linux/linux-5.18.11/drivers/phy/st/phy-stm32-usbphyc.c

821 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* STMicroelectronics STM32 USB PHY Controller driver
*
* Copyright (C) 2018 STMicroelectronics
* Author(s): Amelie Delaunay <amelie.delaunay@st.com>.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/reset.h>
#include <linux/units.h>
#define STM32_USBPHYC_PLL 0x0
#define STM32_USBPHYC_MISC 0x8
#define STM32_USBPHYC_MONITOR(X) (0x108 + ((X) * 0x100))
#define STM32_USBPHYC_TUNE(X) (0x10C + ((X) * 0x100))
#define STM32_USBPHYC_VERSION 0x3F4
/* STM32_USBPHYC_PLL bit fields */
#define PLLNDIV GENMASK(6, 0)
#define PLLFRACIN GENMASK(25, 10)
#define PLLEN BIT(26)
#define PLLSTRB BIT(27)
#define PLLSTRBYP BIT(28)
#define PLLFRACCTL BIT(29)
#define PLLDITHEN0 BIT(30)
#define PLLDITHEN1 BIT(31)
/* STM32_USBPHYC_MISC bit fields */
#define SWITHOST BIT(0)
/* STM32_USBPHYC_MONITOR bit fields */
#define STM32_USBPHYC_MON_OUT GENMASK(3, 0)
#define STM32_USBPHYC_MON_SEL GENMASK(8, 4)
#define STM32_USBPHYC_MON_SEL_LOCKP 0x1F
#define STM32_USBPHYC_MON_OUT_LOCKP BIT(3)
/* STM32_USBPHYC_TUNE bit fields */
#define INCURREN BIT(0)
#define INCURRINT BIT(1)
#define LFSCAPEN BIT(2)
#define HSDRVSLEW BIT(3)
#define HSDRVDCCUR BIT(4)
#define HSDRVDCLEV BIT(5)
#define HSDRVCURINCR BIT(6)
#define FSDRVRFADJ BIT(7)
#define HSDRVRFRED BIT(8)
#define HSDRVCHKITRM GENMASK(12, 9)
#define HSDRVCHKZTRM GENMASK(14, 13)
#define OTPCOMP GENMASK(19, 15)
#define SQLCHCTL GENMASK(21, 20)
#define HDRXGNEQEN BIT(22)
#define HSRXOFF GENMASK(24, 23)
#define HSFALLPREEM BIT(25)
#define SHTCCTCTLPROT BIT(26)
#define STAGSEL BIT(27)
enum boosting_vals {
BOOST_1000_UA = 1000,
BOOST_2000_UA = 2000,
};
enum dc_level_vals {
DC_NOMINAL,
DC_PLUS_5_TO_7_MV,
DC_PLUS_10_TO_14_MV,
DC_MINUS_5_TO_7_MV,
DC_MAX,
};
enum current_trim {
CUR_NOMINAL,
CUR_PLUS_1_56_PCT,
CUR_PLUS_3_12_PCT,
CUR_PLUS_4_68_PCT,
CUR_PLUS_6_24_PCT,
CUR_PLUS_7_8_PCT,
CUR_PLUS_9_36_PCT,
CUR_PLUS_10_92_PCT,
CUR_PLUS_12_48_PCT,
CUR_PLUS_14_04_PCT,
CUR_PLUS_15_6_PCT,
CUR_PLUS_17_16_PCT,
CUR_PLUS_19_01_PCT,
CUR_PLUS_20_58_PCT,
CUR_PLUS_22_16_PCT,
CUR_PLUS_23_73_PCT,
CUR_MAX,
};
enum impedance_trim {
IMP_NOMINAL,
IMP_MINUS_2_OHMS,
IMP_MINUS_4_OMHS,
IMP_MINUS_6_OHMS,
IMP_MAX,
};
enum squelch_level {
SQLCH_NOMINAL,
SQLCH_PLUS_7_MV,
SQLCH_MINUS_5_MV,
SQLCH_PLUS_14_MV,
SQLCH_MAX,
};
enum rx_offset {
NO_RX_OFFSET,
RX_OFFSET_PLUS_5_MV,
RX_OFFSET_PLUS_10_MV,
RX_OFFSET_MINUS_5_MV,
RX_OFFSET_MAX,
};
/* STM32_USBPHYC_VERSION bit fields */
#define MINREV GENMASK(3, 0)
#define MAJREV GENMASK(7, 4)
#define PLL_FVCO_MHZ 2880
#define PLL_INFF_MIN_RATE_HZ 19200000
#define PLL_INFF_MAX_RATE_HZ 38400000
struct pll_params {
u8 ndiv;
u16 frac;
};
struct stm32_usbphyc_phy {
struct phy *phy;
struct stm32_usbphyc *usbphyc;
struct regulator *vbus;
u32 index;
bool active;
u32 tune;
};
struct stm32_usbphyc {
struct device *dev;
void __iomem *base;
struct clk *clk;
struct reset_control *rst;
struct stm32_usbphyc_phy **phys;
int nphys;
struct regulator *vdda1v1;
struct regulator *vdda1v8;
atomic_t n_pll_cons;
struct clk_hw clk48_hw;
int switch_setup;
};
static inline void stm32_usbphyc_set_bits(void __iomem *reg, u32 bits)
{
writel_relaxed(readl_relaxed(reg) | bits, reg);
}
static inline void stm32_usbphyc_clr_bits(void __iomem *reg, u32 bits)
{
writel_relaxed(readl_relaxed(reg) & ~bits, reg);
}
static int stm32_usbphyc_regulators_enable(struct stm32_usbphyc *usbphyc)
{
int ret;
ret = regulator_enable(usbphyc->vdda1v1);
if (ret)
return ret;
ret = regulator_enable(usbphyc->vdda1v8);
if (ret)
goto vdda1v1_disable;
return 0;
vdda1v1_disable:
regulator_disable(usbphyc->vdda1v1);
return ret;
}
static int stm32_usbphyc_regulators_disable(struct stm32_usbphyc *usbphyc)
{
int ret;
ret = regulator_disable(usbphyc->vdda1v8);
if (ret)
return ret;
ret = regulator_disable(usbphyc->vdda1v1);
if (ret)
return ret;
return 0;
}
static void stm32_usbphyc_get_pll_params(u32 clk_rate,
struct pll_params *pll_params)
{
unsigned long long fvco, ndiv, frac;
/* _
* | FVCO = INFF*2*(NDIV + FRACT/2^16) when DITHER_DISABLE[1] = 1
* | FVCO = 2880MHz
* <
* | NDIV = integer part of input bits to set the LDF
* |_FRACT = fractional part of input bits to set the LDF
* => PLLNDIV = integer part of (FVCO / (INFF*2))
* => PLLFRACIN = fractional part of(FVCO / INFF*2) * 2^16
* <=> PLLFRACIN = ((FVCO / (INFF*2)) - PLLNDIV) * 2^16
*/
fvco = (unsigned long long)PLL_FVCO_MHZ * HZ_PER_MHZ;
ndiv = fvco;
do_div(ndiv, (clk_rate * 2));
pll_params->ndiv = (u8)ndiv;
frac = fvco * (1 << 16);
do_div(frac, (clk_rate * 2));
frac = frac - (ndiv * (1 << 16));
pll_params->frac = (u16)frac;
}
static int stm32_usbphyc_pll_init(struct stm32_usbphyc *usbphyc)
{
struct pll_params pll_params;
u32 clk_rate = clk_get_rate(usbphyc->clk);
u32 ndiv, frac;
u32 usbphyc_pll;
if ((clk_rate < PLL_INFF_MIN_RATE_HZ) ||
(clk_rate > PLL_INFF_MAX_RATE_HZ)) {
dev_err(usbphyc->dev, "input clk freq (%dHz) out of range\n",
clk_rate);
return -EINVAL;
}
stm32_usbphyc_get_pll_params(clk_rate, &pll_params);
ndiv = FIELD_PREP(PLLNDIV, pll_params.ndiv);
frac = FIELD_PREP(PLLFRACIN, pll_params.frac);
usbphyc_pll = PLLDITHEN1 | PLLDITHEN0 | PLLSTRBYP | ndiv;
if (pll_params.frac)
usbphyc_pll |= PLLFRACCTL | frac;
writel_relaxed(usbphyc_pll, usbphyc->base + STM32_USBPHYC_PLL);
dev_dbg(usbphyc->dev, "input clk freq=%dHz, ndiv=%lu, frac=%lu\n",
clk_rate, FIELD_GET(PLLNDIV, usbphyc_pll),
FIELD_GET(PLLFRACIN, usbphyc_pll));
return 0;
}
static int __stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc)
{
void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL;
u32 pllen;
stm32_usbphyc_clr_bits(pll_reg, PLLEN);
/* Wait for minimum width of powerdown pulse (ENABLE = Low) */
if (readl_relaxed_poll_timeout(pll_reg, pllen, !(pllen & PLLEN), 5, 50))
dev_err(usbphyc->dev, "PLL not reset\n");
return stm32_usbphyc_regulators_disable(usbphyc);
}
static int stm32_usbphyc_pll_disable(struct stm32_usbphyc *usbphyc)
{
/* Check if a phy port is still active or clk48 in use */
if (atomic_dec_return(&usbphyc->n_pll_cons) > 0)
return 0;
return __stm32_usbphyc_pll_disable(usbphyc);
}
static int stm32_usbphyc_pll_enable(struct stm32_usbphyc *usbphyc)
{
void __iomem *pll_reg = usbphyc->base + STM32_USBPHYC_PLL;
bool pllen = readl_relaxed(pll_reg) & PLLEN;
int ret;
/*
* Check if a phy port or clk48 prepare has configured the pll
* and ensure the PLL is enabled
*/
if (atomic_inc_return(&usbphyc->n_pll_cons) > 1 && pllen)
return 0;
if (pllen) {
/*
* PLL shouldn't be enabled without known consumer,
* disable it and reinit n_pll_cons
*/
dev_warn(usbphyc->dev, "PLL enabled without known consumers\n");
ret = __stm32_usbphyc_pll_disable(usbphyc);
if (ret)
goto dec_n_pll_cons;
}
ret = stm32_usbphyc_regulators_enable(usbphyc);
if (ret)
goto dec_n_pll_cons;
ret = stm32_usbphyc_pll_init(usbphyc);
if (ret)
goto reg_disable;
stm32_usbphyc_set_bits(pll_reg, PLLEN);
return 0;
reg_disable:
stm32_usbphyc_regulators_disable(usbphyc);
dec_n_pll_cons:
atomic_dec(&usbphyc->n_pll_cons);
return ret;
}
static int stm32_usbphyc_phy_init(struct phy *phy)
{
struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc;
u32 reg_mon = STM32_USBPHYC_MONITOR(usbphyc_phy->index);
u32 monsel = FIELD_PREP(STM32_USBPHYC_MON_SEL,
STM32_USBPHYC_MON_SEL_LOCKP);
u32 monout;
int ret;
ret = stm32_usbphyc_pll_enable(usbphyc);
if (ret)
return ret;
/* Check that PLL Lock input to PHY is High */
writel_relaxed(monsel, usbphyc->base + reg_mon);
ret = readl_relaxed_poll_timeout(usbphyc->base + reg_mon, monout,
(monout & STM32_USBPHYC_MON_OUT_LOCKP),
100, 1000);
if (ret) {
dev_err(usbphyc->dev, "PLL Lock input to PHY is Low (val=%x)\n",
(u32)(monout & STM32_USBPHYC_MON_OUT));
goto pll_disable;
}
usbphyc_phy->active = true;
return 0;
pll_disable:
return stm32_usbphyc_pll_disable(usbphyc);
}
static int stm32_usbphyc_phy_exit(struct phy *phy)
{
struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
struct stm32_usbphyc *usbphyc = usbphyc_phy->usbphyc;
usbphyc_phy->active = false;
return stm32_usbphyc_pll_disable(usbphyc);
}
static int stm32_usbphyc_phy_power_on(struct phy *phy)
{
struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
if (usbphyc_phy->vbus)
return regulator_enable(usbphyc_phy->vbus);
return 0;
}
static int stm32_usbphyc_phy_power_off(struct phy *phy)
{
struct stm32_usbphyc_phy *usbphyc_phy = phy_get_drvdata(phy);
if (usbphyc_phy->vbus)
return regulator_disable(usbphyc_phy->vbus);
return 0;
}
static const struct phy_ops stm32_usbphyc_phy_ops = {
.init = stm32_usbphyc_phy_init,
.exit = stm32_usbphyc_phy_exit,
.power_on = stm32_usbphyc_phy_power_on,
.power_off = stm32_usbphyc_phy_power_off,
.owner = THIS_MODULE,
};
static int stm32_usbphyc_clk48_prepare(struct clk_hw *hw)
{
struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw);
return stm32_usbphyc_pll_enable(usbphyc);
}
static void stm32_usbphyc_clk48_unprepare(struct clk_hw *hw)
{
struct stm32_usbphyc *usbphyc = container_of(hw, struct stm32_usbphyc, clk48_hw);
stm32_usbphyc_pll_disable(usbphyc);
}
static unsigned long stm32_usbphyc_clk48_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
return 48000000;
}
static const struct clk_ops usbphyc_clk48_ops = {
.prepare = stm32_usbphyc_clk48_prepare,
.unprepare = stm32_usbphyc_clk48_unprepare,
.recalc_rate = stm32_usbphyc_clk48_recalc_rate,
};
static void stm32_usbphyc_clk48_unregister(void *data)
{
struct stm32_usbphyc *usbphyc = data;
of_clk_del_provider(usbphyc->dev->of_node);
clk_hw_unregister(&usbphyc->clk48_hw);
}
static int stm32_usbphyc_clk48_register(struct stm32_usbphyc *usbphyc)
{
struct device_node *node = usbphyc->dev->of_node;
struct clk_init_data init = { };
int ret = 0;
init.name = "ck_usbo_48m";
init.ops = &usbphyc_clk48_ops;
usbphyc->clk48_hw.init = &init;
ret = clk_hw_register(usbphyc->dev, &usbphyc->clk48_hw);
if (ret)
return ret;
ret = of_clk_add_hw_provider(node, of_clk_hw_simple_get, &usbphyc->clk48_hw);
if (ret)
clk_hw_unregister(&usbphyc->clk48_hw);
return ret;
}
static void stm32_usbphyc_phy_tuning(struct stm32_usbphyc *usbphyc,
struct device_node *np, u32 index)
{
struct stm32_usbphyc_phy *usbphyc_phy = usbphyc->phys[index];
u32 reg = STM32_USBPHYC_TUNE(index);
u32 otpcomp, val;
int ret;
/* Backup OTP compensation code */
otpcomp = FIELD_GET(OTPCOMP, readl_relaxed(usbphyc->base + reg));
ret = of_property_read_u32(np, "st,current-boost-microamp", &val);
if (ret != -EINVAL) {
if (!ret && (val == BOOST_1000_UA || val == BOOST_2000_UA)) {
val = (val == BOOST_2000_UA) ? 1 : 0;
usbphyc_phy->tune |= INCURREN | FIELD_PREP(INCURRINT, val);
} else {
dev_warn(usbphyc->dev, "phy%d: invalid st,current-boost-microamp\n", index);
}
}
if (!of_property_read_bool(np, "st,no-lsfs-fb-cap"))
usbphyc_phy->tune |= LFSCAPEN;
if (of_property_read_bool(np, "st,decrease-hs-slew-rate"))
usbphyc_phy->tune |= HSDRVSLEW;
ret = of_property_read_u32(np, "st,tune-hs-dc-level", &val);
if (ret != -EINVAL) {
if (!ret && val < DC_MAX) {
if (val == DC_MINUS_5_TO_7_MV) {/* Decreases HS driver DC level */
usbphyc_phy->tune |= HSDRVDCCUR;
} else if (val > 0) { /* Increases HS driver DC level */
val = (val == DC_PLUS_10_TO_14_MV) ? 1 : 0;
usbphyc_phy->tune |= HSDRVCURINCR | FIELD_PREP(HSDRVDCLEV, val);
}
} else {
dev_warn(usbphyc->dev, "phy%d: invalid st,tune-hs-dc-level\n", index);
}
}
if (of_property_read_bool(np, "st,enable-fs-rftime-tuning"))
usbphyc_phy->tune |= FSDRVRFADJ;
if (of_property_read_bool(np, "st,enable-hs-rftime-reduction"))
usbphyc_phy->tune |= HSDRVRFRED;
ret = of_property_read_u32(np, "st,trim-hs-current", &val);
if (ret != -EINVAL) {
if (!ret && val < CUR_MAX)
usbphyc_phy->tune |= FIELD_PREP(HSDRVCHKITRM, val);
else
dev_warn(usbphyc->dev, "phy%d: invalid st,trim-hs-current\n", index);
}
ret = of_property_read_u32(np, "st,trim-hs-impedance", &val);
if (ret != -EINVAL) {
if (!ret && val < IMP_MAX)
usbphyc_phy->tune |= FIELD_PREP(HSDRVCHKZTRM, val);
else
dev_warn(usbphyc->dev, "phy%d: invalid st,trim-hs-impedance\n", index);
}
ret = of_property_read_u32(np, "st,tune-squelch-level", &val);
if (ret != -EINVAL) {
if (!ret && val < SQLCH_MAX)
usbphyc_phy->tune |= FIELD_PREP(SQLCHCTL, val);
else
dev_warn(usbphyc->dev, "phy%d: invalid st,tune-squelch\n", index);
}
if (of_property_read_bool(np, "st,enable-hs-rx-gain-eq"))
usbphyc_phy->tune |= HDRXGNEQEN;
ret = of_property_read_u32(np, "st,tune-hs-rx-offset", &val);
if (ret != -EINVAL) {
if (!ret && val < RX_OFFSET_MAX)
usbphyc_phy->tune |= FIELD_PREP(HSRXOFF, val);
else
dev_warn(usbphyc->dev, "phy%d: invalid st,tune-hs-rx-offset\n", index);
}
if (of_property_read_bool(np, "st,no-hs-ftime-ctrl"))
usbphyc_phy->tune |= HSFALLPREEM;
if (!of_property_read_bool(np, "st,no-lsfs-sc"))
usbphyc_phy->tune |= SHTCCTCTLPROT;
if (of_property_read_bool(np, "st,enable-hs-tx-staggering"))
usbphyc_phy->tune |= STAGSEL;
/* Restore OTP compensation code */
usbphyc_phy->tune |= FIELD_PREP(OTPCOMP, otpcomp);
/*
* By default, if no st,xxx tuning property is used, usbphyc_phy->tune is equal to
* STM32_USBPHYC_TUNE reset value (LFSCAPEN | SHTCCTCTLPROT | OTPCOMP).
*/
writel_relaxed(usbphyc_phy->tune, usbphyc->base + reg);
}
static void stm32_usbphyc_switch_setup(struct stm32_usbphyc *usbphyc,
u32 utmi_switch)
{
if (!utmi_switch)
stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_MISC,
SWITHOST);
else
stm32_usbphyc_set_bits(usbphyc->base + STM32_USBPHYC_MISC,
SWITHOST);
usbphyc->switch_setup = utmi_switch;
}
static struct phy *stm32_usbphyc_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev);
struct stm32_usbphyc_phy *usbphyc_phy = NULL;
struct device_node *phynode = args->np;
int port = 0;
for (port = 0; port < usbphyc->nphys; port++) {
if (phynode == usbphyc->phys[port]->phy->dev.of_node) {
usbphyc_phy = usbphyc->phys[port];
break;
}
}
if (!usbphyc_phy) {
dev_err(dev, "failed to find phy\n");
return ERR_PTR(-EINVAL);
}
if (((usbphyc_phy->index == 0) && (args->args_count != 0)) ||
((usbphyc_phy->index == 1) && (args->args_count != 1))) {
dev_err(dev, "invalid number of cells for phy port%d\n",
usbphyc_phy->index);
return ERR_PTR(-EINVAL);
}
/* Configure the UTMI switch for PHY port#2 */
if (usbphyc_phy->index == 1) {
if (usbphyc->switch_setup < 0) {
stm32_usbphyc_switch_setup(usbphyc, args->args[0]);
} else {
if (args->args[0] != usbphyc->switch_setup) {
dev_err(dev, "phy port1 already used\n");
return ERR_PTR(-EBUSY);
}
}
}
return usbphyc_phy->phy;
}
static int stm32_usbphyc_probe(struct platform_device *pdev)
{
struct stm32_usbphyc *usbphyc;
struct device *dev = &pdev->dev;
struct device_node *child, *np = dev->of_node;
struct phy_provider *phy_provider;
u32 pllen, version;
int ret, port = 0;
usbphyc = devm_kzalloc(dev, sizeof(*usbphyc), GFP_KERNEL);
if (!usbphyc)
return -ENOMEM;
usbphyc->dev = dev;
dev_set_drvdata(dev, usbphyc);
usbphyc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(usbphyc->base))
return PTR_ERR(usbphyc->base);
usbphyc->clk = devm_clk_get(dev, NULL);
if (IS_ERR(usbphyc->clk))
return dev_err_probe(dev, PTR_ERR(usbphyc->clk), "clk get_failed\n");
ret = clk_prepare_enable(usbphyc->clk);
if (ret) {
dev_err(dev, "clk enable failed: %d\n", ret);
return ret;
}
usbphyc->rst = devm_reset_control_get(dev, NULL);
if (!IS_ERR(usbphyc->rst)) {
reset_control_assert(usbphyc->rst);
udelay(2);
reset_control_deassert(usbphyc->rst);
} else {
ret = PTR_ERR(usbphyc->rst);
if (ret == -EPROBE_DEFER)
goto clk_disable;
stm32_usbphyc_clr_bits(usbphyc->base + STM32_USBPHYC_PLL, PLLEN);
}
/*
* Wait for minimum width of powerdown pulse (ENABLE = Low):
* we have to ensure the PLL is disabled before phys initialization.
*/
if (readl_relaxed_poll_timeout(usbphyc->base + STM32_USBPHYC_PLL,
pllen, !(pllen & PLLEN), 5, 50)) {
dev_warn(usbphyc->dev, "PLL not reset\n");
ret = -EPROBE_DEFER;
goto clk_disable;
}
usbphyc->switch_setup = -EINVAL;
usbphyc->nphys = of_get_child_count(np);
usbphyc->phys = devm_kcalloc(dev, usbphyc->nphys,
sizeof(*usbphyc->phys), GFP_KERNEL);
if (!usbphyc->phys) {
ret = -ENOMEM;
goto clk_disable;
}
usbphyc->vdda1v1 = devm_regulator_get(dev, "vdda1v1");
if (IS_ERR(usbphyc->vdda1v1)) {
ret = dev_err_probe(dev, PTR_ERR(usbphyc->vdda1v1),
"failed to get vdda1v1 supply\n");
goto clk_disable;
}
usbphyc->vdda1v8 = devm_regulator_get(dev, "vdda1v8");
if (IS_ERR(usbphyc->vdda1v8)) {
ret = dev_err_probe(dev, PTR_ERR(usbphyc->vdda1v8),
"failed to get vdda1v8 supply\n");
goto clk_disable;
}
for_each_child_of_node(np, child) {
struct stm32_usbphyc_phy *usbphyc_phy;
struct phy *phy;
u32 index;
phy = devm_phy_create(dev, child, &stm32_usbphyc_phy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
if (ret != -EPROBE_DEFER)
dev_err(dev, "failed to create phy%d: %d\n",
port, ret);
goto put_child;
}
usbphyc_phy = devm_kzalloc(dev, sizeof(*usbphyc_phy),
GFP_KERNEL);
if (!usbphyc_phy) {
ret = -ENOMEM;
goto put_child;
}
ret = of_property_read_u32(child, "reg", &index);
if (ret || index > usbphyc->nphys) {
dev_err(&phy->dev, "invalid reg property: %d\n", ret);
goto put_child;
}
usbphyc->phys[port] = usbphyc_phy;
phy_set_bus_width(phy, 8);
phy_set_drvdata(phy, usbphyc_phy);
usbphyc->phys[port]->phy = phy;
usbphyc->phys[port]->usbphyc = usbphyc;
usbphyc->phys[port]->index = index;
usbphyc->phys[port]->active = false;
usbphyc->phys[port]->vbus = devm_regulator_get_optional(&phy->dev, "vbus");
if (IS_ERR(usbphyc->phys[port]->vbus)) {
ret = PTR_ERR(usbphyc->phys[port]->vbus);
if (ret == -EPROBE_DEFER)
goto put_child;
usbphyc->phys[port]->vbus = NULL;
}
/* Configure phy tuning */
stm32_usbphyc_phy_tuning(usbphyc, child, index);
port++;
}
phy_provider = devm_of_phy_provider_register(dev,
stm32_usbphyc_of_xlate);
if (IS_ERR(phy_provider)) {
ret = PTR_ERR(phy_provider);
dev_err(dev, "failed to register phy provider: %d\n", ret);
goto clk_disable;
}
ret = stm32_usbphyc_clk48_register(usbphyc);
if (ret) {
dev_err(dev, "failed to register ck_usbo_48m clock: %d\n", ret);
goto clk_disable;
}
version = readl_relaxed(usbphyc->base + STM32_USBPHYC_VERSION);
dev_info(dev, "registered rev:%lu.%lu\n",
FIELD_GET(MAJREV, version), FIELD_GET(MINREV, version));
return 0;
put_child:
of_node_put(child);
clk_disable:
clk_disable_unprepare(usbphyc->clk);
return ret;
}
static int stm32_usbphyc_remove(struct platform_device *pdev)
{
struct stm32_usbphyc *usbphyc = dev_get_drvdata(&pdev->dev);
int port;
/* Ensure PHYs are not active, to allow PLL disabling */
for (port = 0; port < usbphyc->nphys; port++)
if (usbphyc->phys[port]->active)
stm32_usbphyc_phy_exit(usbphyc->phys[port]->phy);
stm32_usbphyc_clk48_unregister(usbphyc);
clk_disable_unprepare(usbphyc->clk);
return 0;
}
static int __maybe_unused stm32_usbphyc_resume(struct device *dev)
{
struct stm32_usbphyc *usbphyc = dev_get_drvdata(dev);
struct stm32_usbphyc_phy *usbphyc_phy;
int port;
if (usbphyc->switch_setup >= 0)
stm32_usbphyc_switch_setup(usbphyc, usbphyc->switch_setup);
for (port = 0; port < usbphyc->nphys; port++) {
usbphyc_phy = usbphyc->phys[port];
writel_relaxed(usbphyc_phy->tune, usbphyc->base + STM32_USBPHYC_TUNE(port));
}
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_usbphyc_pm_ops, NULL, stm32_usbphyc_resume);
static const struct of_device_id stm32_usbphyc_of_match[] = {
{ .compatible = "st,stm32mp1-usbphyc", },
{ },
};
MODULE_DEVICE_TABLE(of, stm32_usbphyc_of_match);
static struct platform_driver stm32_usbphyc_driver = {
.probe = stm32_usbphyc_probe,
.remove = stm32_usbphyc_remove,
.driver = {
.of_match_table = stm32_usbphyc_of_match,
.name = "stm32-usbphyc",
.pm = &stm32_usbphyc_pm_ops,
}
};
module_platform_driver(stm32_usbphyc_driver);
MODULE_DESCRIPTION("STMicroelectronics STM32 USBPHYC driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");