linux/linux-5.18.11/drivers/net/wireless/realtek/rtlwifi/rtl8188ee/phy.c

2300 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2013 Realtek Corporation.*/
#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "table.h"
static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 offset);
static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 offset,
u32 data);
static u32 _rtl88e_phy_calculate_bit_shift(u32 bitmask)
{
u32 i = ffs(bitmask);
return i ? i - 1 : 32;
}
static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw);
static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype);
static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw,
u8 configtype);
static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw);
static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
u32 cmdtableidx, u32 cmdtablesz,
enum swchnlcmd_id cmdid, u32 para1,
u32 para2, u32 msdelay);
static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
u8 channel, u8 *stage, u8 *step,
u32 *delay);
static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
enum wireless_mode wirelessmode,
u8 txpwridx);
static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw);
static void rtl88e_phy_set_io(struct ieee80211_hw *hw);
u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 returnvalue, originalvalue, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
originalvalue = rtl_read_dword(rtlpriv, regaddr);
bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
returnvalue = (originalvalue & bitmask) >> bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask,
regaddr, originalvalue);
return returnvalue;
}
void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 originalvalue, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x)\n",
regaddr, bitmask, data);
if (bitmask != MASKDWORD) {
originalvalue = rtl_read_dword(rtlpriv, regaddr);
bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
data = ((originalvalue & (~bitmask)) | (data << bitshift));
}
rtl_write_dword(rtlpriv, regaddr, data);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x)\n",
regaddr, bitmask, data);
}
u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, readback_value, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
regaddr, rfpath, bitmask);
spin_lock(&rtlpriv->locks.rf_lock);
original_value = _rtl88e_phy_rf_serial_read(hw, rfpath, regaddr);
bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
readback_value = (original_value & bitmask) >> bitshift;
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
regaddr, rfpath, bitmask, original_value);
return readback_value;
}
void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
enum radio_path rfpath,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
spin_lock(&rtlpriv->locks.rf_lock);
if (bitmask != RFREG_OFFSET_MASK) {
original_value = _rtl88e_phy_rf_serial_read(hw,
rfpath,
regaddr);
bitshift = _rtl88e_phy_calculate_bit_shift(bitmask);
data =
((original_value & (~bitmask)) |
(data << bitshift));
}
_rtl88e_phy_rf_serial_write(hw, rfpath, regaddr, data);
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, rfpath);
}
static u32 _rtl88e_phy_rf_serial_read(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 offset)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
u32 newoffset;
u32 tmplong, tmplong2;
u8 rfpi_enable = 0;
u32 retvalue;
offset &= 0xff;
newoffset = offset;
if (RT_CANNOT_IO(hw)) {
pr_err("return all one\n");
return 0xFFFFFFFF;
}
tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
if (rfpath == RF90_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD);
tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
(newoffset << 23) | BLSSIREADEDGE;
rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
tmplong & (~BLSSIREADEDGE));
udelay(10);
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2);
udelay(120);
if (rfpath == RF90_PATH_A)
rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
BIT(8));
else if (rfpath == RF90_PATH_B)
rfpi_enable = (u8)rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
BIT(8));
if (rfpi_enable)
retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
BLSSIREADBACKDATA);
else
retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
BLSSIREADBACKDATA);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"RFR-%d Addr[0x%x]=0x%x\n",
rfpath, pphyreg->rf_rb, retvalue);
return retvalue;
}
static void _rtl88e_phy_rf_serial_write(struct ieee80211_hw *hw,
enum radio_path rfpath, u32 offset,
u32 data)
{
u32 data_and_addr;
u32 newoffset;
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
if (RT_CANNOT_IO(hw)) {
pr_err("stop\n");
return;
}
offset &= 0xff;
newoffset = offset;
data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"RFW-%d Addr[0x%x]=0x%x\n",
rfpath, pphyreg->rf3wire_offset, data_and_addr);
}
bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool rtstatus = _rtl88e_phy_config_mac_with_headerfile(hw);
rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
return rtstatus;
}
bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
{
bool rtstatus = true;
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 regval;
u8 b_reg_hwparafile = 1;
u32 tmp;
_rtl88e_phy_init_bb_rf_register_definition(hw);
regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
regval | BIT(13) | BIT(0) | BIT(1));
rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
FEN_BB_GLB_RSTN | FEN_BBRSTB);
tmp = rtl_read_dword(rtlpriv, 0x4c);
rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
if (b_reg_hwparafile == 1)
rtstatus = _rtl88e_phy_bb8188e_config_parafile(hw);
return rtstatus;
}
bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
{
return rtl88e_phy_rf6052_config(hw);
}
static bool _rtl88e_check_condition(struct ieee80211_hw *hw,
const u32 condition)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 _board = rtlefuse->board_type; /*need efuse define*/
u32 _interface = rtlhal->interface;
u32 _platform = 0x08;/*SupportPlatform */
u32 cond;
if (condition == 0xCDCDCDCD)
return true;
cond = condition & 0xFF;
if ((_board & cond) == 0 && cond != 0x1F)
return false;
cond = condition & 0xFF00;
cond = cond >> 8;
if ((_interface & cond) == 0 && cond != 0x07)
return false;
cond = condition & 0xFF0000;
cond = cond >> 16;
if ((_platform & cond) == 0 && cond != 0x0F)
return false;
return true;
}
static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw, u32 addr,
u32 data, enum radio_path rfpath,
u32 regaddr)
{
if (addr == 0xffe) {
mdelay(50);
} else if (addr == 0xfd) {
mdelay(5);
} else if (addr == 0xfc) {
mdelay(1);
} else if (addr == 0xfb) {
udelay(50);
} else if (addr == 0xfa) {
udelay(5);
} else if (addr == 0xf9) {
udelay(1);
} else {
rtl_set_rfreg(hw, rfpath, regaddr,
RFREG_OFFSET_MASK,
data);
udelay(1);
}
}
static void _rtl8188e_config_rf_radio_a(struct ieee80211_hw *hw,
u32 addr, u32 data)
{
u32 content = 0x1000; /*RF Content: radio_a_txt*/
u32 maskforphyset = (u32)(content & 0xE000);
_rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
addr | maskforphyset);
}
static void _rtl8188e_config_bb_reg(struct ieee80211_hw *hw,
u32 addr, u32 data)
{
if (addr == 0xfe) {
mdelay(50);
} else if (addr == 0xfd) {
mdelay(5);
} else if (addr == 0xfc) {
mdelay(1);
} else if (addr == 0xfb) {
udelay(50);
} else if (addr == 0xfa) {
udelay(5);
} else if (addr == 0xf9) {
udelay(1);
} else {
rtl_set_bbreg(hw, addr, MASKDWORD, data);
udelay(1);
}
}
static bool _rtl88e_phy_bb8188e_config_parafile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
bool rtstatus;
rtstatus = phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_PHY_REG);
if (!rtstatus) {
pr_err("Write BB Reg Fail!!\n");
return false;
}
if (!rtlefuse->autoload_failflag) {
rtlphy->pwrgroup_cnt = 0;
rtstatus =
phy_config_bb_with_pghdr(hw, BASEBAND_CONFIG_PHY_REG);
}
if (!rtstatus) {
pr_err("BB_PG Reg Fail!!\n");
return false;
}
rtstatus =
phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB);
if (!rtstatus) {
pr_err("AGC Table Fail\n");
return false;
}
rtlphy->cck_high_power =
(bool)(rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200));
return true;
}
static bool _rtl88e_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
u32 arraylength;
u32 *ptrarray;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
arraylength = RTL8188EEMAC_1T_ARRAYLEN;
ptrarray = RTL8188EEMAC_1T_ARRAY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
for (i = 0; i < arraylength; i = i + 2)
rtl_write_byte(rtlpriv, ptrarray[i], (u8)ptrarray[i + 1]);
return true;
}
#define READ_NEXT_PAIR(v1, v2, i) \
do { \
i += 2; v1 = array_table[i]; \
v2 = array_table[i+1]; \
} while (0)
static void handle_branch1(struct ieee80211_hw *hw, u16 arraylen,
u32 *array_table)
{
u32 v1;
u32 v2;
int i;
for (i = 0; i < arraylen; i = i + 2) {
v1 = array_table[i];
v2 = array_table[i+1];
if (v1 < 0xcdcdcdcd) {
_rtl8188e_config_bb_reg(hw, v1, v2);
} else { /*This line is the start line of branch.*/
/* to protect READ_NEXT_PAIR not overrun */
if (i >= arraylen - 2)
break;
if (!_rtl88e_check_condition(hw, array_table[i])) {
/*Discard the following (offset, data) pairs*/
READ_NEXT_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD && i < arraylen - 2)
READ_NEXT_PAIR(v1, v2, i);
i -= 2; /* prevent from for-loop += 2*/
} else { /* Configure matched pairs and skip
* to end of if-else.
*/
READ_NEXT_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD && i < arraylen - 2) {
_rtl8188e_config_bb_reg(hw, v1, v2);
READ_NEXT_PAIR(v1, v2, i);
}
while (v2 != 0xDEAD && i < arraylen - 2)
READ_NEXT_PAIR(v1, v2, i);
}
}
}
}
static void handle_branch2(struct ieee80211_hw *hw, u16 arraylen,
u32 *array_table)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 v1;
u32 v2;
int i;
for (i = 0; i < arraylen; i = i + 2) {
v1 = array_table[i];
v2 = array_table[i+1];
if (v1 < 0xCDCDCDCD) {
rtl_set_bbreg(hw, array_table[i], MASKDWORD,
array_table[i + 1]);
udelay(1);
continue;
} else { /*This line is the start line of branch.*/
/* to protect READ_NEXT_PAIR not overrun */
if (i >= arraylen - 2)
break;
if (!_rtl88e_check_condition(hw, array_table[i])) {
/*Discard the following (offset, data) pairs*/
READ_NEXT_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD && i < arraylen - 2)
READ_NEXT_PAIR(v1, v2, i);
i -= 2; /* prevent from for-loop += 2*/
} else { /* Configure matched pairs and skip
* to end of if-else.
*/
READ_NEXT_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD && i < arraylen - 2) {
rtl_set_bbreg(hw, array_table[i],
MASKDWORD,
array_table[i + 1]);
udelay(1);
READ_NEXT_PAIR(v1, v2, i);
}
while (v2 != 0xDEAD && i < arraylen - 2)
READ_NEXT_PAIR(v1, v2, i);
}
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
array_table[i], array_table[i + 1]);
}
}
static bool phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype)
{
u32 *array_table;
u16 arraylen;
if (configtype == BASEBAND_CONFIG_PHY_REG) {
arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
array_table = RTL8188EEPHY_REG_1TARRAY;
handle_branch1(hw, arraylen, array_table);
} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
array_table = RTL8188EEAGCTAB_1TARRAY;
handle_branch2(hw, arraylen, array_table);
}
return true;
}
static void store_pwrindex_rate_offset(struct ieee80211_hw *hw,
u32 regaddr, u32 bitmask,
u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
int count = rtlphy->pwrgroup_cnt;
if (regaddr == RTXAGC_A_RATE18_06) {
rtlphy->mcs_txpwrlevel_origoffset[count][0] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][0]);
}
if (regaddr == RTXAGC_A_RATE54_24) {
rtlphy->mcs_txpwrlevel_origoffset[count][1] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][1]);
}
if (regaddr == RTXAGC_A_CCK1_MCS32) {
rtlphy->mcs_txpwrlevel_origoffset[count][6] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][6]);
}
if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
rtlphy->mcs_txpwrlevel_origoffset[count][7] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][7]);
}
if (regaddr == RTXAGC_A_MCS03_MCS00) {
rtlphy->mcs_txpwrlevel_origoffset[count][2] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][2]);
}
if (regaddr == RTXAGC_A_MCS07_MCS04) {
rtlphy->mcs_txpwrlevel_origoffset[count][3] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][3]);
}
if (regaddr == RTXAGC_A_MCS11_MCS08) {
rtlphy->mcs_txpwrlevel_origoffset[count][4] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][4]);
}
if (regaddr == RTXAGC_A_MCS15_MCS12) {
rtlphy->mcs_txpwrlevel_origoffset[count][5] = data;
if (get_rf_type(rtlphy) == RF_1T1R) {
count++;
rtlphy->pwrgroup_cnt = count;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][5]);
}
if (regaddr == RTXAGC_B_RATE18_06) {
rtlphy->mcs_txpwrlevel_origoffset[count][8] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][8]);
}
if (regaddr == RTXAGC_B_RATE54_24) {
rtlphy->mcs_txpwrlevel_origoffset[count][9] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][9]);
}
if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
rtlphy->mcs_txpwrlevel_origoffset[count][14] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][14]);
}
if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
rtlphy->mcs_txpwrlevel_origoffset[count][15] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][15]);
}
if (regaddr == RTXAGC_B_MCS03_MCS00) {
rtlphy->mcs_txpwrlevel_origoffset[count][10] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][10]);
}
if (regaddr == RTXAGC_B_MCS07_MCS04) {
rtlphy->mcs_txpwrlevel_origoffset[count][11] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][11]);
}
if (regaddr == RTXAGC_B_MCS11_MCS08) {
rtlphy->mcs_txpwrlevel_origoffset[count][12] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][12]);
}
if (regaddr == RTXAGC_B_MCS15_MCS12) {
rtlphy->mcs_txpwrlevel_origoffset[count][13] = data;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
count,
rtlphy->mcs_txpwrlevel_origoffset[count][13]);
if (get_rf_type(rtlphy) != RF_1T1R) {
count++;
rtlphy->pwrgroup_cnt = count;
}
}
}
static bool phy_config_bb_with_pghdr(struct ieee80211_hw *hw, u8 configtype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
u32 *phy_reg_page;
u16 phy_reg_page_len;
u32 v1 = 0, v2 = 0;
phy_reg_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
phy_reg_page = RTL8188EEPHY_REG_ARRAY_PG;
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_reg_page_len; i = i + 3) {
v1 = phy_reg_page[i];
v2 = phy_reg_page[i+1];
if (v1 < 0xcdcdcdcd) {
if (phy_reg_page[i] == 0xfe)
mdelay(50);
else if (phy_reg_page[i] == 0xfd)
mdelay(5);
else if (phy_reg_page[i] == 0xfc)
mdelay(1);
else if (phy_reg_page[i] == 0xfb)
udelay(50);
else if (phy_reg_page[i] == 0xfa)
udelay(5);
else if (phy_reg_page[i] == 0xf9)
udelay(1);
store_pwrindex_rate_offset(hw, phy_reg_page[i],
phy_reg_page[i + 1],
phy_reg_page[i + 2]);
continue;
} else {
if (!_rtl88e_check_condition(hw,
phy_reg_page[i])) {
/*don't need the hw_body*/
i += 2; /* skip the pair of expression*/
/* to protect 'i+1' 'i+2' not overrun */
if (i >= phy_reg_page_len - 2)
break;
v1 = phy_reg_page[i];
v2 = phy_reg_page[i+1];
while (v2 != 0xDEAD &&
i < phy_reg_page_len - 5) {
i += 3;
v1 = phy_reg_page[i];
v2 = phy_reg_page[i+1];
}
}
}
}
} else {
rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE,
"configtype != BaseBand_Config_PHY_REG\n");
}
return true;
}
#define READ_NEXT_RF_PAIR(v1, v2, i) \
do { \
i += 2; \
v1 = radioa_array_table[i]; \
v2 = radioa_array_table[i+1]; \
} while (0)
static void process_path_a(struct ieee80211_hw *hw,
u16 radioa_arraylen,
u32 *radioa_array_table)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 v1, v2;
int i;
for (i = 0; i < radioa_arraylen; i = i + 2) {
v1 = radioa_array_table[i];
v2 = radioa_array_table[i+1];
if (v1 < 0xcdcdcdcd) {
_rtl8188e_config_rf_radio_a(hw, v1, v2);
} else { /*This line is the start line of branch.*/
/* to protect READ_NEXT_PAIR not overrun */
if (i >= radioa_arraylen - 2)
break;
if (!_rtl88e_check_condition(hw, radioa_array_table[i])) {
/*Discard the following (offset, data) pairs*/
READ_NEXT_RF_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD &&
i < radioa_arraylen - 2) {
READ_NEXT_RF_PAIR(v1, v2, i);
}
i -= 2; /* prevent from for-loop += 2*/
} else { /* Configure matched pairs and
* skip to end of if-else.
*/
READ_NEXT_RF_PAIR(v1, v2, i);
while (v2 != 0xDEAD &&
v2 != 0xCDEF &&
v2 != 0xCDCD &&
i < radioa_arraylen - 2) {
_rtl8188e_config_rf_radio_a(hw, v1, v2);
READ_NEXT_RF_PAIR(v1, v2, i);
}
while (v2 != 0xDEAD &&
i < radioa_arraylen - 2)
READ_NEXT_RF_PAIR(v1, v2, i);
}
}
}
if (rtlhal->oem_id == RT_CID_819X_HP)
_rtl8188e_config_rf_radio_a(hw, 0x52, 0x7E4BD);
}
bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
enum radio_path rfpath)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 *radioa_array_table;
u16 radioa_arraylen;
radioa_arraylen = RTL8188EE_RADIOA_1TARRAYLEN;
radioa_array_table = RTL8188EE_RADIOA_1TARRAY;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", radioa_arraylen);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
switch (rfpath) {
case RF90_PATH_A:
process_path_a(hw, radioa_arraylen, radioa_array_table);
break;
case RF90_PATH_B:
case RF90_PATH_C:
case RF90_PATH_D:
break;
}
return true;
}
void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
rtlphy->default_initialgain[0] =
(u8)rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[1] =
(u8)rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[2] =
(u8)rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[3] =
(u8)rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
rtlphy->default_initialgain[0],
rtlphy->default_initialgain[1],
rtlphy->default_initialgain[2],
rtlphy->default_initialgain[3]);
rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
MASKBYTE0);
rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
MASKDWORD);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Default framesync (0x%x) = 0x%x\n",
ROFDM0_RXDETECTOR3, rtlphy->framesync);
}
static void _rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
RFPGA0_XA_LSSIPARAMETER;
rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
RFPGA0_XB_LSSIPARAMETER;
rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl =
RFPGA0_XAB_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl =
RFPGA0_XAB_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl =
RFPGA0_XCD_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl =
RFPGA0_XCD_SWITCHCONTROL;
rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBANLANCE;
rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBALANCE;
rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATXAFE;
rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTXAFE;
rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
}
void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 txpwr_level;
long txpwr_dbm;
txpwr_level = rtlphy->cur_cck_txpwridx;
txpwr_dbm = _rtl88e_phy_txpwr_idx_to_dbm(hw,
WIRELESS_MODE_B, txpwr_level);
txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
WIRELESS_MODE_G,
txpwr_level) > txpwr_dbm)
txpwr_dbm =
_rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_G,
txpwr_level);
txpwr_level = rtlphy->cur_ofdm24g_txpwridx;
if (_rtl88e_phy_txpwr_idx_to_dbm(hw,
WIRELESS_MODE_N_24G,
txpwr_level) > txpwr_dbm)
txpwr_dbm =
_rtl88e_phy_txpwr_idx_to_dbm(hw, WIRELESS_MODE_N_24G,
txpwr_level);
*powerlevel = txpwr_dbm;
}
static void handle_path_a(struct rtl_efuse *rtlefuse, u8 index,
u8 *cckpowerlevel, u8 *ofdmpowerlevel,
u8 *bw20powerlevel, u8 *bw40powerlevel)
{
cckpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
/*-8~7 */
if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][index] > 0x0f)
bw20powerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
(~(rtlefuse->txpwr_ht20diff[RF90_PATH_A][index]) + 1);
else
bw20powerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
rtlefuse->txpwr_ht20diff[RF90_PATH_A][index];
if (rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index] > 0xf)
ofdmpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] -
(~(rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index])+1);
else
ofdmpowerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index] +
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][index];
bw40powerlevel[RF90_PATH_A] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
}
static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
u8 *cckpowerlevel, u8 *ofdmpowerlevel,
u8 *bw20powerlevel, u8 *bw40powerlevel)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 index = (channel - 1);
u8 rf_path = 0;
for (rf_path = 0; rf_path < 2; rf_path++) {
if (rf_path == RF90_PATH_A) {
handle_path_a(rtlefuse, index, cckpowerlevel,
ofdmpowerlevel, bw20powerlevel,
bw40powerlevel);
} else if (rf_path == RF90_PATH_B) {
cckpowerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
bw20powerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
rtlefuse->txpwr_ht20diff[RF90_PATH_B][index];
ofdmpowerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index] +
rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][index];
bw40powerlevel[RF90_PATH_B] =
rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
}
}
}
static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
u8 channel, u8 *cckpowerlevel,
u8 *ofdmpowerlevel, u8 *bw20powerlevel,
u8 *bw40powerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
rtlphy->cur_bw20_txpwridx = bw20powerlevel[0];
rtlphy->cur_bw40_txpwridx = bw40powerlevel[0];
}
void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 cckpowerlevel[MAX_TX_COUNT] = {0};
u8 ofdmpowerlevel[MAX_TX_COUNT] = {0};
u8 bw20powerlevel[MAX_TX_COUNT] = {0};
u8 bw40powerlevel[MAX_TX_COUNT] = {0};
if (!rtlefuse->txpwr_fromeprom)
return;
_rtl88e_get_txpower_index(hw, channel,
&cckpowerlevel[0], &ofdmpowerlevel[0],
&bw20powerlevel[0], &bw40powerlevel[0]);
_rtl88e_ccxpower_index_check(hw, channel,
&cckpowerlevel[0], &ofdmpowerlevel[0],
&bw20powerlevel[0], &bw40powerlevel[0]);
rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0],
&bw20powerlevel[0],
&bw40powerlevel[0], channel);
}
static long _rtl88e_phy_txpwr_idx_to_dbm(struct ieee80211_hw *hw,
enum wireless_mode wirelessmode,
u8 txpwridx)
{
long offset;
long pwrout_dbm;
switch (wirelessmode) {
case WIRELESS_MODE_B:
offset = -7;
break;
case WIRELESS_MODE_G:
case WIRELESS_MODE_N_24G:
offset = -8;
break;
default:
offset = -8;
break;
}
pwrout_dbm = txpwridx / 2 + offset;
return pwrout_dbm;
}
void rtl88e_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
enum io_type iotype;
if (!is_hal_stop(rtlhal)) {
switch (operation) {
case SCAN_OPT_BACKUP_BAND0:
iotype = IO_CMD_PAUSE_BAND0_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
case SCAN_OPT_RESTORE:
iotype = IO_CMD_RESUME_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw,
HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
default:
pr_err("Unknown Scan Backup operation.\n");
break;
}
}
}
void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 reg_bw_opmode;
u8 reg_prsr_rsc;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
"Switch to %s bandwidth\n",
rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
"20MHz" : "40MHz");
if (is_hal_stop(rtlhal)) {
rtlphy->set_bwmode_inprogress = false;
return;
}
reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
reg_bw_opmode |= BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
break;
case HT_CHANNEL_WIDTH_20_40:
reg_bw_opmode &= ~BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
reg_prsr_rsc =
(reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
break;
default:
pr_err("unknown bandwidth: %#X\n",
rtlphy->current_chan_bw);
break;
}
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
/* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
break;
case HT_CHANNEL_WIDTH_20_40:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
(mac->cur_40_prime_sc >> 1));
rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
/*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
(mac->cur_40_prime_sc ==
HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
pr_err("unknown bandwidth: %#X\n",
rtlphy->current_chan_bw);
break;
}
rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
rtlphy->set_bwmode_inprogress = false;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
}
void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
enum nl80211_channel_type ch_type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_bw = rtlphy->current_chan_bw;
if (rtlphy->set_bwmode_inprogress)
return;
rtlphy->set_bwmode_inprogress = true;
if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
rtl88e_phy_set_bw_mode_callback(hw);
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"false driver sleep or unload\n");
rtlphy->set_bwmode_inprogress = false;
rtlphy->current_chan_bw = tmp_bw;
}
}
void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
u32 delay;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
"switch to channel%d\n", rtlphy->current_channel);
if (is_hal_stop(rtlhal))
return;
do {
if (!rtlphy->sw_chnl_inprogress)
break;
if (!_rtl88e_phy_sw_chnl_step_by_step
(hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage,
&rtlphy->sw_chnl_step, &delay)) {
if (delay > 0)
mdelay(delay);
else
continue;
} else {
rtlphy->sw_chnl_inprogress = false;
}
break;
} while (true);
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
}
u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (rtlphy->sw_chnl_inprogress)
return 0;
if (rtlphy->set_bwmode_inprogress)
return 0;
WARN_ONCE((rtlphy->current_channel > 14),
"rtl8188ee: WIRELESS_MODE_G but channel>14");
rtlphy->sw_chnl_inprogress = true;
rtlphy->sw_chnl_stage = 0;
rtlphy->sw_chnl_step = 0;
if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
rtl88e_phy_sw_chnl_callback(hw);
rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
"sw_chnl_inprogress false schedule workitem current channel %d\n",
rtlphy->current_channel);
rtlphy->sw_chnl_inprogress = false;
} else {
rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
"sw_chnl_inprogress false driver sleep or unload\n");
rtlphy->sw_chnl_inprogress = false;
}
return 1;
}
static bool _rtl88e_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
u8 channel, u8 *stage, u8 *step,
u32 *delay)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
u32 precommoncmdcnt;
struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
u32 postcommoncmdcnt;
struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
u32 rfdependcmdcnt;
struct swchnlcmd *currentcmd = NULL;
u8 rfpath;
u8 num_total_rfpath = rtlphy->num_total_rfpath;
precommoncmdcnt = 0;
_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT,
CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
_rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
postcommoncmdcnt = 0;
_rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
rfdependcmdcnt = 0;
WARN_ONCE((channel < 1 || channel > 14),
"rtl8188ee: illegal channel for Zebra: %d\n", channel);
_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
RF_CHNLBW, channel, 10);
_rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
0);
do {
switch (*stage) {
case 0:
currentcmd = &precommoncmd[*step];
break;
case 1:
currentcmd = &rfdependcmd[*step];
break;
case 2:
currentcmd = &postcommoncmd[*step];
break;
default:
pr_err("Invalid 'stage' = %d, Check it!\n",
*stage);
return true;
}
if (currentcmd->cmdid == CMDID_END) {
if ((*stage) == 2)
return true;
(*stage)++;
(*step) = 0;
continue;
}
switch (currentcmd->cmdid) {
case CMDID_SET_TXPOWEROWER_LEVEL:
rtl88e_phy_set_txpower_level(hw, channel);
break;
case CMDID_WRITEPORT_ULONG:
rtl_write_dword(rtlpriv, currentcmd->para1,
currentcmd->para2);
break;
case CMDID_WRITEPORT_USHORT:
rtl_write_word(rtlpriv, currentcmd->para1,
(u16)currentcmd->para2);
break;
case CMDID_WRITEPORT_UCHAR:
rtl_write_byte(rtlpriv, currentcmd->para1,
(u8)currentcmd->para2);
break;
case CMDID_RF_WRITEREG:
for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
rtlphy->rfreg_chnlval[rfpath] =
((rtlphy->rfreg_chnlval[rfpath] &
0xfffffc00) | currentcmd->para2);
rtl_set_rfreg(hw, (enum radio_path)rfpath,
currentcmd->para1,
RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[rfpath]);
}
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n",
currentcmd->cmdid);
break;
}
break;
} while (true);
(*delay) = currentcmd->msdelay;
(*step)++;
return false;
}
static bool _rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
u32 cmdtableidx, u32 cmdtablesz,
enum swchnlcmd_id cmdid,
u32 para1, u32 para2, u32 msdelay)
{
struct swchnlcmd *pcmd;
if (cmdtable == NULL) {
WARN_ONCE(true, "rtl8188ee: cmdtable cannot be NULL.\n");
return false;
}
if (cmdtableidx >= cmdtablesz)
return false;
pcmd = cmdtable + cmdtableidx;
pcmd->cmdid = cmdid;
pcmd->para1 = para1;
pcmd->para2 = para2;
pcmd->msdelay = msdelay;
return true;
}
static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
{
u32 reg_eac, reg_e94, reg_e9c;
u8 result = 0x00;
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
rtl_get_bbreg(hw, 0xea4, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
return result;
}
static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
{
u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
u8 result = 0x00;
rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
mdelay(IQK_DELAY_TIME);
reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
if (!(reg_eac & BIT(31)) &&
(((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_ebc & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
if (!(reg_eac & BIT(30)) &&
(((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
(((reg_ecc & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
return result;
}
static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
{
u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
u8 result = 0x00;
/*Get TXIMR Setting*/
/*Modify RX IQK mode table*/
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
/*IQK Setting*/
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
/*path a IQK setting*/
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
/*LO calibration Setting*/
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
/*one shot,path A LOK & iqk*/
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
((reg_e9c&0x3FF0000) >> 16);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
/*RX IQK*/
/*Modify RX IQK mode table*/
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
/*IQK Setting*/
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
/*path a IQK setting*/
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
/*LO calibration Setting*/
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
/*one shot,path A LOK & iqk*/
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
if (!(reg_eac & BIT(27)) &&
(((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
(((reg_eac & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
return result;
}
static void _rtl88e_phy_path_a_fill_iqk_matrix(struct ieee80211_hw *hw,
bool iqk_ok, long result[][8],
u8 final_candidate, bool btxonly)
{
u32 oldval_0, x, tx0_a, reg;
long y, tx0_c;
if (final_candidate == 0xFF) {
return;
} else if (iqk_ok) {
oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBALANCE,
MASKDWORD) >> 22) & 0x3FF;
x = result[final_candidate][0];
if ((x & 0x00000200) != 0)
x = x | 0xFFFFFC00;
tx0_a = (x * oldval_0) >> 8;
rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x3FF, tx0_a);
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(31),
((x * oldval_0 >> 7) & 0x1));
y = result[final_candidate][1];
if ((y & 0x00000200) != 0)
y = y | 0xFFFFFC00;
tx0_c = (y * oldval_0) >> 8;
rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
((tx0_c & 0x3C0) >> 6));
rtl_set_bbreg(hw, ROFDM0_XATXIQIMBALANCE, 0x003F0000,
(tx0_c & 0x3F));
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(29),
((y * oldval_0 >> 7) & 0x1));
if (btxonly)
return;
reg = result[final_candidate][2];
rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
}
}
static void _rtl88e_phy_save_adda_registers(struct ieee80211_hw *hw,
u32 *addareg, u32 *addabackup,
u32 registernum)
{
u32 i;
for (i = 0; i < registernum; i++)
addabackup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
}
static void _rtl88e_phy_save_mac_registers(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
}
static void _rtl88e_phy_reload_adda_registers(struct ieee80211_hw *hw,
u32 *addareg, u32 *addabackup,
u32 regiesternum)
{
u32 i;
for (i = 0; i < regiesternum; i++)
rtl_set_bbreg(hw, addareg[i], MASKDWORD, addabackup[i]);
}
static void _rtl88e_phy_reload_mac_registers(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
}
static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
u32 *addareg, bool is_patha_on, bool is2t)
{
u32 pathon;
u32 i;
pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
if (!is2t) {
pathon = 0x0bdb25a0;
rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
} else {
rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
}
for (i = 1; i < IQK_ADDA_REG_NUM; i++)
rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
}
static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
u32 *macreg, u32 *macbackup)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 i = 0;
rtl_write_byte(rtlpriv, macreg[i], 0x3F);
for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
rtl_write_byte(rtlpriv, macreg[i],
(u8) (macbackup[i] & (~BIT(3))));
rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
}
static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
{
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
}
static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
{
u32 mode;
mode = pi_mode ? 0x01000100 : 0x01000000;
rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
}
static bool _rtl88e_phy_simularity_compare(struct ieee80211_hw *hw,
long result[][8], u8 c1, u8 c2)
{
u32 i, j, diff, simularity_bitmap, bound;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 final_candidate[2] = { 0xFF, 0xFF };
bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
if (is2t)
bound = 8;
else
bound = 4;
simularity_bitmap = 0;
for (i = 0; i < bound; i++) {
diff = (result[c1][i] > result[c2][i]) ?
(result[c1][i] - result[c2][i]) :
(result[c2][i] - result[c1][i]);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !simularity_bitmap) {
if (result[c1][i] + result[c1][i + 1] == 0)
final_candidate[(i / 4)] = c2;
else if (result[c2][i] + result[c2][i + 1] == 0)
final_candidate[(i / 4)] = c1;
else
simularity_bitmap = simularity_bitmap |
(1 << i);
} else
simularity_bitmap =
simularity_bitmap | (1 << i);
}
}
if (simularity_bitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (final_candidate[i] != 0xFF) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
result[3][j] =
result[final_candidate[i]][j];
bresult = false;
}
}
return bresult;
} else if (!(simularity_bitmap & 0x0F)) {
for (i = 0; i < 4; i++)
result[3][i] = result[c1][i];
return false;
} else if (!(simularity_bitmap & 0xF0) && is2t) {
for (i = 4; i < 8; i++)
result[3][i] = result[c1][i];
return false;
} else {
return false;
}
}
static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
long result[][8], u8 t, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u32 i;
u8 patha_ok, pathb_ok;
u32 adda_reg[IQK_ADDA_REG_NUM] = {
0x85c, 0xe6c, 0xe70, 0xe74,
0xe78, 0xe7c, 0xe80, 0xe84,
0xe88, 0xe8c, 0xed0, 0xed4,
0xed8, 0xedc, 0xee0, 0xeec
};
u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
0x522, 0x550, 0x551, 0x040
};
u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR,
RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c,
0x870, 0x860, 0x864, 0x800
};
const u32 retrycount = 2;
if (t == 0) {
_rtl88e_phy_save_adda_registers(hw, adda_reg,
rtlphy->adda_backup, 16);
_rtl88e_phy_save_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
}
_rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
if (t == 0) {
rtlphy->rfpi_enable =
(u8)rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8));
}
if (!rtlphy->rfpi_enable)
_rtl88e_phy_pi_mode_switch(hw, true);
/*BB Setting*/
rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
if (is2t) {
rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
}
_rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
if (is2t)
rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
for (i = 0; i < retrycount; i++) {
patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
if (patha_ok == 0x01) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Tx IQK Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
break;
}
}
for (i = 0; i < retrycount; i++) {
patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
if (patha_ok == 0x03) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Rx IQK Success!!\n");
result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
0x3FF0000) >> 16;
break;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path a RX iqk fail!!!\n");
}
}
if (0 == patha_ok)
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A IQK Success!!\n");
if (is2t) {
_rtl88e_phy_path_a_standby(hw);
_rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
for (i = 0; i < retrycount; i++) {
pathb_ok = _rtl88e_phy_path_b_iqk(hw);
if (pathb_ok == 0x03) {
result[t][4] = (rtl_get_bbreg(hw,
0xeb4,
MASKDWORD) &
0x3FF0000) >> 16;
result[t][5] =
(rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
0x3FF0000) >> 16;
result[t][6] =
(rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][7] =
(rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
0x3FF0000) >> 16;
break;
} else if (i == (retrycount - 1) && pathb_ok == 0x01) {
result[t][4] = (rtl_get_bbreg(hw,
0xeb4,
MASKDWORD) &
0x3FF0000) >> 16;
}
result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
0x3FF0000) >> 16;
}
}
rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
if (t != 0) {
if (!rtlphy->rfpi_enable)
_rtl88e_phy_pi_mode_switch(hw, false);
_rtl88e_phy_reload_adda_registers(hw, adda_reg,
rtlphy->adda_backup, 16);
_rtl88e_phy_reload_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
_rtl88e_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
if (is2t)
rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
}
static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
{
u8 tmpreg;
u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
struct rtl_priv *rtlpriv = rtl_priv(hw);
tmpreg = rtl_read_byte(rtlpriv, 0xd03);
if ((tmpreg & 0x70) != 0)
rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
else
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
if ((tmpreg & 0x70) != 0) {
rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
if (is2t)
rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
(rf_a_mode & 0x8FFFF) | 0x10000);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
(rf_b_mode & 0x8FFFF) | 0x10000);
}
lc_cal = rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, lc_cal | 0x08000);
mdelay(100);
if ((tmpreg & 0x70) != 0) {
rtl_write_byte(rtlpriv, 0xd03, tmpreg);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
rf_b_mode);
} else {
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
}
static void _rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw,
bool bmain, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
if (is_hal_stop(rtlhal)) {
u8 u1btmp;
u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
}
if (is2t) {
if (bmain)
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
BIT(5) | BIT(6), 0x1);
else
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
BIT(5) | BIT(6), 0x2);
} else {
rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
/* We use the RF definition of MAIN and AUX,
* left antenna and right antenna repectively.
* Default output at AUX.
*/
if (bmain) {
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
BIT(14) | BIT(13) | BIT(12), 0);
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
BIT(5) | BIT(4) | BIT(3), 0);
if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 0);
} else {
rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
BIT(14) | BIT(13) | BIT(12), 1);
rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
BIT(5) | BIT(4) | BIT(3), 1);
if (rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
rtl_set_bbreg(hw, RCONFIG_RAM64x16, BIT(31), 1);
}
}
}
#undef IQK_ADDA_REG_NUM
#undef IQK_DELAY_TIME
void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool b_recovery)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
long result[4][8];
u8 i, final_candidate;
bool b_patha_ok;
long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc,
reg_tmp = 0;
bool is12simular, is13simular, is23simular;
u32 iqk_bb_reg[9] = {
ROFDM0_XARXIQIMBALANCE,
ROFDM0_XBRXIQIMBALANCE,
ROFDM0_ECCATHRESHOLD,
ROFDM0_AGCRSSITABLE,
ROFDM0_XATXIQIMBALANCE,
ROFDM0_XBTXIQIMBALANCE,
ROFDM0_XCTXAFE,
ROFDM0_XDTXAFE,
ROFDM0_RXIQEXTANTA
};
if (b_recovery) {
_rtl88e_phy_reload_adda_registers(hw,
iqk_bb_reg,
rtlphy->iqk_bb_backup, 9);
return;
}
for (i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
result[3][i] = 0;
}
final_candidate = 0xff;
b_patha_ok = false;
is12simular = false;
is23simular = false;
is13simular = false;
for (i = 0; i < 3; i++) {
if (get_rf_type(rtlphy) == RF_2T2R)
_rtl88e_phy_iq_calibrate(hw, result, i, true);
else
_rtl88e_phy_iq_calibrate(hw, result, i, false);
if (i == 1) {
is12simular =
_rtl88e_phy_simularity_compare(hw, result, 0, 1);
if (is12simular) {
final_candidate = 0;
break;
}
}
if (i == 2) {
is13simular =
_rtl88e_phy_simularity_compare(hw, result, 0, 2);
if (is13simular) {
final_candidate = 0;
break;
}
is23simular =
_rtl88e_phy_simularity_compare(hw, result, 1, 2);
if (is23simular) {
final_candidate = 1;
} else {
for (i = 0; i < 8; i++)
reg_tmp += result[3][i];
if (reg_tmp != 0)
final_candidate = 3;
else
final_candidate = 0xFF;
}
}
}
for (i = 0; i < 4; i++) {
reg_e94 = result[i][0];
reg_e9c = result[i][1];
reg_ea4 = result[i][2];
reg_eb4 = result[i][4];
reg_ebc = result[i][5];
}
if (final_candidate != 0xff) {
reg_e94 = result[final_candidate][0];
reg_e9c = result[final_candidate][1];
reg_ea4 = result[final_candidate][2];
reg_eb4 = result[final_candidate][4];
reg_ebc = result[final_candidate][5];
rtlphy->reg_eb4 = reg_eb4;
rtlphy->reg_ebc = reg_ebc;
rtlphy->reg_e94 = reg_e94;
rtlphy->reg_e9c = reg_e9c;
b_patha_ok = true;
} else {
rtlphy->reg_e94 = 0x100;
rtlphy->reg_eb4 = 0x100;
rtlphy->reg_e9c = 0x0;
rtlphy->reg_ebc = 0x0;
}
if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
_rtl88e_phy_path_a_fill_iqk_matrix(hw, b_patha_ok, result,
final_candidate,
(reg_ea4 == 0));
if (final_candidate != 0xFF) {
for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
rtlphy->iqk_matrix[0].value[0][i] =
result[final_candidate][i];
rtlphy->iqk_matrix[0].iqk_done = true;
}
_rtl88e_phy_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup, 9);
}
void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = &rtlpriv->rtlhal;
u32 timeout = 2000, timecount = 0;
while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
udelay(50);
timecount += 50;
}
rtlphy->lck_inprogress = true;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"LCK:Start!!! currentband %x delay %d ms\n",
rtlhal->current_bandtype, timecount);
_rtl88e_phy_lc_calibrate(hw, false);
rtlphy->lck_inprogress = false;
}
void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
{
_rtl88e_phy_set_rfpath_switch(hw, bmain, false);
}
bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
bool postprocessing = false;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"-->IO Cmd(%#x), set_io_inprogress(%d)\n",
iotype, rtlphy->set_io_inprogress);
do {
switch (iotype) {
case IO_CMD_RESUME_DM_BY_SCAN:
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Resume DM after scan.\n");
postprocessing = true;
break;
case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Pause DM before scan.\n");
postprocessing = true;
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", iotype);
break;
}
} while (false);
if (postprocessing && !rtlphy->set_io_inprogress) {
rtlphy->set_io_inprogress = true;
rtlphy->current_io_type = iotype;
} else {
return false;
}
rtl88e_phy_set_io(hw);
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
return true;
}
static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"--->Cmd(%#x), set_io_inprogress(%d)\n",
rtlphy->current_io_type, rtlphy->set_io_inprogress);
switch (rtlphy->current_io_type) {
case IO_CMD_RESUME_DM_BY_SCAN:
dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
/*rtl92c_dm_write_dig(hw);*/
rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
break;
case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
dm_digtable->cur_igvalue = 0x17;
rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n",
rtlphy->current_io_type);
break;
}
rtlphy->set_io_inprogress = false;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"(%#x)\n", rtlphy->current_io_type);
}
static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
/*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
}
static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = true;
u8 i, queue_id;
struct rtl8192_tx_ring *ring = NULL;
switch (rfpwr_state) {
case ERFON:
if ((ppsc->rfpwr_state == ERFOFF) &&
RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 initializecount = 0;
do {
initializecount++;
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic enable\n");
rtstatus = rtl_ps_enable_nic(hw);
} while (!rtstatus &&
(initializecount < 10));
RT_CLEAR_PS_LEVEL(ppsc,
RT_RF_OFF_LEVL_HALT_NIC);
} else {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFON slept:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_sleep_jiffies));
ppsc->last_awake_jiffies = jiffies;
rtl88ee_phy_set_rf_on(hw);
}
if (mac->link_state == MAC80211_LINKED) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_LINK);
} else {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
}
break;
case ERFOFF:
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (queue_id == BEACON_QUEUE ||
skb_queue_len(&ring->queue) == 0) {
queue_id++;
continue;
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
(i + 1), queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x,
queue_id,
skb_queue_len(&ring->queue));
break;
}
}
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic disable\n");
rtl_ps_disable_nic(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
} else {
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
} else {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_POWER_OFF);
}
}
break;
case ERFSLEEP:{
if (ppsc->rfpwr_state == ERFOFF)
break;
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (skb_queue_len(&ring->queue) == 0) {
queue_id++;
continue;
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
(i + 1), queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x,
queue_id,
skb_queue_len(&ring->queue));
break;
}
}
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFSLEEP awaked:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_awake_jiffies));
ppsc->last_sleep_jiffies = jiffies;
_rtl88ee_phy_set_rf_sleep(hw);
break;
}
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", rfpwr_state);
bresult = false;
break;
}
if (bresult)
ppsc->rfpwr_state = rfpwr_state;
return bresult;
}
bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = false;
if (rfpwr_state == ppsc->rfpwr_state)
return bresult;
bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
return bresult;
}