linux/linux-5.18.11/sound/soc/sh/rz-ssi.c

1083 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Renesas RZ/G2L ASoC Serial Sound Interface (SSIF-2) Driver
//
// Copyright (C) 2021 Renesas Electronics Corp.
// Copyright (C) 2019 Chris Brandt.
//
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <sound/soc.h>
/* REGISTER OFFSET */
#define SSICR 0x000
#define SSISR 0x004
#define SSIFCR 0x010
#define SSIFSR 0x014
#define SSIFTDR 0x018
#define SSIFRDR 0x01c
#define SSIOFR 0x020
#define SSISCR 0x024
/* SSI REGISTER BITS */
#define SSICR_DWL(x) (((x) & 0x7) << 19)
#define SSICR_SWL(x) (((x) & 0x7) << 16)
#define SSICR_CKS BIT(30)
#define SSICR_TUIEN BIT(29)
#define SSICR_TOIEN BIT(28)
#define SSICR_RUIEN BIT(27)
#define SSICR_ROIEN BIT(26)
#define SSICR_MST BIT(14)
#define SSICR_BCKP BIT(13)
#define SSICR_LRCKP BIT(12)
#define SSICR_CKDV(x) (((x) & 0xf) << 4)
#define SSICR_TEN BIT(1)
#define SSICR_REN BIT(0)
#define SSISR_TUIRQ BIT(29)
#define SSISR_TOIRQ BIT(28)
#define SSISR_RUIRQ BIT(27)
#define SSISR_ROIRQ BIT(26)
#define SSISR_IIRQ BIT(25)
#define SSIFCR_AUCKE BIT(31)
#define SSIFCR_SSIRST BIT(16)
#define SSIFCR_TIE BIT(3)
#define SSIFCR_RIE BIT(2)
#define SSIFCR_TFRST BIT(1)
#define SSIFCR_RFRST BIT(0)
#define SSIFSR_TDC_MASK 0x3f
#define SSIFSR_TDC_SHIFT 24
#define SSIFSR_RDC_MASK 0x3f
#define SSIFSR_RDC_SHIFT 8
#define SSIFSR_TDC(x) (((x) & 0x1f) << 24)
#define SSIFSR_TDE BIT(16)
#define SSIFSR_RDC(x) (((x) & 0x1f) << 8)
#define SSIFSR_RDF BIT(0)
#define SSIOFR_LRCONT BIT(8)
#define SSISCR_TDES(x) (((x) & 0x1f) << 8)
#define SSISCR_RDFS(x) (((x) & 0x1f) << 0)
/* Pre allocated buffers sizes */
#define PREALLOC_BUFFER (SZ_32K)
#define PREALLOC_BUFFER_MAX (SZ_32K)
#define SSI_RATES SNDRV_PCM_RATE_8000_48000 /* 8k-44.1kHz */
#define SSI_FMTS SNDRV_PCM_FMTBIT_S16_LE
#define SSI_CHAN_MIN 2
#define SSI_CHAN_MAX 2
#define SSI_FIFO_DEPTH 32
struct rz_ssi_priv;
struct rz_ssi_stream {
struct rz_ssi_priv *priv;
struct snd_pcm_substream *substream;
int fifo_sample_size; /* sample capacity of SSI FIFO */
int dma_buffer_pos; /* The address for the next DMA descriptor */
int period_counter; /* for keeping track of periods transferred */
int sample_width;
int buffer_pos; /* current frame position in the buffer */
int running; /* 0=stopped, 1=running */
int uerr_num;
int oerr_num;
struct dma_chan *dma_ch;
int (*transfer)(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm);
};
struct rz_ssi_priv {
void __iomem *base;
struct platform_device *pdev;
struct reset_control *rstc;
struct device *dev;
struct clk *sfr_clk;
struct clk *clk;
phys_addr_t phys;
int irq_int;
int irq_tx;
int irq_rx;
spinlock_t lock;
/*
* The SSI supports full-duplex transmission and reception.
* However, if an error occurs, channel reset (both transmission
* and reception reset) is required.
* So it is better to use as half-duplex (playing and recording
* should be done on separate channels).
*/
struct rz_ssi_stream playback;
struct rz_ssi_stream capture;
/* clock */
unsigned long audio_mck;
unsigned long audio_clk_1;
unsigned long audio_clk_2;
bool lrckp_fsync_fall; /* LR clock polarity (SSICR.LRCKP) */
bool bckp_rise; /* Bit clock polarity (SSICR.BCKP) */
bool dma_rt;
};
static void rz_ssi_dma_complete(void *data);
static void rz_ssi_reg_writel(struct rz_ssi_priv *priv, uint reg, u32 data)
{
writel(data, (priv->base + reg));
}
static u32 rz_ssi_reg_readl(struct rz_ssi_priv *priv, uint reg)
{
return readl(priv->base + reg);
}
static void rz_ssi_reg_mask_setl(struct rz_ssi_priv *priv, uint reg,
u32 bclr, u32 bset)
{
u32 val;
val = readl(priv->base + reg);
val = (val & ~bclr) | bset;
writel(val, (priv->base + reg));
}
static inline struct snd_soc_dai *
rz_ssi_get_dai(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
return asoc_rtd_to_cpu(rtd, 0);
}
static inline bool rz_ssi_stream_is_play(struct rz_ssi_priv *ssi,
struct snd_pcm_substream *substream)
{
return substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
}
static inline struct rz_ssi_stream *
rz_ssi_stream_get(struct rz_ssi_priv *ssi, struct snd_pcm_substream *substream)
{
struct rz_ssi_stream *stream = &ssi->playback;
if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
stream = &ssi->capture;
return stream;
}
static inline bool rz_ssi_is_dma_enabled(struct rz_ssi_priv *ssi)
{
return (ssi->playback.dma_ch && (ssi->dma_rt || ssi->capture.dma_ch));
}
static void rz_ssi_set_substream(struct rz_ssi_stream *strm,
struct snd_pcm_substream *substream)
{
struct rz_ssi_priv *ssi = strm->priv;
unsigned long flags;
spin_lock_irqsave(&ssi->lock, flags);
strm->substream = substream;
spin_unlock_irqrestore(&ssi->lock, flags);
}
static bool rz_ssi_stream_is_valid(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
unsigned long flags;
bool ret;
spin_lock_irqsave(&ssi->lock, flags);
ret = strm->substream && strm->substream->runtime;
spin_unlock_irqrestore(&ssi->lock, flags);
return ret;
}
static void rz_ssi_stream_init(struct rz_ssi_stream *strm,
struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
rz_ssi_set_substream(strm, substream);
strm->sample_width = samples_to_bytes(runtime, 1);
strm->dma_buffer_pos = 0;
strm->period_counter = 0;
strm->buffer_pos = 0;
strm->oerr_num = 0;
strm->uerr_num = 0;
strm->running = 0;
/* fifo init */
strm->fifo_sample_size = SSI_FIFO_DEPTH;
}
static void rz_ssi_stream_quit(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
struct snd_soc_dai *dai = rz_ssi_get_dai(strm->substream);
rz_ssi_set_substream(strm, NULL);
if (strm->oerr_num > 0)
dev_info(dai->dev, "overrun = %d\n", strm->oerr_num);
if (strm->uerr_num > 0)
dev_info(dai->dev, "underrun = %d\n", strm->uerr_num);
}
static int rz_ssi_clk_setup(struct rz_ssi_priv *ssi, unsigned int rate,
unsigned int channels)
{
static s8 ckdv[16] = { 1, 2, 4, 8, 16, 32, 64, 128,
6, 12, 24, 48, 96, -1, -1, -1 };
unsigned int channel_bits = 32; /* System Word Length */
unsigned long bclk_rate = rate * channels * channel_bits;
unsigned int div;
unsigned int i;
u32 ssicr = 0;
u32 clk_ckdv;
/* Clear AUCKE so we can set MST */
rz_ssi_reg_writel(ssi, SSIFCR, 0);
/* Continue to output LRCK pin even when idle */
rz_ssi_reg_writel(ssi, SSIOFR, SSIOFR_LRCONT);
if (ssi->audio_clk_1 && ssi->audio_clk_2) {
if (ssi->audio_clk_1 % bclk_rate)
ssi->audio_mck = ssi->audio_clk_2;
else
ssi->audio_mck = ssi->audio_clk_1;
}
/* Clock setting */
ssicr |= SSICR_MST;
if (ssi->audio_mck == ssi->audio_clk_1)
ssicr |= SSICR_CKS;
if (ssi->bckp_rise)
ssicr |= SSICR_BCKP;
if (ssi->lrckp_fsync_fall)
ssicr |= SSICR_LRCKP;
/* Determine the clock divider */
clk_ckdv = 0;
div = ssi->audio_mck / bclk_rate;
/* try to find an match */
for (i = 0; i < ARRAY_SIZE(ckdv); i++) {
if (ckdv[i] == div) {
clk_ckdv = i;
break;
}
}
if (i == ARRAY_SIZE(ckdv)) {
dev_err(ssi->dev, "Rate not divisible by audio clock source\n");
return -EINVAL;
}
/*
* DWL: Data Word Length = 16 bits
* SWL: System Word Length = 32 bits
*/
ssicr |= SSICR_CKDV(clk_ckdv);
ssicr |= SSICR_DWL(1) | SSICR_SWL(3);
rz_ssi_reg_writel(ssi, SSICR, ssicr);
rz_ssi_reg_writel(ssi, SSIFCR,
(SSIFCR_AUCKE | SSIFCR_TFRST | SSIFCR_RFRST));
return 0;
}
static int rz_ssi_start(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
bool is_play = rz_ssi_stream_is_play(ssi, strm->substream);
u32 ssicr, ssifcr;
ssicr = rz_ssi_reg_readl(ssi, SSICR);
ssifcr = rz_ssi_reg_readl(ssi, SSIFCR) & ~0xF;
/* FIFO interrupt thresholds */
if (rz_ssi_is_dma_enabled(ssi))
rz_ssi_reg_writel(ssi, SSISCR, 0);
else
rz_ssi_reg_writel(ssi, SSISCR,
SSISCR_TDES(strm->fifo_sample_size / 2 - 1) |
SSISCR_RDFS(0));
/* enable IRQ */
if (is_play) {
ssicr |= SSICR_TUIEN | SSICR_TOIEN;
ssifcr |= SSIFCR_TIE | SSIFCR_RFRST;
} else {
ssicr |= SSICR_RUIEN | SSICR_ROIEN;
ssifcr |= SSIFCR_RIE | SSIFCR_TFRST;
}
rz_ssi_reg_writel(ssi, SSICR, ssicr);
rz_ssi_reg_writel(ssi, SSIFCR, ssifcr);
/* Clear all error flags */
rz_ssi_reg_mask_setl(ssi, SSISR,
(SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ), 0);
strm->running = 1;
ssicr |= is_play ? SSICR_TEN : SSICR_REN;
rz_ssi_reg_writel(ssi, SSICR, ssicr);
return 0;
}
static int rz_ssi_stop(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
int timeout;
strm->running = 0;
/* Disable TX/RX */
rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TEN | SSICR_REN, 0);
/* Cancel all remaining DMA transactions */
if (rz_ssi_is_dma_enabled(ssi))
dmaengine_terminate_async(strm->dma_ch);
/* Disable irqs */
rz_ssi_reg_mask_setl(ssi, SSICR, SSICR_TUIEN | SSICR_TOIEN |
SSICR_RUIEN | SSICR_ROIEN, 0);
rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_TIE | SSIFCR_RIE, 0);
/* Clear all error flags */
rz_ssi_reg_mask_setl(ssi, SSISR,
(SSISR_TOIRQ | SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ), 0);
/* Wait for idle */
timeout = 100;
while (--timeout) {
if (rz_ssi_reg_readl(ssi, SSISR) & SSISR_IIRQ)
break;
udelay(1);
}
if (!timeout)
dev_info(ssi->dev, "timeout waiting for SSI idle\n");
/* Hold FIFOs in reset */
rz_ssi_reg_mask_setl(ssi, SSIFCR, 0,
SSIFCR_TFRST | SSIFCR_RFRST);
return 0;
}
static void rz_ssi_pointer_update(struct rz_ssi_stream *strm, int frames)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime;
int current_period;
if (!strm->running || !substream || !substream->runtime)
return;
runtime = substream->runtime;
strm->buffer_pos += frames;
WARN_ON(strm->buffer_pos > runtime->buffer_size);
/* ring buffer */
if (strm->buffer_pos == runtime->buffer_size)
strm->buffer_pos = 0;
current_period = strm->buffer_pos / runtime->period_size;
if (strm->period_counter != current_period) {
snd_pcm_period_elapsed(strm->substream);
strm->period_counter = current_period;
}
}
static int rz_ssi_pio_recv(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime;
u16 *buf;
int fifo_samples;
int frames_left;
int samples;
int i;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
runtime = substream->runtime;
do {
/* frames left in this period */
frames_left = runtime->period_size -
(strm->buffer_pos % runtime->period_size);
if (!frames_left)
frames_left = runtime->period_size;
/* Samples in RX FIFO */
fifo_samples = (rz_ssi_reg_readl(ssi, SSIFSR) >>
SSIFSR_RDC_SHIFT) & SSIFSR_RDC_MASK;
/* Only read full frames at a time */
samples = 0;
while (frames_left && (fifo_samples >= runtime->channels)) {
samples += runtime->channels;
fifo_samples -= runtime->channels;
frames_left--;
}
/* not enough samples yet */
if (!samples)
break;
/* calculate new buffer index */
buf = (u16 *)runtime->dma_area;
buf += strm->buffer_pos * runtime->channels;
/* Note, only supports 16-bit samples */
for (i = 0; i < samples; i++)
*buf++ = (u16)(rz_ssi_reg_readl(ssi, SSIFRDR) >> 16);
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
rz_ssi_pointer_update(strm, samples / runtime->channels);
} while (!frames_left && fifo_samples >= runtime->channels);
return 0;
}
static int rz_ssi_pio_send(struct rz_ssi_priv *ssi, struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct snd_pcm_runtime *runtime = substream->runtime;
int sample_space;
int samples = 0;
int frames_left;
int i;
u32 ssifsr;
u16 *buf;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
/* frames left in this period */
frames_left = runtime->period_size - (strm->buffer_pos %
runtime->period_size);
if (frames_left == 0)
frames_left = runtime->period_size;
sample_space = strm->fifo_sample_size;
ssifsr = rz_ssi_reg_readl(ssi, SSIFSR);
sample_space -= (ssifsr >> SSIFSR_TDC_SHIFT) & SSIFSR_TDC_MASK;
/* Only add full frames at a time */
while (frames_left && (sample_space >= runtime->channels)) {
samples += runtime->channels;
sample_space -= runtime->channels;
frames_left--;
}
/* no space to send anything right now */
if (samples == 0)
return 0;
/* calculate new buffer index */
buf = (u16 *)(runtime->dma_area);
buf += strm->buffer_pos * runtime->channels;
/* Note, only supports 16-bit samples */
for (i = 0; i < samples; i++)
rz_ssi_reg_writel(ssi, SSIFTDR, ((u32)(*buf++) << 16));
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_TDE, 0);
rz_ssi_pointer_update(strm, samples / runtime->channels);
return 0;
}
static irqreturn_t rz_ssi_interrupt(int irq, void *data)
{
struct rz_ssi_stream *strm = NULL;
struct rz_ssi_priv *ssi = data;
u32 ssisr = rz_ssi_reg_readl(ssi, SSISR);
if (ssi->playback.substream)
strm = &ssi->playback;
else if (ssi->capture.substream)
strm = &ssi->capture;
else
return IRQ_HANDLED; /* Left over TX/RX interrupt */
if (irq == ssi->irq_int) { /* error or idle */
if (ssisr & SSISR_TUIRQ)
strm->uerr_num++;
if (ssisr & SSISR_TOIRQ)
strm->oerr_num++;
if (ssisr & SSISR_RUIRQ)
strm->uerr_num++;
if (ssisr & SSISR_ROIRQ)
strm->oerr_num++;
if (ssisr & (SSISR_TUIRQ | SSISR_TOIRQ | SSISR_RUIRQ |
SSISR_ROIRQ)) {
/* Error handling */
/* You must reset (stop/restart) after each interrupt */
rz_ssi_stop(ssi, strm);
/* Clear all flags */
rz_ssi_reg_mask_setl(ssi, SSISR, SSISR_TOIRQ |
SSISR_TUIRQ | SSISR_ROIRQ |
SSISR_RUIRQ, 0);
/* Add/remove more data */
strm->transfer(ssi, strm);
/* Resume */
rz_ssi_start(ssi, strm);
}
}
if (!strm->running)
return IRQ_HANDLED;
/* tx data empty */
if (irq == ssi->irq_tx)
strm->transfer(ssi, &ssi->playback);
/* rx data full */
if (irq == ssi->irq_rx) {
strm->transfer(ssi, &ssi->capture);
rz_ssi_reg_mask_setl(ssi, SSIFSR, SSIFSR_RDF, 0);
}
return IRQ_HANDLED;
}
static int rz_ssi_dma_slave_config(struct rz_ssi_priv *ssi,
struct dma_chan *dma_ch, bool is_play)
{
struct dma_slave_config cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.direction = is_play ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
cfg.dst_addr = ssi->phys + SSIFTDR;
cfg.src_addr = ssi->phys + SSIFRDR;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
return dmaengine_slave_config(dma_ch, &cfg);
}
static int rz_ssi_dma_transfer(struct rz_ssi_priv *ssi,
struct rz_ssi_stream *strm)
{
struct snd_pcm_substream *substream = strm->substream;
struct dma_async_tx_descriptor *desc;
struct snd_pcm_runtime *runtime;
enum dma_transfer_direction dir;
u32 dma_paddr, dma_size;
int amount;
if (!rz_ssi_stream_is_valid(ssi, strm))
return -EINVAL;
runtime = substream->runtime;
if (runtime->status->state == SNDRV_PCM_STATE_DRAINING)
/*
* Stream is ending, so do not queue up any more DMA
* transfers otherwise we play partial sound clips
* because we can't shut off the DMA quick enough.
*/
return 0;
dir = rz_ssi_stream_is_play(ssi, substream) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
/* Always transfer 1 period */
amount = runtime->period_size;
/* DMA physical address and size */
dma_paddr = runtime->dma_addr + frames_to_bytes(runtime,
strm->dma_buffer_pos);
dma_size = frames_to_bytes(runtime, amount);
desc = dmaengine_prep_slave_single(strm->dma_ch, dma_paddr, dma_size,
dir,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
dev_err(ssi->dev, "dmaengine_prep_slave_single() fail\n");
return -ENOMEM;
}
desc->callback = rz_ssi_dma_complete;
desc->callback_param = strm;
if (dmaengine_submit(desc) < 0) {
dev_err(ssi->dev, "dmaengine_submit() fail\n");
return -EIO;
}
/* Update DMA pointer */
strm->dma_buffer_pos += amount;
if (strm->dma_buffer_pos >= runtime->buffer_size)
strm->dma_buffer_pos = 0;
/* Start DMA */
dma_async_issue_pending(strm->dma_ch);
return 0;
}
static void rz_ssi_dma_complete(void *data)
{
struct rz_ssi_stream *strm = (struct rz_ssi_stream *)data;
if (!strm->running || !strm->substream || !strm->substream->runtime)
return;
/* Note that next DMA transaction has probably already started */
rz_ssi_pointer_update(strm, strm->substream->runtime->period_size);
/* Queue up another DMA transaction */
rz_ssi_dma_transfer(strm->priv, strm);
}
static void rz_ssi_release_dma_channels(struct rz_ssi_priv *ssi)
{
if (ssi->playback.dma_ch) {
dma_release_channel(ssi->playback.dma_ch);
ssi->playback.dma_ch = NULL;
if (ssi->dma_rt)
ssi->dma_rt = false;
}
if (ssi->capture.dma_ch) {
dma_release_channel(ssi->capture.dma_ch);
ssi->capture.dma_ch = NULL;
}
}
static int rz_ssi_dma_request(struct rz_ssi_priv *ssi, struct device *dev)
{
ssi->playback.dma_ch = dma_request_chan(dev, "tx");
if (IS_ERR(ssi->playback.dma_ch))
ssi->playback.dma_ch = NULL;
ssi->capture.dma_ch = dma_request_chan(dev, "rx");
if (IS_ERR(ssi->capture.dma_ch))
ssi->capture.dma_ch = NULL;
if (!ssi->playback.dma_ch && !ssi->capture.dma_ch) {
ssi->playback.dma_ch = dma_request_chan(dev, "rt");
if (IS_ERR(ssi->playback.dma_ch)) {
ssi->playback.dma_ch = NULL;
goto no_dma;
}
ssi->dma_rt = true;
}
if (!rz_ssi_is_dma_enabled(ssi))
goto no_dma;
if (ssi->playback.dma_ch &&
(rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch, true) < 0))
goto no_dma;
if (ssi->capture.dma_ch &&
(rz_ssi_dma_slave_config(ssi, ssi->capture.dma_ch, false) < 0))
goto no_dma;
return 0;
no_dma:
rz_ssi_release_dma_channels(ssi);
return -ENODEV;
}
static int rz_ssi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
int ret = 0, i, num_transfer = 1;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
/* Soft Reset */
rz_ssi_reg_mask_setl(ssi, SSIFCR, 0, SSIFCR_SSIRST);
rz_ssi_reg_mask_setl(ssi, SSIFCR, SSIFCR_SSIRST, 0);
udelay(5);
rz_ssi_stream_init(strm, substream);
if (ssi->dma_rt) {
bool is_playback;
is_playback = rz_ssi_stream_is_play(ssi, substream);
ret = rz_ssi_dma_slave_config(ssi, ssi->playback.dma_ch,
is_playback);
/* Fallback to pio */
if (ret < 0) {
ssi->playback.transfer = rz_ssi_pio_send;
ssi->capture.transfer = rz_ssi_pio_recv;
rz_ssi_release_dma_channels(ssi);
}
}
/* For DMA, queue up multiple DMA descriptors */
if (rz_ssi_is_dma_enabled(ssi))
num_transfer = 4;
for (i = 0; i < num_transfer; i++) {
ret = strm->transfer(ssi, strm);
if (ret)
goto done;
}
ret = rz_ssi_start(ssi, strm);
break;
case SNDRV_PCM_TRIGGER_STOP:
rz_ssi_stop(ssi, strm);
rz_ssi_stream_quit(ssi, strm);
break;
}
done:
return ret;
}
static int rz_ssi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBC_CFC:
break;
default:
dev_err(ssi->dev, "Codec should be clk and frame consumer\n");
return -EINVAL;
}
/*
* set clock polarity
*
* "normal" BCLK = Signal is available at rising edge of BCLK
* "normal" FSYNC = (I2S) Left ch starts with falling FSYNC edge
*/
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
ssi->bckp_rise = false;
ssi->lrckp_fsync_fall = false;
break;
case SND_SOC_DAIFMT_NB_IF:
ssi->bckp_rise = false;
ssi->lrckp_fsync_fall = true;
break;
case SND_SOC_DAIFMT_IB_NF:
ssi->bckp_rise = true;
ssi->lrckp_fsync_fall = false;
break;
case SND_SOC_DAIFMT_IB_IF:
ssi->bckp_rise = true;
ssi->lrckp_fsync_fall = true;
break;
default:
return -EINVAL;
}
/* only i2s support */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
default:
dev_err(ssi->dev, "Only I2S mode is supported.\n");
return -EINVAL;
}
return 0;
}
static int rz_ssi_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
unsigned int sample_bits = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS)->min;
unsigned int channels = params_channels(params);
if (sample_bits != 16) {
dev_err(ssi->dev, "Unsupported sample width: %d\n",
sample_bits);
return -EINVAL;
}
if (channels != 2) {
dev_err(ssi->dev, "Number of channels not matched: %d\n",
channels);
return -EINVAL;
}
return rz_ssi_clk_setup(ssi, params_rate(params),
params_channels(params));
}
static const struct snd_soc_dai_ops rz_ssi_dai_ops = {
.trigger = rz_ssi_dai_trigger,
.set_fmt = rz_ssi_dai_set_fmt,
.hw_params = rz_ssi_dai_hw_params,
};
static const struct snd_pcm_hardware rz_ssi_pcm_hardware = {
.info = SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID,
.buffer_bytes_max = PREALLOC_BUFFER,
.period_bytes_min = 32,
.period_bytes_max = 8192,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
.periods_min = 1,
.periods_max = 32,
.fifo_size = 32 * 2,
};
static int rz_ssi_pcm_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
snd_soc_set_runtime_hwparams(substream, &rz_ssi_pcm_hardware);
return snd_pcm_hw_constraint_integer(substream->runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
}
static snd_pcm_uframes_t rz_ssi_pcm_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_dai *dai = rz_ssi_get_dai(substream);
struct rz_ssi_priv *ssi = snd_soc_dai_get_drvdata(dai);
struct rz_ssi_stream *strm = rz_ssi_stream_get(ssi, substream);
return strm->buffer_pos;
}
static int rz_ssi_pcm_new(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
snd_pcm_set_managed_buffer_all(rtd->pcm, SNDRV_DMA_TYPE_DEV,
rtd->card->snd_card->dev,
PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
return 0;
}
static struct snd_soc_dai_driver rz_ssi_soc_dai[] = {
{
.name = "rz-ssi-dai",
.playback = {
.rates = SSI_RATES,
.formats = SSI_FMTS,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
},
.capture = {
.rates = SSI_RATES,
.formats = SSI_FMTS,
.channels_min = SSI_CHAN_MIN,
.channels_max = SSI_CHAN_MAX,
},
.ops = &rz_ssi_dai_ops,
},
};
static const struct snd_soc_component_driver rz_ssi_soc_component = {
.name = "rz-ssi",
.open = rz_ssi_pcm_open,
.pointer = rz_ssi_pcm_pointer,
.pcm_construct = rz_ssi_pcm_new,
};
static int rz_ssi_probe(struct platform_device *pdev)
{
struct rz_ssi_priv *ssi;
struct clk *audio_clk;
struct resource *res;
int ret;
ssi = devm_kzalloc(&pdev->dev, sizeof(*ssi), GFP_KERNEL);
if (!ssi)
return -ENOMEM;
ssi->pdev = pdev;
ssi->dev = &pdev->dev;
ssi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(ssi->base))
return PTR_ERR(ssi->base);
ssi->phys = res->start;
ssi->clk = devm_clk_get(&pdev->dev, "ssi");
if (IS_ERR(ssi->clk))
return PTR_ERR(ssi->clk);
ssi->sfr_clk = devm_clk_get(&pdev->dev, "ssi_sfr");
if (IS_ERR(ssi->sfr_clk))
return PTR_ERR(ssi->sfr_clk);
audio_clk = devm_clk_get(&pdev->dev, "audio_clk1");
if (IS_ERR(audio_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
"no audio clk1");
ssi->audio_clk_1 = clk_get_rate(audio_clk);
audio_clk = devm_clk_get(&pdev->dev, "audio_clk2");
if (IS_ERR(audio_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(audio_clk),
"no audio clk2");
ssi->audio_clk_2 = clk_get_rate(audio_clk);
if (!(ssi->audio_clk_1 || ssi->audio_clk_2))
return dev_err_probe(&pdev->dev, -EINVAL,
"no audio clk1 or audio clk2");
ssi->audio_mck = ssi->audio_clk_1 ? ssi->audio_clk_1 : ssi->audio_clk_2;
/* Detect DMA support */
ret = rz_ssi_dma_request(ssi, &pdev->dev);
if (ret < 0) {
dev_warn(&pdev->dev, "DMA not available, using PIO\n");
ssi->playback.transfer = rz_ssi_pio_send;
ssi->capture.transfer = rz_ssi_pio_recv;
} else {
dev_info(&pdev->dev, "DMA enabled");
ssi->playback.transfer = rz_ssi_dma_transfer;
ssi->capture.transfer = rz_ssi_dma_transfer;
}
ssi->playback.priv = ssi;
ssi->capture.priv = ssi;
spin_lock_init(&ssi->lock);
dev_set_drvdata(&pdev->dev, ssi);
/* Error Interrupt */
ssi->irq_int = platform_get_irq_byname(pdev, "int_req");
if (ssi->irq_int < 0) {
rz_ssi_release_dma_channels(ssi);
return ssi->irq_int;
}
ret = devm_request_irq(&pdev->dev, ssi->irq_int, &rz_ssi_interrupt,
0, dev_name(&pdev->dev), ssi);
if (ret < 0) {
rz_ssi_release_dma_channels(ssi);
return dev_err_probe(&pdev->dev, ret,
"irq request error (int_req)\n");
}
if (!rz_ssi_is_dma_enabled(ssi)) {
/* Tx and Rx interrupts (pio only) */
ssi->irq_tx = platform_get_irq_byname(pdev, "dma_tx");
if (ssi->irq_tx < 0)
return ssi->irq_tx;
ret = devm_request_irq(&pdev->dev, ssi->irq_tx,
&rz_ssi_interrupt, 0,
dev_name(&pdev->dev), ssi);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"irq request error (dma_tx)\n");
ssi->irq_rx = platform_get_irq_byname(pdev, "dma_rx");
if (ssi->irq_rx < 0)
return ssi->irq_rx;
ret = devm_request_irq(&pdev->dev, ssi->irq_rx,
&rz_ssi_interrupt, 0,
dev_name(&pdev->dev), ssi);
if (ret < 0)
return dev_err_probe(&pdev->dev, ret,
"irq request error (dma_rx)\n");
}
ssi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(ssi->rstc)) {
rz_ssi_release_dma_channels(ssi);
return PTR_ERR(ssi->rstc);
}
reset_control_deassert(ssi->rstc);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0) {
rz_ssi_release_dma_channels(ssi);
pm_runtime_disable(ssi->dev);
reset_control_assert(ssi->rstc);
return dev_err_probe(ssi->dev, ret, "pm_runtime_resume_and_get failed\n");
}
ret = devm_snd_soc_register_component(&pdev->dev, &rz_ssi_soc_component,
rz_ssi_soc_dai,
ARRAY_SIZE(rz_ssi_soc_dai));
if (ret < 0) {
rz_ssi_release_dma_channels(ssi);
pm_runtime_put(ssi->dev);
pm_runtime_disable(ssi->dev);
reset_control_assert(ssi->rstc);
dev_err(&pdev->dev, "failed to register snd component\n");
}
return ret;
}
static int rz_ssi_remove(struct platform_device *pdev)
{
struct rz_ssi_priv *ssi = dev_get_drvdata(&pdev->dev);
rz_ssi_release_dma_channels(ssi);
pm_runtime_put(ssi->dev);
pm_runtime_disable(ssi->dev);
reset_control_assert(ssi->rstc);
return 0;
}
static const struct of_device_id rz_ssi_of_match[] = {
{ .compatible = "renesas,rz-ssi", },
{/* Sentinel */},
};
MODULE_DEVICE_TABLE(of, rz_ssi_of_match);
static struct platform_driver rz_ssi_driver = {
.driver = {
.name = "rz-ssi-pcm-audio",
.of_match_table = rz_ssi_of_match,
},
.probe = rz_ssi_probe,
.remove = rz_ssi_remove,
};
module_platform_driver(rz_ssi_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Renesas RZ/G2L ASoC Serial Sound Interface Driver");
MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");