1811 lines
48 KiB
C
1811 lines
48 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*/
|
|
|
|
/**
|
|
* DOC: Enclave lifetime management driver for Nitro Enclaves (NE).
|
|
* Nitro is a hypervisor that has been developed by Amazon.
|
|
*/
|
|
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/device.h>
|
|
#include <linux/file.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/limits.h>
|
|
#include <linux/list.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/nitro_enclaves.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/range.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <uapi/linux/vm_sockets.h>
|
|
|
|
#include "ne_misc_dev.h"
|
|
#include "ne_pci_dev.h"
|
|
|
|
/**
|
|
* NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma
|
|
* separated. The NE CPU pool includes CPUs from a single NUMA
|
|
* node.
|
|
*/
|
|
#define NE_CPUS_SIZE (512)
|
|
|
|
/**
|
|
* NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF)
|
|
* image in enclave memory.
|
|
*/
|
|
#define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL)
|
|
|
|
/**
|
|
* NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched
|
|
* with.
|
|
*/
|
|
#define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL)
|
|
|
|
/**
|
|
* NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region.
|
|
*/
|
|
#define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL)
|
|
|
|
/**
|
|
* NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM.
|
|
*/
|
|
#define NE_PARENT_VM_CID (3)
|
|
|
|
static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
|
|
|
|
static const struct file_operations ne_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = noop_llseek,
|
|
.unlocked_ioctl = ne_ioctl,
|
|
};
|
|
|
|
static struct miscdevice ne_misc_dev = {
|
|
.minor = MISC_DYNAMIC_MINOR,
|
|
.name = "nitro_enclaves",
|
|
.fops = &ne_fops,
|
|
.mode = 0660,
|
|
};
|
|
|
|
struct ne_devs ne_devs = {
|
|
.ne_misc_dev = &ne_misc_dev,
|
|
};
|
|
|
|
/*
|
|
* TODO: Update logic to create new sysfs entries instead of using
|
|
* a kernel parameter e.g. if multiple sysfs files needed.
|
|
*/
|
|
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp);
|
|
|
|
static const struct kernel_param_ops ne_cpu_pool_ops = {
|
|
.get = param_get_string,
|
|
.set = ne_set_kernel_param,
|
|
};
|
|
|
|
static char ne_cpus[NE_CPUS_SIZE];
|
|
static struct kparam_string ne_cpus_arg = {
|
|
.maxlen = sizeof(ne_cpus),
|
|
.string = ne_cpus,
|
|
};
|
|
|
|
module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644);
|
|
/* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */
|
|
MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves");
|
|
|
|
/**
|
|
* struct ne_cpu_pool - CPU pool used for Nitro Enclaves.
|
|
* @avail_threads_per_core: Available full CPU cores to be dedicated to
|
|
* enclave(s). The cpumasks from the array, indexed
|
|
* by core id, contain all the threads from the
|
|
* available cores, that are not set for created
|
|
* enclave(s). The full CPU cores are part of the
|
|
* NE CPU pool.
|
|
* @mutex: Mutex for the access to the NE CPU pool.
|
|
* @nr_parent_vm_cores : The size of the available threads per core array.
|
|
* The total number of CPU cores available on the
|
|
* primary / parent VM.
|
|
* @nr_threads_per_core: The number of threads that a full CPU core has.
|
|
* @numa_node: NUMA node of the CPUs in the pool.
|
|
*/
|
|
struct ne_cpu_pool {
|
|
cpumask_var_t *avail_threads_per_core;
|
|
struct mutex mutex;
|
|
unsigned int nr_parent_vm_cores;
|
|
unsigned int nr_threads_per_core;
|
|
int numa_node;
|
|
};
|
|
|
|
static struct ne_cpu_pool ne_cpu_pool;
|
|
|
|
/**
|
|
* struct ne_phys_contig_mem_regions - Contiguous physical memory regions.
|
|
* @num: The number of regions that currently has.
|
|
* @regions: The array of physical memory regions.
|
|
*/
|
|
struct ne_phys_contig_mem_regions {
|
|
unsigned long num;
|
|
struct range *regions;
|
|
};
|
|
|
|
/**
|
|
* ne_check_enclaves_created() - Verify if at least one enclave has been created.
|
|
* @void: No parameters provided.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * True if at least one enclave is created.
|
|
* * False otherwise.
|
|
*/
|
|
static bool ne_check_enclaves_created(void)
|
|
{
|
|
struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
|
|
bool ret = false;
|
|
|
|
if (!ne_pci_dev)
|
|
return ret;
|
|
|
|
mutex_lock(&ne_pci_dev->enclaves_list_mutex);
|
|
|
|
if (!list_empty(&ne_pci_dev->enclaves_list))
|
|
ret = true;
|
|
|
|
mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such
|
|
* as not sharing CPU cores with the primary / parent VM
|
|
* or not using CPU 0, which should remain available for
|
|
* the primary / parent VM. Offline the CPUs from the
|
|
* pool after the checks passed.
|
|
* @ne_cpu_list: The CPU list used for setting NE CPU pool.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_setup_cpu_pool(const char *ne_cpu_list)
|
|
{
|
|
int core_id = -1;
|
|
unsigned int cpu = 0;
|
|
cpumask_var_t cpu_pool;
|
|
unsigned int cpu_sibling = 0;
|
|
unsigned int i = 0;
|
|
int numa_node = -1;
|
|
int rc = -EINVAL;
|
|
|
|
if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
rc = cpulist_parse(ne_cpu_list, cpu_pool);
|
|
if (rc < 0) {
|
|
pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc);
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
|
|
cpu = cpumask_any(cpu_pool);
|
|
if (cpu >= nr_cpu_ids) {
|
|
pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
|
|
/*
|
|
* Check if the CPUs are online, to further get info about them
|
|
* e.g. numa node, core id, siblings.
|
|
*/
|
|
for_each_cpu(cpu, cpu_pool)
|
|
if (cpu_is_offline(cpu)) {
|
|
pr_err("%s: CPU %d is offline, has to be online to get its metadata\n",
|
|
ne_misc_dev.name, cpu);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
|
|
/*
|
|
* Check if the CPUs from the NE CPU pool are from the same NUMA node.
|
|
*/
|
|
for_each_cpu(cpu, cpu_pool)
|
|
if (numa_node < 0) {
|
|
numa_node = cpu_to_node(cpu);
|
|
if (numa_node < 0) {
|
|
pr_err("%s: Invalid NUMA node %d\n",
|
|
ne_misc_dev.name, numa_node);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
} else {
|
|
if (numa_node != cpu_to_node(cpu)) {
|
|
pr_err("%s: CPUs with different NUMA nodes\n",
|
|
ne_misc_dev.name);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if CPU 0 and its siblings are included in the provided CPU pool
|
|
* They should remain available for the primary / parent VM.
|
|
*/
|
|
if (cpumask_test_cpu(0, cpu_pool)) {
|
|
pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
|
|
for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) {
|
|
if (cpumask_test_cpu(cpu_sibling, cpu_pool)) {
|
|
pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n",
|
|
ne_misc_dev.name, cpu_sibling);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if CPU siblings are included in the provided CPU pool. The
|
|
* expectation is that full CPU cores are made available in the CPU pool
|
|
* for enclaves.
|
|
*/
|
|
for_each_cpu(cpu, cpu_pool) {
|
|
for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) {
|
|
if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) {
|
|
pr_err("%s: CPU %d is not in CPU pool\n",
|
|
ne_misc_dev.name, cpu_sibling);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate the number of threads from a full CPU core. */
|
|
cpu = cpumask_any(cpu_pool);
|
|
for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu))
|
|
ne_cpu_pool.nr_threads_per_core++;
|
|
|
|
ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core;
|
|
|
|
ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores,
|
|
sizeof(*ne_cpu_pool.avail_threads_per_core),
|
|
GFP_KERNEL);
|
|
if (!ne_cpu_pool.avail_threads_per_core) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_pool_cpumask;
|
|
}
|
|
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_cores_cpumask;
|
|
}
|
|
|
|
/*
|
|
* Split the NE CPU pool in threads per core to keep the CPU topology
|
|
* after offlining the CPUs.
|
|
*/
|
|
for_each_cpu(cpu, cpu_pool) {
|
|
core_id = topology_core_id(cpu);
|
|
if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) {
|
|
pr_err("%s: Invalid core id %d for CPU %d\n",
|
|
ne_misc_dev.name, core_id, cpu);
|
|
|
|
rc = -EINVAL;
|
|
|
|
goto clear_cpumask;
|
|
}
|
|
|
|
cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]);
|
|
}
|
|
|
|
/*
|
|
* CPUs that are given to enclave(s) should not be considered online
|
|
* by Linux anymore, as the hypervisor will degrade them to floating.
|
|
* The physical CPUs (full cores) are carved out of the primary / parent
|
|
* VM and given to the enclave VM. The same number of vCPUs would run
|
|
* on less pCPUs for the primary / parent VM.
|
|
*
|
|
* We offline them here, to not degrade performance and expose correct
|
|
* topology to Linux and user space.
|
|
*/
|
|
for_each_cpu(cpu, cpu_pool) {
|
|
rc = remove_cpu(cpu);
|
|
if (rc != 0) {
|
|
pr_err("%s: CPU %d is not offlined [rc=%d]\n",
|
|
ne_misc_dev.name, cpu, rc);
|
|
|
|
goto online_cpus;
|
|
}
|
|
}
|
|
|
|
free_cpumask_var(cpu_pool);
|
|
|
|
ne_cpu_pool.numa_node = numa_node;
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return 0;
|
|
|
|
online_cpus:
|
|
for_each_cpu(cpu, cpu_pool)
|
|
add_cpu(cpu);
|
|
clear_cpumask:
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
|
|
free_cores_cpumask:
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
|
|
kfree(ne_cpu_pool.avail_threads_per_core);
|
|
free_pool_cpumask:
|
|
free_cpumask_var(cpu_pool);
|
|
ne_cpu_pool.nr_parent_vm_cores = 0;
|
|
ne_cpu_pool.nr_threads_per_core = 0;
|
|
ne_cpu_pool.numa_node = -1;
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the
|
|
* CPU pool.
|
|
* @void: No parameters provided.
|
|
*
|
|
* Context: Process context.
|
|
*/
|
|
static void ne_teardown_cpu_pool(void)
|
|
{
|
|
unsigned int cpu = 0;
|
|
unsigned int i = 0;
|
|
int rc = -EINVAL;
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
if (!ne_cpu_pool.nr_parent_vm_cores) {
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) {
|
|
for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) {
|
|
rc = add_cpu(cpu);
|
|
if (rc != 0)
|
|
pr_err("%s: CPU %d is not onlined [rc=%d]\n",
|
|
ne_misc_dev.name, cpu, rc);
|
|
}
|
|
|
|
cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]);
|
|
|
|
free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]);
|
|
}
|
|
|
|
kfree(ne_cpu_pool.avail_threads_per_core);
|
|
ne_cpu_pool.nr_parent_vm_cores = 0;
|
|
ne_cpu_pool.nr_threads_per_core = 0;
|
|
ne_cpu_pool.numa_node = -1;
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
}
|
|
|
|
/**
|
|
* ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter.
|
|
* @val: NE CPU pool string value.
|
|
* @kp : NE kernel parameter associated with the NE CPU pool.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_set_kernel_param(const char *val, const struct kernel_param *kp)
|
|
{
|
|
char error_val[] = "";
|
|
int rc = -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (ne_check_enclaves_created()) {
|
|
pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name);
|
|
|
|
return -EPERM;
|
|
}
|
|
|
|
ne_teardown_cpu_pool();
|
|
|
|
rc = ne_setup_cpu_pool(val);
|
|
if (rc < 0) {
|
|
pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc);
|
|
|
|
param_set_copystring(error_val, kp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
rc = param_set_copystring(val, kp);
|
|
if (rc < 0) {
|
|
pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc);
|
|
|
|
ne_teardown_cpu_pool();
|
|
|
|
param_set_copystring(error_val, kp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_donated_cpu() - Check if the provided CPU is already used by the enclave.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @cpu: CPU to check if already used.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * True if the provided CPU is already used by the enclave.
|
|
* * False otherwise.
|
|
*/
|
|
static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu)
|
|
{
|
|
if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the
|
|
* NE CPU pool.
|
|
* @void: No parameters provided.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave and
|
|
* ne_cpu_pool mutexes held.
|
|
* Return:
|
|
* * Core id.
|
|
* * -1 if no CPU core available in the pool.
|
|
*/
|
|
static int ne_get_unused_core_from_cpu_pool(void)
|
|
{
|
|
int core_id = -1;
|
|
unsigned int i = 0;
|
|
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) {
|
|
core_id = i;
|
|
|
|
break;
|
|
}
|
|
|
|
return core_id;
|
|
}
|
|
|
|
/**
|
|
* ne_set_enclave_threads_per_core() - Set the threads of the provided core in
|
|
* the enclave data structure.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @core_id: Core id to get its threads from the NE CPU pool.
|
|
* @vcpu_id: vCPU id part of the provided core.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave and
|
|
* ne_cpu_pool mutexes held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave,
|
|
int core_id, u32 vcpu_id)
|
|
{
|
|
unsigned int cpu = 0;
|
|
|
|
if (core_id < 0 && vcpu_id == 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"No CPUs available in NE CPU pool\n");
|
|
|
|
return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
|
|
}
|
|
|
|
if (core_id < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"CPU %d is not in NE CPU pool\n", vcpu_id);
|
|
|
|
return -NE_ERR_VCPU_NOT_IN_CPU_POOL;
|
|
}
|
|
|
|
if (core_id >= ne_enclave->nr_parent_vm_cores) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Invalid core id %d - ne_enclave\n", core_id);
|
|
|
|
return -NE_ERR_VCPU_INVALID_CPU_CORE;
|
|
}
|
|
|
|
for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id])
|
|
cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]);
|
|
|
|
cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the
|
|
* remaining sibling(s) of a CPU core or the first
|
|
* sibling of a new CPU core.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @vcpu_id: vCPU to get from the NE CPU pool.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id)
|
|
{
|
|
int core_id = -1;
|
|
unsigned int cpu = 0;
|
|
unsigned int i = 0;
|
|
int rc = -EINVAL;
|
|
|
|
/*
|
|
* If previously allocated a thread of a core to this enclave, first
|
|
* check remaining sibling(s) for new CPU allocations, so that full
|
|
* CPU cores are used for the enclave.
|
|
*/
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
|
|
for_each_cpu(cpu, ne_enclave->threads_per_core[i])
|
|
if (!ne_donated_cpu(ne_enclave, cpu)) {
|
|
*vcpu_id = cpu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
/*
|
|
* If no remaining siblings, get a core from the NE CPU pool and keep
|
|
* track of all the threads in the enclave threads per core data structure.
|
|
*/
|
|
core_id = ne_get_unused_core_from_cpu_pool();
|
|
|
|
rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id);
|
|
if (rc < 0)
|
|
goto unlock_mutex;
|
|
|
|
*vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]);
|
|
|
|
rc = 0;
|
|
|
|
unlock_mutex:
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the
|
|
* core associated with the provided vCPU.
|
|
* @vcpu_id: Provided vCPU id to get its associated core id.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave and
|
|
* ne_cpu_pool mutexes held.
|
|
* Return:
|
|
* * Core id.
|
|
* * -1 if the provided vCPU is not in the pool.
|
|
*/
|
|
static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id)
|
|
{
|
|
int core_id = -1;
|
|
unsigned int i = 0;
|
|
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) {
|
|
core_id = i;
|
|
|
|
break;
|
|
}
|
|
|
|
return core_id;
|
|
}
|
|
|
|
/**
|
|
* ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs
|
|
* from the pool.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @vcpu_id: ID of the vCPU to check if available in the NE CPU pool.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id)
|
|
{
|
|
int core_id = -1;
|
|
unsigned int i = 0;
|
|
int rc = -EINVAL;
|
|
|
|
if (ne_donated_cpu(ne_enclave, vcpu_id)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"CPU %d already used\n", vcpu_id);
|
|
|
|
return -NE_ERR_VCPU_ALREADY_USED;
|
|
}
|
|
|
|
/*
|
|
* If previously allocated a thread of a core to this enclave, but not
|
|
* the full core, first check remaining sibling(s).
|
|
*/
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
|
|
if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i]))
|
|
return 0;
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
/*
|
|
* If no remaining siblings, get from the NE CPU pool the core
|
|
* associated with the vCPU and keep track of all the threads in the
|
|
* enclave threads per core data structure.
|
|
*/
|
|
core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id);
|
|
|
|
rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id);
|
|
if (rc < 0)
|
|
goto unlock_mutex;
|
|
|
|
rc = 0;
|
|
|
|
unlock_mutex:
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current
|
|
* enclave.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @vcpu_id: ID of the CPU to be associated with the given slot,
|
|
* apic id on x86.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id)
|
|
{
|
|
struct ne_pci_dev_cmd_reply cmd_reply = {};
|
|
struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
|
|
int rc = -EINVAL;
|
|
struct slot_add_vcpu_req slot_add_vcpu_req = {};
|
|
|
|
if (ne_enclave->mm != current->mm)
|
|
return -EIO;
|
|
|
|
slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid;
|
|
slot_add_vcpu_req.vcpu_id = vcpu_id;
|
|
|
|
rc = ne_do_request(pdev, SLOT_ADD_VCPU,
|
|
&slot_add_vcpu_req, sizeof(slot_add_vcpu_req),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in slot add vCPU [rc=%d]\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids);
|
|
|
|
ne_enclave->nr_vcpus++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_sanity_check_user_mem_region() - Sanity check the user space memory
|
|
* region received during the set user
|
|
* memory region ioctl call.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @mem_region : User space memory region to be sanity checked.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave,
|
|
struct ne_user_memory_region mem_region)
|
|
{
|
|
struct ne_mem_region *ne_mem_region = NULL;
|
|
|
|
if (ne_enclave->mm != current->mm)
|
|
return -EIO;
|
|
|
|
if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"User space memory size is not multiple of 2 MiB\n");
|
|
|
|
return -NE_ERR_INVALID_MEM_REGION_SIZE;
|
|
}
|
|
|
|
if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"User space address is not 2 MiB aligned\n");
|
|
|
|
return -NE_ERR_UNALIGNED_MEM_REGION_ADDR;
|
|
}
|
|
|
|
if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) ||
|
|
!access_ok((void __user *)(unsigned long)mem_region.userspace_addr,
|
|
mem_region.memory_size)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Invalid user space address range\n");
|
|
|
|
return -NE_ERR_INVALID_MEM_REGION_ADDR;
|
|
}
|
|
|
|
list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list,
|
|
mem_region_list_entry) {
|
|
u64 memory_size = ne_mem_region->memory_size;
|
|
u64 userspace_addr = ne_mem_region->userspace_addr;
|
|
|
|
if ((userspace_addr <= mem_region.userspace_addr &&
|
|
mem_region.userspace_addr < (userspace_addr + memory_size)) ||
|
|
(mem_region.userspace_addr <= userspace_addr &&
|
|
(mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"User space memory region already used\n");
|
|
|
|
return -NE_ERR_MEM_REGION_ALREADY_USED;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space
|
|
* memory region received during the set
|
|
* user memory region ioctl call.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @mem_region_page: Page from the user space memory region to be sanity checked.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave,
|
|
struct page *mem_region_page)
|
|
{
|
|
if (!PageHuge(mem_region_page)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Not a hugetlbfs page\n");
|
|
|
|
return -NE_ERR_MEM_NOT_HUGE_PAGE;
|
|
}
|
|
|
|
if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Page size not multiple of 2 MiB\n");
|
|
|
|
return -NE_ERR_INVALID_PAGE_SIZE;
|
|
}
|
|
|
|
if (ne_enclave->numa_node != page_to_nid(mem_region_page)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Page is not from NUMA node %d\n",
|
|
ne_enclave->numa_node);
|
|
|
|
return -NE_ERR_MEM_DIFFERENT_NUMA_NODE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_sanity_check_phys_mem_region() - Sanity check the start address and the size
|
|
* of a physical memory region.
|
|
* @phys_mem_region_paddr : Physical start address of the region to be sanity checked.
|
|
* @phys_mem_region_size : Length of the region to be sanity checked.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr,
|
|
u64 phys_mem_region_size)
|
|
{
|
|
if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Physical mem region size is not multiple of 2 MiB\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Physical mem region address is not 2 MiB aligned\n");
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent
|
|
* regions if they are physically contiguous.
|
|
* @phys_contig_regions : Private data associated with the contiguous physical memory regions.
|
|
* @page_paddr : Physical start address of the region to be added.
|
|
* @page_size : Length of the region to be added.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int
|
|
ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions,
|
|
u64 page_paddr, u64 page_size)
|
|
{
|
|
unsigned long num = phys_contig_regions->num;
|
|
int rc = 0;
|
|
|
|
rc = ne_sanity_check_phys_mem_region(page_paddr, page_size);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Physically contiguous, just merge */
|
|
if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) {
|
|
phys_contig_regions->regions[num - 1].end += page_size;
|
|
} else {
|
|
phys_contig_regions->regions[num].start = page_paddr;
|
|
phys_contig_regions->regions[num].end = page_paddr + page_size - 1;
|
|
phys_contig_regions->num++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_set_user_memory_region_ioctl() - Add user space memory region to the slot
|
|
* associated with the current enclave.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @mem_region : User space memory region to be associated with the given slot.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave,
|
|
struct ne_user_memory_region mem_region)
|
|
{
|
|
long gup_rc = 0;
|
|
unsigned long i = 0;
|
|
unsigned long max_nr_pages = 0;
|
|
unsigned long memory_size = 0;
|
|
struct ne_mem_region *ne_mem_region = NULL;
|
|
struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
|
|
struct ne_phys_contig_mem_regions phys_contig_mem_regions = {};
|
|
int rc = -EINVAL;
|
|
|
|
rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL);
|
|
if (!ne_mem_region)
|
|
return -ENOMEM;
|
|
|
|
max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE;
|
|
|
|
ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages),
|
|
GFP_KERNEL);
|
|
if (!ne_mem_region->pages) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_mem_region;
|
|
}
|
|
|
|
phys_contig_mem_regions.regions = kcalloc(max_nr_pages,
|
|
sizeof(*phys_contig_mem_regions.regions),
|
|
GFP_KERNEL);
|
|
if (!phys_contig_mem_regions.regions) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_mem_region;
|
|
}
|
|
|
|
do {
|
|
i = ne_mem_region->nr_pages;
|
|
|
|
if (i == max_nr_pages) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Reached max nr of pages in the pages data struct\n");
|
|
|
|
rc = -ENOMEM;
|
|
|
|
goto put_pages;
|
|
}
|
|
|
|
gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1,
|
|
ne_mem_region->pages + i, FOLL_GET);
|
|
|
|
if (gup_rc < 0) {
|
|
rc = gup_rc;
|
|
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in get user pages [rc=%d]\n", rc);
|
|
|
|
goto put_pages;
|
|
}
|
|
|
|
rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]);
|
|
if (rc < 0)
|
|
goto put_pages;
|
|
|
|
rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions,
|
|
page_to_phys(ne_mem_region->pages[i]),
|
|
page_size(ne_mem_region->pages[i]));
|
|
if (rc < 0)
|
|
goto put_pages;
|
|
|
|
memory_size += page_size(ne_mem_region->pages[i]);
|
|
|
|
ne_mem_region->nr_pages++;
|
|
} while (memory_size < mem_region.memory_size);
|
|
|
|
if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) >
|
|
ne_enclave->max_mem_regions) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Reached max memory regions %lld\n",
|
|
ne_enclave->max_mem_regions);
|
|
|
|
rc = -NE_ERR_MEM_MAX_REGIONS;
|
|
|
|
goto put_pages;
|
|
}
|
|
|
|
for (i = 0; i < phys_contig_mem_regions.num; i++) {
|
|
u64 phys_region_addr = phys_contig_mem_regions.regions[i].start;
|
|
u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]);
|
|
|
|
rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size);
|
|
if (rc < 0)
|
|
goto put_pages;
|
|
}
|
|
|
|
ne_mem_region->memory_size = mem_region.memory_size;
|
|
ne_mem_region->userspace_addr = mem_region.userspace_addr;
|
|
|
|
list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list);
|
|
|
|
for (i = 0; i < phys_contig_mem_regions.num; i++) {
|
|
struct ne_pci_dev_cmd_reply cmd_reply = {};
|
|
struct slot_add_mem_req slot_add_mem_req = {};
|
|
|
|
slot_add_mem_req.slot_uid = ne_enclave->slot_uid;
|
|
slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start;
|
|
slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]);
|
|
|
|
rc = ne_do_request(pdev, SLOT_ADD_MEM,
|
|
&slot_add_mem_req, sizeof(slot_add_mem_req),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in slot add mem [rc=%d]\n", rc);
|
|
|
|
kfree(phys_contig_mem_regions.regions);
|
|
|
|
/*
|
|
* Exit here without put pages as memory regions may
|
|
* already been added.
|
|
*/
|
|
return rc;
|
|
}
|
|
|
|
ne_enclave->mem_size += slot_add_mem_req.size;
|
|
ne_enclave->nr_mem_regions++;
|
|
}
|
|
|
|
kfree(phys_contig_mem_regions.regions);
|
|
|
|
return 0;
|
|
|
|
put_pages:
|
|
for (i = 0; i < ne_mem_region->nr_pages; i++)
|
|
put_page(ne_mem_region->pages[i]);
|
|
free_mem_region:
|
|
kfree(phys_contig_mem_regions.regions);
|
|
kfree(ne_mem_region->pages);
|
|
kfree(ne_mem_region);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources,
|
|
* such as memory and CPU, have been set.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @enclave_start_info : Enclave info that includes enclave cid and flags.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave,
|
|
struct ne_enclave_start_info *enclave_start_info)
|
|
{
|
|
struct ne_pci_dev_cmd_reply cmd_reply = {};
|
|
unsigned int cpu = 0;
|
|
struct enclave_start_req enclave_start_req = {};
|
|
unsigned int i = 0;
|
|
struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev;
|
|
int rc = -EINVAL;
|
|
|
|
if (!ne_enclave->nr_mem_regions) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave has no mem regions\n");
|
|
|
|
return -NE_ERR_NO_MEM_REGIONS_ADDED;
|
|
}
|
|
|
|
if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave memory is less than %ld\n",
|
|
NE_MIN_ENCLAVE_MEM_SIZE);
|
|
|
|
return -NE_ERR_ENCLAVE_MEM_MIN_SIZE;
|
|
}
|
|
|
|
if (!ne_enclave->nr_vcpus) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave has no vCPUs\n");
|
|
|
|
return -NE_ERR_NO_VCPUS_ADDED;
|
|
}
|
|
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
|
|
for_each_cpu(cpu, ne_enclave->threads_per_core[i])
|
|
if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Full CPU cores not used\n");
|
|
|
|
return -NE_ERR_FULL_CORES_NOT_USED;
|
|
}
|
|
|
|
enclave_start_req.enclave_cid = enclave_start_info->enclave_cid;
|
|
enclave_start_req.flags = enclave_start_info->flags;
|
|
enclave_start_req.slot_uid = ne_enclave->slot_uid;
|
|
|
|
rc = ne_do_request(pdev, ENCLAVE_START,
|
|
&enclave_start_req, sizeof(enclave_start_req),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in enclave start [rc=%d]\n", rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
ne_enclave->state = NE_STATE_RUNNING;
|
|
|
|
enclave_start_info->enclave_cid = cmd_reply.enclave_cid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_enclave_ioctl() - Ioctl function provided by the enclave file.
|
|
* @file: File associated with this ioctl function.
|
|
* @cmd: The command that is set for the ioctl call.
|
|
* @arg: The argument that is provided for the ioctl call.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct ne_enclave *ne_enclave = file->private_data;
|
|
|
|
switch (cmd) {
|
|
case NE_ADD_VCPU: {
|
|
int rc = -EINVAL;
|
|
u32 vcpu_id = 0;
|
|
|
|
if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (ne_enclave->state != NE_STATE_INIT) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave is not in init state\n");
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return -NE_ERR_NOT_IN_INIT_STATE;
|
|
}
|
|
|
|
if (vcpu_id >= (ne_enclave->nr_parent_vm_cores *
|
|
ne_enclave->nr_threads_per_core)) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"vCPU id higher than max CPU id\n");
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return -NE_ERR_INVALID_VCPU;
|
|
}
|
|
|
|
if (!vcpu_id) {
|
|
/* Use the CPU pool for choosing a CPU for the enclave. */
|
|
rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id);
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in get CPU from pool [rc=%d]\n",
|
|
rc);
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return rc;
|
|
}
|
|
} else {
|
|
/* Check if the provided vCPU is available in the NE CPU pool. */
|
|
rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id);
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in check CPU %d in pool [rc=%d]\n",
|
|
vcpu_id, rc);
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id);
|
|
if (rc < 0) {
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
case NE_GET_IMAGE_LOAD_INFO: {
|
|
struct ne_image_load_info image_load_info = {};
|
|
|
|
if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (ne_enclave->state != NE_STATE_INIT) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave is not in init state\n");
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return -NE_ERR_NOT_IN_INIT_STATE;
|
|
}
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (!image_load_info.flags ||
|
|
image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Incorrect flag in enclave image load info\n");
|
|
|
|
return -NE_ERR_INVALID_FLAG_VALUE;
|
|
}
|
|
|
|
if (image_load_info.flags == NE_EIF_IMAGE)
|
|
image_load_info.memory_offset = NE_EIF_LOAD_OFFSET;
|
|
|
|
if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
case NE_SET_USER_MEMORY_REGION: {
|
|
struct ne_user_memory_region mem_region = {};
|
|
int rc = -EINVAL;
|
|
|
|
if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region)))
|
|
return -EFAULT;
|
|
|
|
if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Incorrect flag for user memory region\n");
|
|
|
|
return -NE_ERR_INVALID_FLAG_VALUE;
|
|
}
|
|
|
|
mutex_lock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (ne_enclave->state != NE_STATE_INIT) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave is not in init state\n");
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return -NE_ERR_NOT_IN_INIT_STATE;
|
|
}
|
|
|
|
rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region);
|
|
if (rc < 0) {
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
case NE_START_ENCLAVE: {
|
|
struct ne_enclave_start_info enclave_start_info = {};
|
|
int rc = -EINVAL;
|
|
|
|
if (copy_from_user(&enclave_start_info, (void __user *)arg,
|
|
sizeof(enclave_start_info)))
|
|
return -EFAULT;
|
|
|
|
if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Incorrect flag in enclave start info\n");
|
|
|
|
return -NE_ERR_INVALID_FLAG_VALUE;
|
|
}
|
|
|
|
/*
|
|
* Do not use well-known CIDs - 0, 1, 2 - for enclaves.
|
|
* VMADDR_CID_ANY = -1U
|
|
* VMADDR_CID_HYPERVISOR = 0
|
|
* VMADDR_CID_LOCAL = 1
|
|
* VMADDR_CID_HOST = 2
|
|
* Note: 0 is used as a placeholder to auto-generate an enclave CID.
|
|
* http://man7.org/linux/man-pages/man7/vsock.7.html
|
|
*/
|
|
if (enclave_start_info.enclave_cid > 0 &&
|
|
enclave_start_info.enclave_cid <= VMADDR_CID_HOST) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Well-known CID value, not to be used for enclaves\n");
|
|
|
|
return -NE_ERR_INVALID_ENCLAVE_CID;
|
|
}
|
|
|
|
if (enclave_start_info.enclave_cid == U32_MAX) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Well-known CID value, not to be used for enclaves\n");
|
|
|
|
return -NE_ERR_INVALID_ENCLAVE_CID;
|
|
}
|
|
|
|
/*
|
|
* Do not use the CID of the primary / parent VM for enclaves.
|
|
*/
|
|
if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"CID of the parent VM, not to be used for enclaves\n");
|
|
|
|
return -NE_ERR_INVALID_ENCLAVE_CID;
|
|
}
|
|
|
|
/* 64-bit CIDs are not yet supported for the vsock device. */
|
|
if (enclave_start_info.enclave_cid > U32_MAX) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"64-bit CIDs not yet supported for the vsock device\n");
|
|
|
|
return -NE_ERR_INVALID_ENCLAVE_CID;
|
|
}
|
|
|
|
mutex_lock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (ne_enclave->state != NE_STATE_INIT) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Enclave is not in init state\n");
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return -NE_ERR_NOT_IN_INIT_STATE;
|
|
}
|
|
|
|
rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info);
|
|
if (rc < 0) {
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (copy_to_user((void __user *)arg, &enclave_start_info,
|
|
sizeof(enclave_start_info)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries
|
|
* from the enclave data structure.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
*/
|
|
static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave)
|
|
{
|
|
unsigned long i = 0;
|
|
struct ne_mem_region *ne_mem_region = NULL;
|
|
struct ne_mem_region *ne_mem_region_tmp = NULL;
|
|
|
|
list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp,
|
|
&ne_enclave->mem_regions_list,
|
|
mem_region_list_entry) {
|
|
list_del(&ne_mem_region->mem_region_list_entry);
|
|
|
|
for (i = 0; i < ne_mem_region->nr_pages; i++)
|
|
put_page(ne_mem_region->pages[i]);
|
|
|
|
kfree(ne_mem_region->pages);
|
|
|
|
kfree(ne_mem_region);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from
|
|
* the enclave data structure.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
*
|
|
* Context: Process context. This function is called with the ne_enclave mutex held.
|
|
*/
|
|
static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave)
|
|
{
|
|
unsigned int cpu = 0;
|
|
unsigned int i = 0;
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) {
|
|
for_each_cpu(cpu, ne_enclave->threads_per_core[i])
|
|
/* Update the available NE CPU pool. */
|
|
cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]);
|
|
|
|
free_cpumask_var(ne_enclave->threads_per_core[i]);
|
|
}
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
kfree(ne_enclave->threads_per_core);
|
|
|
|
free_cpumask_var(ne_enclave->vcpu_ids);
|
|
}
|
|
|
|
/**
|
|
* ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data
|
|
* structure that is part of the NE PCI
|
|
* device private data.
|
|
* @ne_enclave : Private data associated with the current enclave.
|
|
* @ne_pci_dev : Private data associated with the PCI device.
|
|
*
|
|
* Context: Process context. This function is called with the ne_pci_dev enclave
|
|
* mutex held.
|
|
*/
|
|
static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave,
|
|
struct ne_pci_dev *ne_pci_dev)
|
|
{
|
|
struct ne_enclave *ne_enclave_entry = NULL;
|
|
struct ne_enclave *ne_enclave_entry_tmp = NULL;
|
|
|
|
list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp,
|
|
&ne_pci_dev->enclaves_list, enclave_list_entry) {
|
|
if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) {
|
|
list_del(&ne_enclave_entry->enclave_list_entry);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ne_enclave_release() - Release function provided by the enclave file.
|
|
* @inode: Inode associated with this file release function.
|
|
* @file: File associated with this release function.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * 0 on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_enclave_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct ne_pci_dev_cmd_reply cmd_reply = {};
|
|
struct enclave_stop_req enclave_stop_request = {};
|
|
struct ne_enclave *ne_enclave = file->private_data;
|
|
struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
|
|
struct pci_dev *pdev = ne_pci_dev->pdev;
|
|
int rc = -EINVAL;
|
|
struct slot_free_req slot_free_req = {};
|
|
|
|
if (!ne_enclave)
|
|
return 0;
|
|
|
|
/*
|
|
* Early exit in case there is an error in the enclave creation logic
|
|
* and fput() is called on the cleanup path.
|
|
*/
|
|
if (!ne_enclave->slot_uid)
|
|
return 0;
|
|
|
|
/*
|
|
* Acquire the enclave list mutex before the enclave mutex
|
|
* in order to avoid deadlocks with @ref ne_event_work_handler.
|
|
*/
|
|
mutex_lock(&ne_pci_dev->enclaves_list_mutex);
|
|
mutex_lock(&ne_enclave->enclave_info_mutex);
|
|
|
|
if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) {
|
|
enclave_stop_request.slot_uid = ne_enclave->slot_uid;
|
|
|
|
rc = ne_do_request(pdev, ENCLAVE_STOP,
|
|
&enclave_stop_request, sizeof(enclave_stop_request),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in enclave stop [rc=%d]\n", rc);
|
|
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
memset(&cmd_reply, 0, sizeof(cmd_reply));
|
|
}
|
|
|
|
slot_free_req.slot_uid = ne_enclave->slot_uid;
|
|
|
|
rc = ne_do_request(pdev, SLOT_FREE,
|
|
&slot_free_req, sizeof(slot_free_req),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in slot free [rc=%d]\n", rc);
|
|
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev);
|
|
ne_enclave_remove_all_mem_region_entries(ne_enclave);
|
|
ne_enclave_remove_all_vcpu_id_entries(ne_enclave);
|
|
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
|
|
|
|
kfree(ne_enclave);
|
|
|
|
return 0;
|
|
|
|
unlock_mutex:
|
|
mutex_unlock(&ne_enclave->enclave_info_mutex);
|
|
mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_enclave_poll() - Poll functionality used for enclave out-of-band events.
|
|
* @file: File associated with this poll function.
|
|
* @wait: Poll table data structure.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * Poll mask.
|
|
*/
|
|
static __poll_t ne_enclave_poll(struct file *file, poll_table *wait)
|
|
{
|
|
__poll_t mask = 0;
|
|
struct ne_enclave *ne_enclave = file->private_data;
|
|
|
|
poll_wait(file, &ne_enclave->eventq, wait);
|
|
|
|
if (ne_enclave->has_event)
|
|
mask |= EPOLLHUP;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static const struct file_operations ne_enclave_fops = {
|
|
.owner = THIS_MODULE,
|
|
.llseek = noop_llseek,
|
|
.poll = ne_enclave_poll,
|
|
.unlocked_ioctl = ne_enclave_ioctl,
|
|
.release = ne_enclave_release,
|
|
};
|
|
|
|
/**
|
|
* ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create
|
|
* enclave file descriptor to be further used for enclave
|
|
* resources handling e.g. memory regions and CPUs.
|
|
* @ne_pci_dev : Private data associated with the PCI device.
|
|
* @slot_uid: User pointer to store the generated unique slot id
|
|
* associated with an enclave to.
|
|
*
|
|
* Context: Process context. This function is called with the ne_pci_dev enclave
|
|
* mutex held.
|
|
* Return:
|
|
* * Enclave fd on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid)
|
|
{
|
|
struct ne_pci_dev_cmd_reply cmd_reply = {};
|
|
int enclave_fd = -1;
|
|
struct file *enclave_file = NULL;
|
|
unsigned int i = 0;
|
|
struct ne_enclave *ne_enclave = NULL;
|
|
struct pci_dev *pdev = ne_pci_dev->pdev;
|
|
int rc = -EINVAL;
|
|
struct slot_alloc_req slot_alloc_req = {};
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++)
|
|
if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i]))
|
|
break;
|
|
|
|
if (i == ne_cpu_pool.nr_parent_vm_cores) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"No CPUs available in CPU pool\n");
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
return -NE_ERR_NO_CPUS_AVAIL_IN_POOL;
|
|
}
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL);
|
|
if (!ne_enclave)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&ne_cpu_pool.mutex);
|
|
|
|
ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores;
|
|
ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core;
|
|
ne_enclave->numa_node = ne_cpu_pool.numa_node;
|
|
|
|
mutex_unlock(&ne_cpu_pool.mutex);
|
|
|
|
ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores,
|
|
sizeof(*ne_enclave->threads_per_core),
|
|
GFP_KERNEL);
|
|
if (!ne_enclave->threads_per_core) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_ne_enclave;
|
|
}
|
|
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
|
|
if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_cpumask;
|
|
}
|
|
|
|
if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) {
|
|
rc = -ENOMEM;
|
|
|
|
goto free_cpumask;
|
|
}
|
|
|
|
enclave_fd = get_unused_fd_flags(O_CLOEXEC);
|
|
if (enclave_fd < 0) {
|
|
rc = enclave_fd;
|
|
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in getting unused fd [rc=%d]\n", rc);
|
|
|
|
goto free_cpumask;
|
|
}
|
|
|
|
enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR);
|
|
if (IS_ERR(enclave_file)) {
|
|
rc = PTR_ERR(enclave_file);
|
|
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in anon inode get file [rc=%d]\n", rc);
|
|
|
|
goto put_fd;
|
|
}
|
|
|
|
rc = ne_do_request(pdev, SLOT_ALLOC,
|
|
&slot_alloc_req, sizeof(slot_alloc_req),
|
|
&cmd_reply, sizeof(cmd_reply));
|
|
if (rc < 0) {
|
|
dev_err_ratelimited(ne_misc_dev.this_device,
|
|
"Error in slot alloc [rc=%d]\n", rc);
|
|
|
|
goto put_file;
|
|
}
|
|
|
|
init_waitqueue_head(&ne_enclave->eventq);
|
|
ne_enclave->has_event = false;
|
|
mutex_init(&ne_enclave->enclave_info_mutex);
|
|
ne_enclave->max_mem_regions = cmd_reply.mem_regions;
|
|
INIT_LIST_HEAD(&ne_enclave->mem_regions_list);
|
|
ne_enclave->mm = current->mm;
|
|
ne_enclave->slot_uid = cmd_reply.slot_uid;
|
|
ne_enclave->state = NE_STATE_INIT;
|
|
|
|
list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list);
|
|
|
|
if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) {
|
|
/*
|
|
* As we're holding the only reference to 'enclave_file', fput()
|
|
* will call ne_enclave_release() which will do a proper cleanup
|
|
* of all so far allocated resources, leaving only the unused fd
|
|
* for us to free.
|
|
*/
|
|
fput(enclave_file);
|
|
put_unused_fd(enclave_fd);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
fd_install(enclave_fd, enclave_file);
|
|
|
|
return enclave_fd;
|
|
|
|
put_file:
|
|
fput(enclave_file);
|
|
put_fd:
|
|
put_unused_fd(enclave_fd);
|
|
free_cpumask:
|
|
free_cpumask_var(ne_enclave->vcpu_ids);
|
|
for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++)
|
|
free_cpumask_var(ne_enclave->threads_per_core[i]);
|
|
kfree(ne_enclave->threads_per_core);
|
|
free_ne_enclave:
|
|
kfree(ne_enclave);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ne_ioctl() - Ioctl function provided by the NE misc device.
|
|
* @file: File associated with this ioctl function.
|
|
* @cmd: The command that is set for the ioctl call.
|
|
* @arg: The argument that is provided for the ioctl call.
|
|
*
|
|
* Context: Process context.
|
|
* Return:
|
|
* * Ioctl result (e.g. enclave file descriptor) on success.
|
|
* * Negative return value on failure.
|
|
*/
|
|
static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case NE_CREATE_VM: {
|
|
int enclave_fd = -1;
|
|
struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev;
|
|
u64 __user *slot_uid = (void __user *)arg;
|
|
|
|
mutex_lock(&ne_pci_dev->enclaves_list_mutex);
|
|
enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid);
|
|
mutex_unlock(&ne_pci_dev->enclaves_list_mutex);
|
|
|
|
return enclave_fd;
|
|
}
|
|
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST)
|
|
#include "ne_misc_dev_test.c"
|
|
|
|
static inline int ne_misc_dev_test_init(void)
|
|
{
|
|
return __kunit_test_suites_init(ne_misc_dev_test_suites);
|
|
}
|
|
|
|
static inline void ne_misc_dev_test_exit(void)
|
|
{
|
|
__kunit_test_suites_exit(ne_misc_dev_test_suites);
|
|
}
|
|
#else
|
|
static inline int ne_misc_dev_test_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void ne_misc_dev_test_exit(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __init ne_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = ne_misc_dev_test_init();
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
mutex_init(&ne_cpu_pool.mutex);
|
|
|
|
return pci_register_driver(&ne_pci_driver);
|
|
}
|
|
|
|
static void __exit ne_exit(void)
|
|
{
|
|
pci_unregister_driver(&ne_pci_driver);
|
|
|
|
ne_teardown_cpu_pool();
|
|
|
|
ne_misc_dev_test_exit();
|
|
}
|
|
|
|
module_init(ne_init);
|
|
module_exit(ne_exit);
|
|
|
|
MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
|
|
MODULE_DESCRIPTION("Nitro Enclaves Driver");
|
|
MODULE_LICENSE("GPL v2");
|