosc

Kernel aborts hardware transactions when a syscall is made.

ic_snoop

CPU supports icache snooping capabilities.

ieee128

CPU supports 128-bit IEEE binary floating point instructions.

isel

CPU supports the integer select instruction.

mmu

CPU has a memory management unit.

notb

CPU does not have a timebase (eg, 601 and 403gx).

pa6t

CPU supports the PA Semi 6T CORE ISA.

power4

CPU supports ISA 2.00 (eg, POWER4)

power5

CPU supports ISA 2.02 (eg, POWER5)

power5+

CPU supports ISA 2.03 (eg, POWER5+)

power6x

CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.

ppc32

CPU supports 32-bit mode execution.

ppc601

CPU supports the old POWER ISA (eg, 601)

ppc64

CPU supports 64-bit mode execution.

ppcle

CPU supports a little-endian mode that uses address swizzling.

smt

CPU support simultaneous multi-threading.

spe

CPU has a signal processing extension unit.

tar

CPU supports the target address register.

true_le

CPU supports true little-endian mode.

ucache

CPU has unified I/D cache.

vcrypto

CPU supports the vector cryptography instructions.

vsx

CPU supports the vector-scalar extension.

Here is an example:

if (__builtin_cpu_supports ("fpu"))
  {
     asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
  }
else
  {
     dst = __fadd (src1, src2); // Software FP addition function.
  }

These built-in functions are available for the PowerPC family of processors:

float __builtin_recipdivf (float, float);
float __builtin_rsqrtf (float);
double __builtin_recipdiv (double, double);
double __builtin_rsqrt (double);
uint64_t __builtin_ppc_get_timebase ();
unsigned long __builtin_ppc_mftb ();
double __builtin_unpack_longdouble (long double, int);
long double __builtin_pack_longdouble (double, double);

The vec_rsqrt, __builtin_rsqrt, and __builtin_rsqrtf functions generate multiple instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate instructions.

The __builtin_recipdiv, and __builtin_recipdivf functions generate multiple instructions to implement division using the reciprocal estimate instructions.

The __builtin_ppc_get_timebase and __builtin_ppc_mftb functions generate instructions to read the Time Base Register. The __builtin_ppc_get_timebase function may generate multiple instructions and always returns the 64 bits of the Time Base Register. The __builtin_ppc_mftb function always generates one instruction and returns the Time Base Register value as an unsigned long, throwing away the most significant word on 32-bit environments.

Additional built-in functions are available for the 64-bit PowerPC family of processors, for efficient use of 128-bit floating point (__float128) values.

The following floating-point built-in functions are available with -mfloat128 and Altivec support. All of them implement the function that is part of the name.

__float128 __builtin_fabsq (__float128)
__float128 __builtin_copysignq (__float128, __float128)

The following built-in functions are available with -mfloat128 and Altivec support.

__float128 __builtin_infq (void)

Similar to __builtin_inf, except the return type is __float128.

__float128 __builtin_huge_valq (void)

Similar to __builtin_huge_val, except the return type is __float128.

__float128 __builtin_nanq (void)

Similar to __builtin_nan, except the return type is __float128.

__float128 __builtin_nansq (void)

Similar to __builtin_nans, except the return type is __float128.

The following built-in functions are available for the PowerPC family of processors, starting with ISA 2.06 or later (-mcpu=power7 or -mpopcntd):

long __builtin_bpermd (long, long);
int __builtin_divwe (int, int);
int __builtin_divweo (int, int);
unsigned int __builtin_divweu (unsigned int, unsigned int);
unsigned int __builtin_divweuo (unsigned int, unsigned int);
long __builtin_divde (long, long);
long __builtin_divdeo (long, long);
unsigned long __builtin_divdeu (unsigned long, unsigned long);
unsigned long __builtin_divdeuo (unsigned long, unsigned long);
unsigned int cdtbcd (unsigned int);
unsigned int cbcdtd (unsigned int);
unsigned int addg6s (unsigned int, unsigned int);

The __builtin_divde, __builtin_divdeo, __builtin_divdeu, __builtin_divdeou functions require a 64-bit environment support ISA 2.06 or later.

The following built-in functions are available for the PowerPC family of processors, starting with ISA 3.0 or later (-mcpu=power9):

long long __builtin_darn (void);
long long __builtin_darn_raw (void);
int __builtin_darn_32 (void);

int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);

int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);

The __builtin_darn and __builtin_darn_raw functions require a 64-bit environment supporting ISA 3.0 or later. The __builtin_darn function provides a 64-bit conditioned random number. The __builtin_darn_raw function provides a 64-bit raw random number. The __builtin_darn_32 function provides a 32-bit random number.

The __builtin_dfp_dtstsfi_lt function returns a non-zero value if and only if the number of signficant digits of its value argument is less than its comparison argument. The __builtin_dfp_dtstsfi_lt_dd and __builtin_dfp_dtstsfi_lt_td functions behave similarly, but require that the type of the value argument be __Decimal64 and __Decimal128 respectively.

The __builtin_dfp_dtstsfi_gt function returns a non-zero value if and only if the number of signficant digits of its value argument is greater than its comparison argument. The __builtin_dfp_dtstsfi_gt_dd and __builtin_dfp_dtstsfi_gt_td functions behave similarly, but require that the type of the value argument be __Decimal64 and __Decimal128 respectively.

The __builtin_dfp_dtstsfi_eq function returns a non-zero value if and only if the number of signficant digits of its value argument equals its comparison argument. The __builtin_dfp_dtstsfi_eq_dd and __builtin_dfp_dtstsfi_eq_td functions behave similarly, but require that the type of the value argument be __Decimal64 and __Decimal128 respectively.

The __builtin_dfp_dtstsfi_ov function returns a non-zero value if and only if its value argument has an undefined number of significant digits, such as when value is an encoding of NaN. The __builtin_dfp_dtstsfi_ov_dd and __builtin_dfp_dtstsfi_ov_td functions behave similarly, but require that the type of the value argument be __Decimal64 and __Decimal128 respectively.

The following built-in functions are available for the PowerPC family of processors when hardware decimal floating point (-mhard-dfp) is available:

_Decimal64 __builtin_dxex (_Decimal64);
_Decimal128 __builtin_dxexq (_Decimal128);
_Decimal64 __builtin_ddedpd (int, _Decimal64);
_Decimal128 __builtin_ddedpdq (int, _Decimal128);
_Decimal64 __builtin_denbcd (int, _Decimal64);
_Decimal128 __builtin_denbcdq (int, _Decimal128);
_Decimal64 __builtin_diex (_Decimal64, _Decimal64);
_Decimal128 _builtin_diexq (_Decimal128, _Decimal128);
_Decimal64 __builtin_dscli (_Decimal64, int);
_Decimal128 __builtin_dscliq (_Decimal128, int);
_Decimal64 __builtin_dscri (_Decimal64, int);
_Decimal128 __builtin_dscriq (_Decimal128, int);
unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
_Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);

The following built-in functions are available for the PowerPC family of processors when the Vector Scalar (vsx) instruction set is available:

unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
                                                unsigned long long);

Next: , Previous: , Up: Target Builtins   [Contents][Index]