linux/linux-5.18.11/drivers/power/supply/sbs-battery.c

1295 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Gas Gauge driver for SBS Compliant Batteries
*
* Copyright (c) 2010, NVIDIA Corporation.
*/
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/devm-helpers.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/of_device.h>
#include <linux/power/sbs-battery.h>
#include <linux/power_supply.h>
#include <linux/slab.h>
#include <linux/stat.h>
enum {
REG_MANUFACTURER_DATA,
REG_BATTERY_MODE,
REG_TEMPERATURE,
REG_VOLTAGE,
REG_CURRENT_NOW,
REG_CURRENT_AVG,
REG_MAX_ERR,
REG_CAPACITY,
REG_TIME_TO_EMPTY_NOW,
REG_TIME_TO_EMPTY_AVG,
REG_TIME_TO_FULL_AVG,
REG_STATUS,
REG_CAPACITY_LEVEL,
REG_CYCLE_COUNT,
REG_SERIAL_NUMBER,
REG_REMAINING_CAPACITY,
REG_REMAINING_CAPACITY_CHARGE,
REG_FULL_CHARGE_CAPACITY,
REG_FULL_CHARGE_CAPACITY_CHARGE,
REG_DESIGN_CAPACITY,
REG_DESIGN_CAPACITY_CHARGE,
REG_DESIGN_VOLTAGE_MIN,
REG_DESIGN_VOLTAGE_MAX,
REG_CHEMISTRY,
REG_MANUFACTURER,
REG_MODEL_NAME,
REG_CHARGE_CURRENT,
REG_CHARGE_VOLTAGE,
};
#define REG_ADDR_SPEC_INFO 0x1A
#define SPEC_INFO_VERSION_MASK GENMASK(7, 4)
#define SPEC_INFO_VERSION_SHIFT 4
#define SBS_VERSION_1_0 1
#define SBS_VERSION_1_1 2
#define SBS_VERSION_1_1_WITH_PEC 3
#define REG_ADDR_MANUFACTURE_DATE 0x1B
/* Battery Mode defines */
#define BATTERY_MODE_OFFSET 0x03
#define BATTERY_MODE_CAPACITY_MASK BIT(15)
enum sbs_capacity_mode {
CAPACITY_MODE_AMPS = 0,
CAPACITY_MODE_WATTS = BATTERY_MODE_CAPACITY_MASK
};
#define BATTERY_MODE_CHARGER_MASK (1<<14)
/* manufacturer access defines */
#define MANUFACTURER_ACCESS_STATUS 0x0006
#define MANUFACTURER_ACCESS_SLEEP 0x0011
/* battery status value bits */
#define BATTERY_INITIALIZED 0x80
#define BATTERY_DISCHARGING 0x40
#define BATTERY_FULL_CHARGED 0x20
#define BATTERY_FULL_DISCHARGED 0x10
/* min_value and max_value are only valid for numerical data */
#define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
.psp = _psp, \
.addr = _addr, \
.min_value = _min_value, \
.max_value = _max_value, \
}
static const struct chip_data {
enum power_supply_property psp;
u8 addr;
int min_value;
int max_value;
} sbs_data[] = {
[REG_MANUFACTURER_DATA] =
SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
[REG_BATTERY_MODE] =
SBS_DATA(-1, 0x03, 0, 65535),
[REG_TEMPERATURE] =
SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
[REG_VOLTAGE] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 65535),
[REG_CURRENT_NOW] =
SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
[REG_CURRENT_AVG] =
SBS_DATA(POWER_SUPPLY_PROP_CURRENT_AVG, 0x0B, -32768, 32767),
[REG_MAX_ERR] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, 0x0c, 0, 100),
[REG_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0D, 0, 100),
[REG_REMAINING_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
[REG_REMAINING_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
[REG_FULL_CHARGE_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
[REG_FULL_CHARGE_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
[REG_TIME_TO_EMPTY_NOW] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, 0x11, 0, 65535),
[REG_TIME_TO_EMPTY_AVG] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
[REG_TIME_TO_FULL_AVG] =
SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
[REG_CHARGE_CURRENT] =
SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 0x14, 0, 65535),
[REG_CHARGE_VOLTAGE] =
SBS_DATA(POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 0x15, 0, 65535),
[REG_STATUS] =
SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
[REG_CAPACITY_LEVEL] =
SBS_DATA(POWER_SUPPLY_PROP_CAPACITY_LEVEL, 0x16, 0, 65535),
[REG_CYCLE_COUNT] =
SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
[REG_DESIGN_CAPACITY] =
SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_CAPACITY_CHARGE] =
SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
[REG_DESIGN_VOLTAGE_MIN] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 0x19, 0, 65535),
[REG_DESIGN_VOLTAGE_MAX] =
SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
[REG_SERIAL_NUMBER] =
SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
/* Properties of type `const char *' */
[REG_MANUFACTURER] =
SBS_DATA(POWER_SUPPLY_PROP_MANUFACTURER, 0x20, 0, 65535),
[REG_MODEL_NAME] =
SBS_DATA(POWER_SUPPLY_PROP_MODEL_NAME, 0x21, 0, 65535),
[REG_CHEMISTRY] =
SBS_DATA(POWER_SUPPLY_PROP_TECHNOLOGY, 0x22, 0, 65535)
};
static const enum power_supply_property sbs_properties[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_CYCLE_COUNT,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
POWER_SUPPLY_PROP_SERIAL_NUMBER,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_ENERGY_NOW,
POWER_SUPPLY_PROP_ENERGY_FULL,
POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
POWER_SUPPLY_PROP_MANUFACTURE_DAY,
/* Properties of type `const char *' */
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_MODEL_NAME
};
/* Supports special manufacturer commands from TI BQ20Z65 and BQ20Z75 IC. */
#define SBS_FLAGS_TI_BQ20ZX5 BIT(0)
static const enum power_supply_property string_properties[] = {
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_MODEL_NAME,
};
#define NR_STRING_BUFFERS ARRAY_SIZE(string_properties)
struct sbs_info {
struct i2c_client *client;
struct power_supply *power_supply;
bool is_present;
struct gpio_desc *gpio_detect;
bool charger_broadcasts;
int last_state;
int poll_time;
u32 i2c_retry_count;
u32 poll_retry_count;
struct delayed_work work;
struct mutex mode_lock;
u32 flags;
int technology;
char strings[NR_STRING_BUFFERS][I2C_SMBUS_BLOCK_MAX + 1];
};
static char *sbs_get_string_buf(struct sbs_info *chip,
enum power_supply_property psp)
{
int i = 0;
for (i = 0; i < NR_STRING_BUFFERS; i++)
if (string_properties[i] == psp)
return chip->strings[i];
return ERR_PTR(-EINVAL);
}
static void sbs_invalidate_cached_props(struct sbs_info *chip)
{
int i = 0;
chip->technology = -1;
for (i = 0; i < NR_STRING_BUFFERS; i++)
chip->strings[i][0] = 0;
}
static bool force_load;
static int sbs_read_word_data(struct i2c_client *client, u8 address);
static int sbs_write_word_data(struct i2c_client *client, u8 address, u16 value);
static void sbs_disable_charger_broadcasts(struct sbs_info *chip)
{
int val = sbs_read_word_data(chip->client, BATTERY_MODE_OFFSET);
if (val < 0)
goto exit;
val |= BATTERY_MODE_CHARGER_MASK;
val = sbs_write_word_data(chip->client, BATTERY_MODE_OFFSET, val);
exit:
if (val < 0)
dev_err(&chip->client->dev,
"Failed to disable charger broadcasting: %d\n", val);
else
dev_dbg(&chip->client->dev, "%s\n", __func__);
}
static int sbs_update_presence(struct sbs_info *chip, bool is_present)
{
struct i2c_client *client = chip->client;
int retries = chip->i2c_retry_count;
s32 ret = 0;
u8 version;
if (chip->is_present == is_present)
return 0;
if (!is_present) {
chip->is_present = false;
/* Disable PEC when no device is present */
client->flags &= ~I2C_CLIENT_PEC;
sbs_invalidate_cached_props(chip);
return 0;
}
/* Check if device supports packet error checking and use it */
while (retries > 0) {
ret = i2c_smbus_read_word_data(client, REG_ADDR_SPEC_INFO);
if (ret >= 0)
break;
/*
* Some batteries trigger the detection pin before the
* I2C bus is properly connected. This works around the
* issue.
*/
msleep(100);
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev, "failed to read spec info: %d\n", ret);
/* fallback to old behaviour */
client->flags &= ~I2C_CLIENT_PEC;
chip->is_present = true;
return ret;
}
version = (ret & SPEC_INFO_VERSION_MASK) >> SPEC_INFO_VERSION_SHIFT;
if (version == SBS_VERSION_1_1_WITH_PEC)
client->flags |= I2C_CLIENT_PEC;
else
client->flags &= ~I2C_CLIENT_PEC;
if (of_device_is_compatible(client->dev.parent->of_node, "google,cros-ec-i2c-tunnel")
&& client->flags & I2C_CLIENT_PEC) {
dev_info(&client->dev, "Disabling PEC because of broken Cros-EC implementation\n");
client->flags &= ~I2C_CLIENT_PEC;
}
dev_dbg(&client->dev, "PEC: %s\n", (client->flags & I2C_CLIENT_PEC) ?
"enabled" : "disabled");
if (!chip->is_present && is_present && !chip->charger_broadcasts)
sbs_disable_charger_broadcasts(chip);
chip->is_present = true;
return 0;
}
static int sbs_read_word_data(struct i2c_client *client, u8 address)
{
struct sbs_info *chip = i2c_get_clientdata(client);
int retries = chip->i2c_retry_count;
s32 ret = 0;
while (retries > 0) {
ret = i2c_smbus_read_word_data(client, address);
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
return ret;
}
static int sbs_read_string_data_fallback(struct i2c_client *client, u8 address, char *values)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret = 0, block_length = 0;
int retries_length, retries_block;
u8 block_buffer[I2C_SMBUS_BLOCK_MAX + 1];
retries_length = chip->i2c_retry_count;
retries_block = chip->i2c_retry_count;
dev_warn_once(&client->dev, "I2C adapter does not support I2C_FUNC_SMBUS_READ_BLOCK_DATA.\n"
"Fallback method does not support PEC.\n");
/* Adapter needs to support these two functions */
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_I2C_BLOCK)){
return -ENODEV;
}
/* Get the length of block data */
while (retries_length > 0) {
ret = i2c_smbus_read_byte_data(client, address);
if (ret >= 0)
break;
retries_length--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
/* block_length does not include NULL terminator */
block_length = ret;
if (block_length > I2C_SMBUS_BLOCK_MAX) {
dev_err(&client->dev,
"%s: Returned block_length is longer than 0x%x\n",
__func__, I2C_SMBUS_BLOCK_MAX);
return -EINVAL;
}
/* Get the block data */
while (retries_block > 0) {
ret = i2c_smbus_read_i2c_block_data(
client, address,
block_length + 1, block_buffer);
if (ret >= 0)
break;
retries_block--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c read at address 0x%x failed\n",
__func__, address);
return ret;
}
/* block_buffer[0] == block_length */
memcpy(values, block_buffer + 1, block_length);
values[block_length] = '\0';
return ret;
}
static int sbs_read_string_data(struct i2c_client *client, u8 address, char *values)
{
struct sbs_info *chip = i2c_get_clientdata(client);
int retries = chip->i2c_retry_count;
int ret = 0;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_READ_BLOCK_DATA)) {
bool pec = client->flags & I2C_CLIENT_PEC;
client->flags &= ~I2C_CLIENT_PEC;
ret = sbs_read_string_data_fallback(client, address, values);
if (pec)
client->flags |= I2C_CLIENT_PEC;
return ret;
}
while (retries > 0) {
ret = i2c_smbus_read_block_data(client, address, values);
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev, "failed to read block 0x%x: %d\n", address, ret);
return ret;
}
/* add string termination */
values[ret] = '\0';
return ret;
}
static int sbs_write_word_data(struct i2c_client *client, u8 address,
u16 value)
{
struct sbs_info *chip = i2c_get_clientdata(client);
int retries = chip->i2c_retry_count;
s32 ret = 0;
while (retries > 0) {
ret = i2c_smbus_write_word_data(client, address, value);
if (ret >= 0)
break;
retries--;
}
if (ret < 0) {
dev_dbg(&client->dev,
"%s: i2c write to address 0x%x failed\n",
__func__, address);
return ret;
}
return 0;
}
static int sbs_status_correct(struct i2c_client *client, int *intval)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_CURRENT_NOW].addr);
if (ret < 0)
return ret;
ret = (s16)ret;
/* Not drawing current -> not charging (i.e. idle) */
if (*intval != POWER_SUPPLY_STATUS_FULL && ret == 0)
*intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
if (*intval == POWER_SUPPLY_STATUS_FULL) {
/* Drawing or providing current when full */
if (ret > 0)
*intval = POWER_SUPPLY_STATUS_CHARGING;
else if (ret < 0)
*intval = POWER_SUPPLY_STATUS_DISCHARGING;
}
return 0;
}
static bool sbs_bat_needs_calibration(struct i2c_client *client)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_BATTERY_MODE].addr);
if (ret < 0)
return false;
return !!(ret & BIT(7));
}
static int sbs_get_ti_battery_presence_and_health(
struct i2c_client *client, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
/*
* Write to ManufacturerAccess with ManufacturerAccess command
* and then read the status.
*/
ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_STATUS);
if (ret < 0) {
if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 0; /* battery removed */
return ret;
}
ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
if (ret < 0) {
if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 0; /* battery removed */
return ret;
}
if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
val->intval = 0;
return 0;
}
/* Mask the upper nibble of 2nd byte and
* lower byte of response then
* shift the result by 8 to get status*/
ret &= 0x0F00;
ret >>= 8;
if (psp == POWER_SUPPLY_PROP_PRESENT) {
if (ret == 0x0F)
/* battery removed */
val->intval = 0;
else
val->intval = 1;
} else if (psp == POWER_SUPPLY_PROP_HEALTH) {
if (ret == 0x09)
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
else if (ret == 0x0B)
val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (ret == 0x0C)
val->intval = POWER_SUPPLY_HEALTH_DEAD;
else if (sbs_bat_needs_calibration(client))
val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
else
val->intval = POWER_SUPPLY_HEALTH_GOOD;
}
return 0;
}
static int sbs_get_battery_presence_and_health(
struct i2c_client *client, enum power_supply_property psp,
union power_supply_propval *val)
{
struct sbs_info *chip = i2c_get_clientdata(client);
int ret;
if (chip->flags & SBS_FLAGS_TI_BQ20ZX5)
return sbs_get_ti_battery_presence_and_health(client, psp, val);
/* Dummy command; if it succeeds, battery is present. */
ret = sbs_read_word_data(client, sbs_data[REG_STATUS].addr);
if (ret < 0) { /* battery not present*/
if (psp == POWER_SUPPLY_PROP_PRESENT) {
val->intval = 0;
return 0;
}
return ret;
}
if (psp == POWER_SUPPLY_PROP_PRESENT)
val->intval = 1; /* battery present */
else { /* POWER_SUPPLY_PROP_HEALTH */
if (sbs_bat_needs_calibration(client)) {
val->intval = POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED;
} else {
/* SBS spec doesn't have a general health command. */
val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
}
}
return 0;
}
static int sbs_get_battery_property(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
struct sbs_info *chip = i2c_get_clientdata(client);
s32 ret;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
/* returned values are 16 bit */
if (sbs_data[reg_offset].min_value < 0)
ret = (s16)ret;
if (ret >= sbs_data[reg_offset].min_value &&
ret <= sbs_data[reg_offset].max_value) {
val->intval = ret;
if (psp == POWER_SUPPLY_PROP_CAPACITY_LEVEL) {
if (!(ret & BATTERY_INITIALIZED))
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
else if (ret & BATTERY_FULL_CHARGED)
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (ret & BATTERY_FULL_DISCHARGED)
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
val->intval =
POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
return 0;
} else if (psp != POWER_SUPPLY_PROP_STATUS) {
return 0;
}
if (ret & BATTERY_FULL_CHARGED)
val->intval = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_DISCHARGING)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else
val->intval = POWER_SUPPLY_STATUS_CHARGING;
sbs_status_correct(client, &val->intval);
if (chip->poll_time == 0)
chip->last_state = val->intval;
else if (chip->last_state != val->intval) {
cancel_delayed_work_sync(&chip->work);
power_supply_changed(chip->power_supply);
chip->poll_time = 0;
}
} else {
if (psp == POWER_SUPPLY_PROP_STATUS)
val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
else if (psp == POWER_SUPPLY_PROP_CAPACITY)
/* sbs spec says that this can be >100 %
* even if max value is 100 %
*/
val->intval = min(ret, 100);
else
val->intval = 0;
}
return 0;
}
static int sbs_get_property_index(struct i2c_client *client,
enum power_supply_property psp)
{
int count;
for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
if (psp == sbs_data[count].psp)
return count;
dev_warn(&client->dev,
"%s: Invalid Property - %d\n", __func__, psp);
return -EINVAL;
}
static const char *sbs_get_constant_string(struct sbs_info *chip,
enum power_supply_property psp)
{
int ret;
char *buf;
u8 addr;
buf = sbs_get_string_buf(chip, psp);
if (IS_ERR(buf))
return buf;
if (!buf[0]) {
ret = sbs_get_property_index(chip->client, psp);
if (ret < 0)
return ERR_PTR(ret);
addr = sbs_data[ret].addr;
ret = sbs_read_string_data(chip->client, addr, buf);
if (ret < 0)
return ERR_PTR(ret);
}
return buf;
}
static void sbs_unit_adjustment(struct i2c_client *client,
enum power_supply_property psp, union power_supply_propval *val)
{
#define BASE_UNIT_CONVERSION 1000
#define BATTERY_MODE_CAP_MULT_WATT (10 * BASE_UNIT_CONVERSION)
#define TIME_UNIT_CONVERSION 60
#define TEMP_KELVIN_TO_CELSIUS 2731
switch (psp) {
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
/* sbs provides energy in units of 10mWh.
* Convert to µWh
*/
val->intval *= BATTERY_MODE_CAP_MULT_WATT;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_CURRENT_AVG:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval *= BASE_UNIT_CONVERSION;
break;
case POWER_SUPPLY_PROP_TEMP:
/* sbs provides battery temperature in 0.1K
* so convert it to 0.1°C
*/
val->intval -= TEMP_KELVIN_TO_CELSIUS;
break;
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
/* sbs provides time to empty and time to full in minutes.
* Convert to seconds
*/
val->intval *= TIME_UNIT_CONVERSION;
break;
default:
dev_dbg(&client->dev,
"%s: no need for unit conversion %d\n", __func__, psp);
}
}
static enum sbs_capacity_mode sbs_set_capacity_mode(struct i2c_client *client,
enum sbs_capacity_mode mode)
{
int ret, original_val;
original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
if (original_val < 0)
return original_val;
if ((original_val & BATTERY_MODE_CAPACITY_MASK) == mode)
return mode;
if (mode == CAPACITY_MODE_AMPS)
ret = original_val & ~BATTERY_MODE_CAPACITY_MASK;
else
ret = original_val | BATTERY_MODE_CAPACITY_MASK;
ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
return original_val & BATTERY_MODE_CAPACITY_MASK;
}
static int sbs_get_battery_capacity(struct i2c_client *client,
int reg_offset, enum power_supply_property psp,
union power_supply_propval *val)
{
s32 ret;
enum sbs_capacity_mode mode = CAPACITY_MODE_WATTS;
if (power_supply_is_amp_property(psp))
mode = CAPACITY_MODE_AMPS;
mode = sbs_set_capacity_mode(client, mode);
if ((int)mode < 0)
return mode;
ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
if (ret < 0)
return ret;
val->intval = ret;
ret = sbs_set_capacity_mode(client, mode);
if (ret < 0)
return ret;
return 0;
}
static char sbs_serial[5];
static int sbs_get_battery_serial_number(struct i2c_client *client,
union power_supply_propval *val)
{
int ret;
ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
if (ret < 0)
return ret;
sprintf(sbs_serial, "%04x", ret);
val->strval = sbs_serial;
return 0;
}
static int sbs_get_chemistry(struct sbs_info *chip,
union power_supply_propval *val)
{
const char *chemistry;
if (chip->technology != -1) {
val->intval = chip->technology;
return 0;
}
chemistry = sbs_get_constant_string(chip, POWER_SUPPLY_PROP_TECHNOLOGY);
if (IS_ERR(chemistry))
return PTR_ERR(chemistry);
if (!strncasecmp(chemistry, "LION", 4))
chip->technology = POWER_SUPPLY_TECHNOLOGY_LION;
else if (!strncasecmp(chemistry, "LiP", 3))
chip->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
else if (!strncasecmp(chemistry, "NiCd", 4))
chip->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
else if (!strncasecmp(chemistry, "NiMH", 4))
chip->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
else
chip->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
if (chip->technology == POWER_SUPPLY_TECHNOLOGY_UNKNOWN)
dev_warn(&chip->client->dev, "Unknown chemistry: %s\n", chemistry);
val->intval = chip->technology;
return 0;
}
static int sbs_get_battery_manufacture_date(struct i2c_client *client,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret;
u16 day, month, year;
ret = sbs_read_word_data(client, REG_ADDR_MANUFACTURE_DATE);
if (ret < 0)
return ret;
day = ret & GENMASK(4, 0);
month = (ret & GENMASK(8, 5)) >> 5;
year = ((ret & GENMASK(15, 9)) >> 9) + 1980;
switch (psp) {
case POWER_SUPPLY_PROP_MANUFACTURE_YEAR:
val->intval = year;
break;
case POWER_SUPPLY_PROP_MANUFACTURE_MONTH:
val->intval = month;
break;
case POWER_SUPPLY_PROP_MANUFACTURE_DAY:
val->intval = day;
break;
default:
return -EINVAL;
}
return 0;
}
static int sbs_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret = 0;
struct sbs_info *chip = power_supply_get_drvdata(psy);
struct i2c_client *client = chip->client;
const char *str;
if (chip->gpio_detect) {
ret = gpiod_get_value_cansleep(chip->gpio_detect);
if (ret < 0)
return ret;
if (psp == POWER_SUPPLY_PROP_PRESENT) {
val->intval = ret;
sbs_update_presence(chip, ret);
return 0;
}
if (ret == 0)
return -ENODATA;
}
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_HEALTH:
ret = sbs_get_battery_presence_and_health(client, psp, val);
/* this can only be true if no gpio is used */
if (psp == POWER_SUPPLY_PROP_PRESENT)
return 0;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
ret = sbs_get_chemistry(chip, val);
if (ret < 0)
break;
goto done; /* don't trigger power_supply_changed()! */
case POWER_SUPPLY_PROP_ENERGY_NOW:
case POWER_SUPPLY_PROP_ENERGY_FULL:
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
case POWER_SUPPLY_PROP_CHARGE_NOW:
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
/* sbs_get_battery_capacity() will change the battery mode
* temporarily to read the requested attribute. Ensure we stay
* in the desired mode for the duration of the attribute read.
*/
mutex_lock(&chip->mode_lock);
ret = sbs_get_battery_capacity(client, ret, psp, val);
mutex_unlock(&chip->mode_lock);
break;
case POWER_SUPPLY_PROP_SERIAL_NUMBER:
ret = sbs_get_battery_serial_number(client, val);
break;
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
case POWER_SUPPLY_PROP_CYCLE_COUNT:
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
case POWER_SUPPLY_PROP_CURRENT_NOW:
case POWER_SUPPLY_PROP_CURRENT_AVG:
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
case POWER_SUPPLY_PROP_CAPACITY:
case POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN:
ret = sbs_get_property_index(client, psp);
if (ret < 0)
break;
ret = sbs_get_battery_property(client, ret, psp, val);
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
case POWER_SUPPLY_PROP_MANUFACTURER:
str = sbs_get_constant_string(chip, psp);
if (IS_ERR(str))
ret = PTR_ERR(str);
else
val->strval = str;
break;
case POWER_SUPPLY_PROP_MANUFACTURE_YEAR:
case POWER_SUPPLY_PROP_MANUFACTURE_MONTH:
case POWER_SUPPLY_PROP_MANUFACTURE_DAY:
ret = sbs_get_battery_manufacture_date(client, psp, val);
break;
default:
dev_err(&client->dev,
"%s: INVALID property\n", __func__);
return -EINVAL;
}
if (!chip->gpio_detect && chip->is_present != (ret >= 0)) {
bool old_present = chip->is_present;
union power_supply_propval val;
int err = sbs_get_battery_presence_and_health(
client, POWER_SUPPLY_PROP_PRESENT, &val);
sbs_update_presence(chip, !err && val.intval);
if (old_present != chip->is_present)
power_supply_changed(chip->power_supply);
}
done:
if (!ret) {
/* Convert units to match requirements for power supply class */
sbs_unit_adjustment(client, psp, val);
dev_dbg(&client->dev,
"%s: property = %d, value = %x\n", __func__,
psp, val->intval);
} else if (!chip->is_present) {
/* battery not present, so return NODATA for properties */
ret = -ENODATA;
}
return ret;
}
static void sbs_supply_changed(struct sbs_info *chip)
{
struct power_supply *battery = chip->power_supply;
int ret;
ret = gpiod_get_value_cansleep(chip->gpio_detect);
if (ret < 0)
return;
sbs_update_presence(chip, ret);
power_supply_changed(battery);
}
static irqreturn_t sbs_irq(int irq, void *devid)
{
sbs_supply_changed(devid);
return IRQ_HANDLED;
}
static void sbs_alert(struct i2c_client *client, enum i2c_alert_protocol prot,
unsigned int data)
{
sbs_supply_changed(i2c_get_clientdata(client));
}
static void sbs_external_power_changed(struct power_supply *psy)
{
struct sbs_info *chip = power_supply_get_drvdata(psy);
/* cancel outstanding work */
cancel_delayed_work_sync(&chip->work);
schedule_delayed_work(&chip->work, HZ);
chip->poll_time = chip->poll_retry_count;
}
static void sbs_delayed_work(struct work_struct *work)
{
struct sbs_info *chip;
s32 ret;
chip = container_of(work, struct sbs_info, work.work);
ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
/* if the read failed, give up on this work */
if (ret < 0) {
chip->poll_time = 0;
return;
}
if (ret & BATTERY_FULL_CHARGED)
ret = POWER_SUPPLY_STATUS_FULL;
else if (ret & BATTERY_DISCHARGING)
ret = POWER_SUPPLY_STATUS_DISCHARGING;
else
ret = POWER_SUPPLY_STATUS_CHARGING;
sbs_status_correct(chip->client, &ret);
if (chip->last_state != ret) {
chip->poll_time = 0;
power_supply_changed(chip->power_supply);
return;
}
if (chip->poll_time > 0) {
schedule_delayed_work(&chip->work, HZ);
chip->poll_time--;
return;
}
}
static const struct power_supply_desc sbs_default_desc = {
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = sbs_properties,
.num_properties = ARRAY_SIZE(sbs_properties),
.get_property = sbs_get_property,
.external_power_changed = sbs_external_power_changed,
};
static int sbs_probe(struct i2c_client *client)
{
struct sbs_info *chip;
struct power_supply_desc *sbs_desc;
struct sbs_platform_data *pdata = client->dev.platform_data;
struct power_supply_config psy_cfg = {};
int rc;
int irq;
sbs_desc = devm_kmemdup(&client->dev, &sbs_default_desc,
sizeof(*sbs_desc), GFP_KERNEL);
if (!sbs_desc)
return -ENOMEM;
sbs_desc->name = devm_kasprintf(&client->dev, GFP_KERNEL, "sbs-%s",
dev_name(&client->dev));
if (!sbs_desc->name)
return -ENOMEM;
chip = devm_kzalloc(&client->dev, sizeof(struct sbs_info), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->flags = (u32)(uintptr_t)device_get_match_data(&client->dev);
chip->client = client;
psy_cfg.of_node = client->dev.of_node;
psy_cfg.drv_data = chip;
chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
sbs_invalidate_cached_props(chip);
mutex_init(&chip->mode_lock);
/* use pdata if available, fall back to DT properties,
* or hardcoded defaults if not
*/
rc = device_property_read_u32(&client->dev, "sbs,i2c-retry-count",
&chip->i2c_retry_count);
if (rc)
chip->i2c_retry_count = 0;
rc = device_property_read_u32(&client->dev, "sbs,poll-retry-count",
&chip->poll_retry_count);
if (rc)
chip->poll_retry_count = 0;
if (pdata) {
chip->poll_retry_count = pdata->poll_retry_count;
chip->i2c_retry_count = pdata->i2c_retry_count;
}
chip->i2c_retry_count = chip->i2c_retry_count + 1;
chip->charger_broadcasts = !device_property_read_bool(&client->dev,
"sbs,disable-charger-broadcasts");
chip->gpio_detect = devm_gpiod_get_optional(&client->dev,
"sbs,battery-detect", GPIOD_IN);
if (IS_ERR(chip->gpio_detect))
return dev_err_probe(&client->dev, PTR_ERR(chip->gpio_detect),
"Failed to get gpio\n");
i2c_set_clientdata(client, chip);
if (!chip->gpio_detect)
goto skip_gpio;
irq = gpiod_to_irq(chip->gpio_detect);
if (irq <= 0) {
dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
goto skip_gpio;
}
rc = devm_request_threaded_irq(&client->dev, irq, NULL, sbs_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(&client->dev), chip);
if (rc) {
dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
goto skip_gpio;
}
skip_gpio:
/*
* Before we register, we might need to make sure we can actually talk
* to the battery.
*/
if (!(force_load || chip->gpio_detect)) {
union power_supply_propval val;
rc = sbs_get_battery_presence_and_health(
client, POWER_SUPPLY_PROP_PRESENT, &val);
if (rc < 0 || !val.intval)
return dev_err_probe(&client->dev, -ENODEV,
"Failed to get present status\n");
}
rc = devm_delayed_work_autocancel(&client->dev, &chip->work,
sbs_delayed_work);
if (rc)
return rc;
chip->power_supply = devm_power_supply_register(&client->dev, sbs_desc,
&psy_cfg);
if (IS_ERR(chip->power_supply))
return dev_err_probe(&client->dev, PTR_ERR(chip->power_supply),
"Failed to register power supply\n");
dev_info(&client->dev,
"%s: battery gas gauge device registered\n", client->name);
return 0;
}
#if defined CONFIG_PM_SLEEP
static int sbs_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct sbs_info *chip = i2c_get_clientdata(client);
int ret;
if (chip->poll_time > 0)
cancel_delayed_work_sync(&chip->work);
if (chip->flags & SBS_FLAGS_TI_BQ20ZX5) {
/* Write to manufacturer access with sleep command. */
ret = sbs_write_word_data(client,
sbs_data[REG_MANUFACTURER_DATA].addr,
MANUFACTURER_ACCESS_SLEEP);
if (chip->is_present && ret < 0)
return ret;
}
return 0;
}
static SIMPLE_DEV_PM_OPS(sbs_pm_ops, sbs_suspend, NULL);
#define SBS_PM_OPS (&sbs_pm_ops)
#else
#define SBS_PM_OPS NULL
#endif
static const struct i2c_device_id sbs_id[] = {
{ "bq20z65", 0 },
{ "bq20z75", 0 },
{ "sbs-battery", 1 },
{}
};
MODULE_DEVICE_TABLE(i2c, sbs_id);
static const struct of_device_id sbs_dt_ids[] = {
{ .compatible = "sbs,sbs-battery" },
{
.compatible = "ti,bq20z65",
.data = (void *)SBS_FLAGS_TI_BQ20ZX5,
},
{
.compatible = "ti,bq20z75",
.data = (void *)SBS_FLAGS_TI_BQ20ZX5,
},
{ }
};
MODULE_DEVICE_TABLE(of, sbs_dt_ids);
static struct i2c_driver sbs_battery_driver = {
.probe_new = sbs_probe,
.alert = sbs_alert,
.id_table = sbs_id,
.driver = {
.name = "sbs-battery",
.of_match_table = sbs_dt_ids,
.pm = SBS_PM_OPS,
},
};
module_i2c_driver(sbs_battery_driver);
MODULE_DESCRIPTION("SBS battery monitor driver");
MODULE_LICENSE("GPL");
module_param(force_load, bool, 0444);
MODULE_PARM_DESC(force_load,
"Attempt to load the driver even if no battery is connected");