linux/linux-5.18.11/drivers/phy/intel/phy-intel-thunderbay-emmc.c

510 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel ThunderBay eMMC PHY driver
*
* Copyright (C) 2021 Intel Corporation
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
/* eMMC/SD/SDIO core/phy configuration registers */
#define CTRL_CFG_0 0x00
#define CTRL_CFG_1 0x04
#define CTRL_PRESET_0 0x08
#define CTRL_PRESET_1 0x0c
#define CTRL_PRESET_2 0x10
#define CTRL_PRESET_3 0x14
#define CTRL_PRESET_4 0x18
#define CTRL_CFG_2 0x1c
#define CTRL_CFG_3 0x20
#define PHY_CFG_0 0x24
#define PHY_CFG_1 0x28
#define PHY_CFG_2 0x2c
#define PHYBIST_CTRL 0x30
#define SDHC_STAT3 0x34
#define PHY_STAT 0x38
#define PHYBIST_STAT_0 0x3c
#define PHYBIST_STAT_1 0x40
#define EMMC_AXI 0x44
/* CTRL_PRESET_3 */
#define CTRL_PRESET3_MASK GENMASK(31, 0)
#define CTRL_PRESET3_SHIFT 0
/* CTRL_CFG_0 bit fields */
#define SUPPORT_HS_MASK BIT(26)
#define SUPPORT_HS_SHIFT 26
#define SUPPORT_8B_MASK BIT(24)
#define SUPPORT_8B_SHIFT 24
/* CTRL_CFG_1 bit fields */
#define SUPPORT_SDR50_MASK BIT(28)
#define SUPPORT_SDR50_SHIFT 28
#define SLOT_TYPE_MASK GENMASK(27, 26)
#define SLOT_TYPE_OFFSET 26
#define SUPPORT_64B_MASK BIT(24)
#define SUPPORT_64B_SHIFT 24
#define SUPPORT_HS400_MASK BIT(2)
#define SUPPORT_HS400_SHIFT 2
#define SUPPORT_DDR50_MASK BIT(1)
#define SUPPORT_DDR50_SHIFT 1
#define SUPPORT_SDR104_MASK BIT(0)
#define SUPPORT_SDR104_SHIFT 0
/* PHY_CFG_0 bit fields */
#define SEL_DLY_TXCLK_MASK BIT(29)
#define SEL_DLY_TXCLK_SHIFT 29
#define SEL_DLY_RXCLK_MASK BIT(28)
#define SEL_DLY_RXCLK_SHIFT 28
#define OTAP_DLY_ENA_MASK BIT(27)
#define OTAP_DLY_ENA_SHIFT 27
#define OTAP_DLY_SEL_MASK GENMASK(26, 23)
#define OTAP_DLY_SEL_SHIFT 23
#define ITAP_CHG_WIN_MASK BIT(22)
#define ITAP_CHG_WIN_SHIFT 22
#define ITAP_DLY_ENA_MASK BIT(21)
#define ITAP_DLY_ENA_SHIFT 21
#define ITAP_DLY_SEL_MASK GENMASK(20, 16)
#define ITAP_DLY_SEL_SHIFT 16
#define RET_ENB_MASK BIT(15)
#define RET_ENB_SHIFT 15
#define RET_EN_MASK BIT(14)
#define RET_EN_SHIFT 14
#define DLL_IFF_MASK GENMASK(13, 11)
#define DLL_IFF_SHIFT 11
#define DLL_EN_MASK BIT(10)
#define DLL_EN_SHIFT 10
#define DLL_TRIM_ICP_MASK GENMASK(9, 6)
#define DLL_TRIM_ICP_SHIFT 6
#define RETRIM_EN_MASK BIT(5)
#define RETRIM_EN_SHIFT 5
#define RETRIM_MASK BIT(4)
#define RETRIM_SHIFT 4
#define DR_TY_MASK GENMASK(3, 1)
#define DR_TY_SHIFT 1
#define PWR_DOWN_MASK BIT(0)
#define PWR_DOWN_SHIFT 0
/* PHY_CFG_1 bit fields */
#define REN_DAT_MASK GENMASK(19, 12)
#define REN_DAT_SHIFT 12
#define REN_CMD_MASK BIT(11)
#define REN_CMD_SHIFT 11
#define REN_STRB_MASK BIT(10)
#define REN_STRB_SHIFT 10
#define PU_STRB_MASK BIT(20)
#define PU_STRB_SHIFT 20
/* PHY_CFG_2 bit fields */
#define CLKBUF_MASK GENMASK(24, 21)
#define CLKBUF_SHIFT 21
#define SEL_STRB_MASK GENMASK(20, 13)
#define SEL_STRB_SHIFT 13
#define SEL_FREQ_MASK GENMASK(12, 10)
#define SEL_FREQ_SHIFT 10
/* PHY_STAT bit fields */
#define CAL_DONE BIT(6)
#define DLL_RDY BIT(5)
#define OTAP_DLY 0x0
#define ITAP_DLY 0x0
#define STRB 0x33
/* From ACS_eMMC51_16nFFC_RO1100_Userguide_v1p0.pdf p17 */
#define FREQSEL_200M_170M 0x0
#define FREQSEL_170M_140M 0x1
#define FREQSEL_140M_110M 0x2
#define FREQSEL_110M_80M 0x3
#define FREQSEL_80M_50M 0x4
#define FREQSEL_275M_250M 0x5
#define FREQSEL_250M_225M 0x6
#define FREQSEL_225M_200M 0x7
/* Phy power status */
#define PHY_UNINITIALIZED 0
#define PHY_INITIALIZED 1
/*
* During init(400KHz) phy_settings will be called with 200MHZ clock
* To avoid incorrectly setting the phy for init(400KHZ) "phy_power_sts" is used.
* When actual clock is set always phy is powered off once and then powered on.
* (sdhci_arasan_set_clock). That feature will be used to identify whether the
* settings are for init phy_power_on or actual clock phy_power_on
* 0 --> init settings
* 1 --> actual settings
*/
struct thunderbay_emmc_phy {
void __iomem *reg_base;
struct clk *emmcclk;
int phy_power_sts;
};
static inline void update_reg(struct thunderbay_emmc_phy *tbh_phy, u32 offset,
u32 mask, u32 shift, u32 val)
{
u32 tmp;
tmp = readl(tbh_phy->reg_base + offset);
tmp &= ~mask;
tmp |= val << shift;
writel(tmp, tbh_phy->reg_base + offset);
}
static int thunderbay_emmc_phy_power(struct phy *phy, bool power_on)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
unsigned int freqsel = FREQSEL_200M_170M;
unsigned long rate;
static int lock;
u32 val;
int ret;
/* Disable DLL */
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
/* lock dll only when it is used, i.e only if SEL_DLY_TXCLK/RXCLK are 0 */
update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x0);
break;
/* dll lock not required for other frequencies */
case 50000000 ... 52000000:
case 400000:
default:
break;
}
if (!power_on)
return 0;
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 170000001 ... 200000000:
freqsel = FREQSEL_200M_170M;
break;
case 140000001 ... 170000000:
freqsel = FREQSEL_170M_140M;
break;
case 110000001 ... 140000000:
freqsel = FREQSEL_140M_110M;
break;
case 80000001 ... 110000000:
freqsel = FREQSEL_110M_80M;
break;
case 50000000 ... 80000000:
freqsel = FREQSEL_80M_50M;
break;
case 250000001 ... 275000000:
freqsel = FREQSEL_275M_250M;
break;
case 225000001 ... 250000000:
freqsel = FREQSEL_250M_225M;
break;
case 200000001 ... 225000000:
freqsel = FREQSEL_225M_200M;
break;
default:
break;
}
/* Clock rate is checked against upper limit. It may fall low during init */
if (rate > 200000000)
dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate);
udelay(5);
if (lock == 0) {
/* PDB will be done only once per boot */
update_reg(tbh_phy, PHY_CFG_0, PWR_DOWN_MASK,
PWR_DOWN_SHIFT, 0x1);
lock = 1;
/*
* According to the user manual, it asks driver to wait 5us for
* calpad busy trimming. However it is documented that this value is
* PVT(A.K.A. process, voltage and temperature) relevant, so some
* failure cases are found which indicates we should be more tolerant
* to calpad busy trimming.
*/
ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT,
val, (val & CAL_DONE), 10, 50);
if (ret) {
dev_err(&phy->dev, "caldone failed, ret=%d\n", ret);
return ret;
}
}
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
/* Set frequency of the DLL operation */
update_reg(tbh_phy, PHY_CFG_2, SEL_FREQ_MASK, SEL_FREQ_SHIFT, freqsel);
/* Enable DLL */
update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x1);
/*
* After enabling analog DLL circuits docs say that we need 10.2 us if
* our source clock is at 50 MHz and that lock time scales linearly
* with clock speed. If we are powering on the PHY and the card clock
* is super slow (like 100kHz) this could take as long as 5.1 ms as
* per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms
* hopefully we won't be running at 100 kHz, but we should still make
* sure we wait long enough.
*
* NOTE: There appear to be corner cases where the DLL seems to take
* extra long to lock for reasons that aren't understood. In some
* extreme cases we've seen it take up to over 10ms (!). We'll be
* generous and give it 50ms.
*/
ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT,
val, (val & DLL_RDY), 10, 50 * USEC_PER_MSEC);
if (ret) {
dev_err(&phy->dev, "dllrdy failed, ret=%d\n", ret);
return ret;
}
break;
default:
break;
}
return 0;
}
static int thunderbay_emmc_phy_init(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
tbh_phy->emmcclk = clk_get(&phy->dev, "emmcclk");
return PTR_ERR_OR_ZERO(tbh_phy->emmcclk);
}
static int thunderbay_emmc_phy_exit(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
clk_put(tbh_phy->emmcclk);
return 0;
}
static int thunderbay_emmc_phy_power_on(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
unsigned long rate;
/* Overwrite capability bits configurable in bootloader */
update_reg(tbh_phy, CTRL_CFG_0,
SUPPORT_HS_MASK, SUPPORT_HS_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_0,
SUPPORT_8B_MASK, SUPPORT_8B_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_SDR50_MASK, SUPPORT_SDR50_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_DDR50_MASK, SUPPORT_DDR50_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_SDR104_MASK, SUPPORT_SDR104_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_HS400_MASK, SUPPORT_HS400_SHIFT, 0x1);
update_reg(tbh_phy, CTRL_CFG_1,
SUPPORT_64B_MASK, SUPPORT_64B_SHIFT, 0x1);
if (tbh_phy->phy_power_sts == PHY_UNINITIALIZED) {
/* Indicates initialization, settings for init, same as 400KHZ setting */
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1);
} else if (tbh_phy->phy_power_sts == PHY_INITIALIZED) {
/* Indicates actual clock setting */
rate = clk_get_rate(tbh_phy->emmcclk);
switch (rate) {
case 200000000:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 2);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK,
DR_TY_SHIFT, 0x1);
/* For HS400 only */
update_reg(tbh_phy, PHY_CFG_2, SEL_STRB_MASK,
SEL_STRB_SHIFT, STRB);
break;
case 50000000 ... 52000000:
/* For both HS and DDR52 this setting works */
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 4);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0,
DR_TY_MASK, DR_TY_SHIFT, 0x1);
break;
case 400000:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1);
break;
default:
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK,
SEL_DLY_TXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK,
SEL_DLY_RXCLK_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK,
ITAP_DLY_ENA_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK,
ITAP_DLY_SEL_SHIFT, 0x0);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK,
OTAP_DLY_ENA_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK,
OTAP_DLY_SEL_SHIFT, 2);
update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK,
DLL_TRIM_ICP_SHIFT, 0x8);
update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK,
DR_TY_SHIFT, 0x1);
break;
}
/* Reset, init seq called without phy_power_off, this indicates init seq */
tbh_phy->phy_power_sts = PHY_UNINITIALIZED;
}
update_reg(tbh_phy, PHY_CFG_0, RETRIM_EN_MASK, RETRIM_EN_SHIFT, 0x1);
update_reg(tbh_phy, PHY_CFG_0, RETRIM_MASK, RETRIM_SHIFT, 0x0);
return thunderbay_emmc_phy_power(phy, 1);
}
static int thunderbay_emmc_phy_power_off(struct phy *phy)
{
struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy);
tbh_phy->phy_power_sts = PHY_INITIALIZED;
return thunderbay_emmc_phy_power(phy, 0);
}
static const struct phy_ops thunderbay_emmc_phy_ops = {
.init = thunderbay_emmc_phy_init,
.exit = thunderbay_emmc_phy_exit,
.power_on = thunderbay_emmc_phy_power_on,
.power_off = thunderbay_emmc_phy_power_off,
.owner = THIS_MODULE,
};
static const struct of_device_id thunderbay_emmc_phy_of_match[] = {
{ .compatible = "intel,thunderbay-emmc-phy",
(void *)&thunderbay_emmc_phy_ops },
{}
};
MODULE_DEVICE_TABLE(of, thunderbay_emmc_phy_of_match);
static int thunderbay_emmc_phy_probe(struct platform_device *pdev)
{
struct thunderbay_emmc_phy *tbh_phy;
struct phy_provider *phy_provider;
struct device *dev = &pdev->dev;
const struct of_device_id *id;
struct phy *generic_phy;
struct resource *res;
if (!dev->of_node)
return -ENODEV;
tbh_phy = devm_kzalloc(dev, sizeof(*tbh_phy), GFP_KERNEL);
if (!tbh_phy)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
tbh_phy->reg_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tbh_phy->reg_base))
return PTR_ERR(tbh_phy->reg_base);
tbh_phy->phy_power_sts = PHY_UNINITIALIZED;
id = of_match_node(thunderbay_emmc_phy_of_match, pdev->dev.of_node);
if (!id) {
dev_err(dev, "failed to get match_node\n");
return -EINVAL;
}
generic_phy = devm_phy_create(dev, dev->of_node, id->data);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(generic_phy);
}
phy_set_drvdata(generic_phy, tbh_phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver thunderbay_emmc_phy_driver = {
.probe = thunderbay_emmc_phy_probe,
.driver = {
.name = "thunderbay-emmc-phy",
.of_match_table = thunderbay_emmc_phy_of_match,
},
};
module_platform_driver(thunderbay_emmc_phy_driver);
MODULE_AUTHOR("Nandhini S <nandhini.srikandan@intel.com>");
MODULE_AUTHOR("Rashmi A <rashmi.a@intel.com>");
MODULE_DESCRIPTION("Intel Thunder Bay eMMC PHY driver");
MODULE_LICENSE("GPL v2");