linux/linux-5.18.11/drivers/net/wireless/intel/iwlwifi/iwl-nvm-parse.c

1818 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2005-2014, 2018-2021 Intel Corporation
* Copyright (C) 2013-2015 Intel Mobile Communications GmbH
* Copyright (C) 2016-2017 Intel Deutschland GmbH
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/firmware.h>
#include "iwl-drv.h"
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
#include "iwl-prph.h"
#include "iwl-io.h"
#include "iwl-csr.h"
#include "fw/acpi.h"
#include "fw/api/nvm-reg.h"
#include "fw/api/commands.h"
#include "fw/api/cmdhdr.h"
#include "fw/img.h"
#include "mei/iwl-mei.h"
/* NVM offsets (in words) definitions */
enum nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
SUBSYSTEM_ID = 0x0A,
HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION = 0x1C0,
NVM_VERSION = 0,
RADIO_CFG = 1,
SKU = 2,
N_HW_ADDRS = 3,
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION = 0x2B8,
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_SDP = 0,
};
enum ext_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
/* NVM SW-Section offset (in words) definitions */
NVM_VERSION_EXT_NVM = 0,
N_HW_ADDRS_FAMILY_8000 = 3,
/* NVM PHY_SKU-Section offset (in words) definitions */
RADIO_CFG_FAMILY_EXT_NVM = 0,
SKU_FAMILY_8000 = 2,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_EXTENDED = 0,
NVM_LAR_OFFSET_OLD = 0x4C7,
NVM_LAR_OFFSET = 0x507,
NVM_LAR_ENABLED = 0x7,
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
NVM_SKU_CAP_11N_ENABLE = BIT(2),
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
NVM_SKU_CAP_MIMO_DISABLE = BIT(5),
};
/*
* These are the channel numbers in the order that they are stored in the NVM
*/
static const u16 iwl_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44 , 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
static const u16 iwl_ext_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
static const u16 iwl_uhb_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181,
/* 6-7 GHz */
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
};
#define IWL_NVM_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_EXT ARRAY_SIZE(iwl_ext_nvm_channels)
#define IWL_NVM_NUM_CHANNELS_UHB ARRAY_SIZE(iwl_uhb_nvm_channels)
#define NUM_2GHZ_CHANNELS 14
#define NUM_5GHZ_CHANNELS 37
#define FIRST_2GHZ_HT_MINUS 5
#define LAST_2GHZ_HT_PLUS 9
#define N_HW_ADDR_MASK 0xF
/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
/**
* enum iwl_nvm_channel_flags - channel flags in NVM
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
* @NVM_CHANNEL_ACTIVE: active scanning allowed
* @NVM_CHANNEL_RADAR: radar detection required
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
* on same channel on 2.4 or same UNII band on 5.2
* @NVM_CHANNEL_UNIFORM: uniform spreading required
* @NVM_CHANNEL_20MHZ: 20 MHz channel okay
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay
* @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
*/
enum iwl_nvm_channel_flags {
NVM_CHANNEL_VALID = BIT(0),
NVM_CHANNEL_IBSS = BIT(1),
NVM_CHANNEL_ACTIVE = BIT(3),
NVM_CHANNEL_RADAR = BIT(4),
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
NVM_CHANNEL_UNIFORM = BIT(7),
NVM_CHANNEL_20MHZ = BIT(8),
NVM_CHANNEL_40MHZ = BIT(9),
NVM_CHANNEL_80MHZ = BIT(10),
NVM_CHANNEL_160MHZ = BIT(11),
NVM_CHANNEL_DC_HIGH = BIT(12),
};
/**
* enum iwl_reg_capa_flags - global flags applied for the whole regulatory
* domain.
* @REG_CAPA_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
* 2.4Ghz band is allowed.
* @REG_CAPA_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
* 5Ghz band is allowed.
* @REG_CAPA_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
* @REG_CAPA_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
* @REG_CAPA_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_DC_HIGH_ENABLED: DC HIGH allowed.
* @REG_CAPA_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
*/
enum iwl_reg_capa_flags {
REG_CAPA_BF_CCD_LOW_BAND = BIT(0),
REG_CAPA_BF_CCD_HIGH_BAND = BIT(1),
REG_CAPA_160MHZ_ALLOWED = BIT(2),
REG_CAPA_80MHZ_ALLOWED = BIT(3),
REG_CAPA_MCS_8_ALLOWED = BIT(4),
REG_CAPA_MCS_9_ALLOWED = BIT(5),
REG_CAPA_40MHZ_FORBIDDEN = BIT(7),
REG_CAPA_DC_HIGH_ENABLED = BIT(9),
REG_CAPA_11AX_DISABLED = BIT(10),
};
/**
* enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
* domain (version 2).
* @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
* disabled.
* @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
* 2.4Ghz band is allowed.
* @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
* 5Ghz band is allowed.
* @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
* @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
* @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
* 126, 122) are disabled.
* @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
* for this regulatory domain (uvalid only in 5Ghz).
* @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
*/
enum iwl_reg_capa_flags_v2 {
REG_CAPA_V2_STRADDLE_DISABLED = BIT(0),
REG_CAPA_V2_BF_CCD_LOW_BAND = BIT(1),
REG_CAPA_V2_BF_CCD_HIGH_BAND = BIT(2),
REG_CAPA_V2_160MHZ_ALLOWED = BIT(3),
REG_CAPA_V2_80MHZ_ALLOWED = BIT(4),
REG_CAPA_V2_MCS_8_ALLOWED = BIT(5),
REG_CAPA_V2_MCS_9_ALLOWED = BIT(6),
REG_CAPA_V2_WEATHER_DISABLED = BIT(7),
REG_CAPA_V2_40MHZ_ALLOWED = BIT(8),
REG_CAPA_V2_11AX_DISABLED = BIT(10),
};
/*
* API v2 for reg_capa_flags is relevant from version 6 and onwards of the
* MCC update command response.
*/
#define REG_CAPA_V2_RESP_VER 6
/**
* struct iwl_reg_capa - struct for global regulatory capabilities, Used for
* handling the different APIs of reg_capa_flags.
*
* @allow_40mhz: 11n channel with a width of 40Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
* for this regulatory domain (valid only in 5Ghz).
* @disable_11ax: 11ax is forbidden for this regulatory domain.
*/
struct iwl_reg_capa {
u16 allow_40mhz;
u16 allow_80mhz;
u16 allow_160mhz;
u16 disable_11ax;
};
static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
int chan, u32 flags)
{
#define CHECK_AND_PRINT_I(x) \
((flags & NVM_CHANNEL_##x) ? " " #x : "")
if (!(flags & NVM_CHANNEL_VALID)) {
IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
chan, flags);
return;
}
/* Note: already can print up to 101 characters, 110 is the limit! */
IWL_DEBUG_DEV(dev, level,
"Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
chan, flags,
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(INDOOR_ONLY),
CHECK_AND_PRINT_I(GO_CONCURRENT),
CHECK_AND_PRINT_I(UNIFORM),
CHECK_AND_PRINT_I(20MHZ),
CHECK_AND_PRINT_I(40MHZ),
CHECK_AND_PRINT_I(80MHZ),
CHECK_AND_PRINT_I(160MHZ),
CHECK_AND_PRINT_I(DC_HIGH));
#undef CHECK_AND_PRINT_I
}
static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
u32 nvm_flags, const struct iwl_cfg *cfg)
{
u32 flags = IEEE80211_CHAN_NO_HT40;
if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
if (ch_num <= LAST_2GHZ_HT_PLUS)
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
if (ch_num >= FIRST_2GHZ_HT_MINUS)
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
else
flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
flags |= IEEE80211_CHAN_NO_80MHZ;
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
flags |= IEEE80211_CHAN_NO_160MHZ;
if (!(nvm_flags & NVM_CHANNEL_IBSS))
flags |= IEEE80211_CHAN_NO_IR;
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
flags |= IEEE80211_CHAN_NO_IR;
if (nvm_flags & NVM_CHANNEL_RADAR)
flags |= IEEE80211_CHAN_RADAR;
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
flags |= IEEE80211_CHAN_INDOOR_ONLY;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(flags & IEEE80211_CHAN_NO_IR))
flags |= IEEE80211_CHAN_IR_CONCURRENT;
return flags;
}
static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
{
if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
return NL80211_BAND_6GHZ;
}
if (ch_idx >= NUM_2GHZ_CHANNELS)
return NL80211_BAND_5GHZ;
return NL80211_BAND_2GHZ;
}
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const void * const nvm_ch_flags,
u32 sbands_flags, bool v4)
{
int ch_idx;
int n_channels = 0;
struct ieee80211_channel *channel;
u32 ch_flags;
int num_of_ch;
const u16 *nvm_chan;
if (cfg->uhb_supported) {
num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
nvm_chan = iwl_uhb_nvm_channels;
} else if (cfg->nvm_type == IWL_NVM_EXT) {
num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
nvm_chan = iwl_ext_nvm_channels;
} else {
num_of_ch = IWL_NVM_NUM_CHANNELS;
nvm_chan = iwl_nvm_channels;
}
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
enum nl80211_band band =
iwl_nl80211_band_from_channel_idx(ch_idx);
if (v4)
ch_flags =
__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
else
ch_flags =
__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
if (band == NL80211_BAND_5GHZ &&
!data->sku_cap_band_52ghz_enable)
continue;
/* workaround to disable wide channels in 5GHz */
if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
band == NL80211_BAND_5GHZ) {
ch_flags &= ~(NVM_CHANNEL_40MHZ |
NVM_CHANNEL_80MHZ |
NVM_CHANNEL_160MHZ);
}
if (ch_flags & NVM_CHANNEL_160MHZ)
data->vht160_supported = true;
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
!(ch_flags & NVM_CHANNEL_VALID)) {
/*
* Channels might become valid later if lar is
* supported, hence we still want to add them to
* the list of supported channels to cfg80211.
*/
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
nvm_chan[ch_idx], ch_flags);
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->hw_value = nvm_chan[ch_idx];
channel->band = band;
channel->center_freq =
ieee80211_channel_to_frequency(
channel->hw_value, channel->band);
/* Initialize regulatory-based run-time data */
/*
* Default value - highest tx power value. max_power
* is not used in mvm, and is used for backwards compatibility
*/
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
/* don't put limitations in case we're using LAR */
if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
ch_idx, band,
ch_flags, cfg);
else
channel->flags = 0;
/* TODO: Don't put limitations on UHB devices as we still don't
* have NVM for them
*/
if (cfg->uhb_supported)
channel->flags = 0;
iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
channel->hw_value, ch_flags);
IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
channel->hw_value, channel->max_power);
}
return n_channels;
}
static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_sta_vht_cap *vht_cap,
u8 tx_chains, u8 rx_chains)
{
const struct iwl_cfg *cfg = trans->cfg;
int num_rx_ants = num_of_ant(rx_chains);
int num_tx_ants = num_of_ant(tx_chains);
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
IEEE80211_VHT_MAX_AMPDU_1024K <<
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
if (data->vht160_supported)
vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
IEEE80211_VHT_CAP_SHORT_GI_160;
if (cfg->vht_mu_mimo_supported)
vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
if (cfg->ht_params->ldpc)
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
if (data->sku_cap_mimo_disabled) {
num_rx_ants = 1;
num_tx_ants = 1;
}
if (num_tx_ants > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
else
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
switch (iwlwifi_mod_params.amsdu_size) {
case IWL_AMSDU_DEF:
if (trans->trans_cfg->mq_rx_supported)
vht_cap->cap |=
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
else
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
break;
case IWL_AMSDU_2K:
if (trans->trans_cfg->mq_rx_supported)
vht_cap->cap |=
IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
else
WARN(1, "RB size of 2K is not supported by this device\n");
break;
case IWL_AMSDU_4K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
break;
case IWL_AMSDU_8K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
break;
case IWL_AMSDU_12K:
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
break;
default:
break;
}
vht_cap->vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
/* this works because NOT_SUPPORTED == 3 */
vht_cap->vht_mcs.rx_mcs_map |=
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
}
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
vht_cap->vht_mcs.tx_highest |=
cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
}
static const u8 iwl_vendor_caps[] = {
0xdd, /* vendor element */
0x06, /* length */
0x00, 0x17, 0x35, /* Intel OUI */
0x08, /* type (Intel Capabilities) */
/* followed by 16 bits of capabilities */
#define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE BIT(0)
IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
0x00
};
static const struct ieee80211_sband_iftype_data iwl_he_capa[] = {
{
.types_mask = BIT(NL80211_IFTYPE_STATION),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[2] =
IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
.mac_cap_info[4] =
IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
.mac_cap_info[5] =
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
.phy_cap_info[3] =
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[4] =
IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
.phy_cap_info[6] =
IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] =
IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
.phy_cap_info[8] =
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
.phy_cap_info[10] =
IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
},
{
.types_mask = BIT(NL80211_IFTYPE_AP),
.he_cap = {
.has_he = true,
.he_cap_elem = {
.mac_cap_info[0] =
IEEE80211_HE_MAC_CAP0_HTC_HE,
.mac_cap_info[1] =
IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
.mac_cap_info[3] =
IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
.phy_cap_info[0] =
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G |
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G,
.phy_cap_info[1] =
IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
.phy_cap_info[2] =
IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
.phy_cap_info[3] =
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
.phy_cap_info[6] =
IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
.phy_cap_info[7] =
IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
.phy_cap_info[8] =
IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
.phy_cap_info[9] =
IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
},
/*
* Set default Tx/Rx HE MCS NSS Support field.
* Indicate support for up to 2 spatial streams and all
* MCS, without any special cases
*/
.he_mcs_nss_supp = {
.rx_mcs_80 = cpu_to_le16(0xfffa),
.tx_mcs_80 = cpu_to_le16(0xfffa),
.rx_mcs_160 = cpu_to_le16(0xfffa),
.tx_mcs_160 = cpu_to_le16(0xfffa),
.rx_mcs_80p80 = cpu_to_le16(0xffff),
.tx_mcs_80p80 = cpu_to_le16(0xffff),
},
/*
* Set default PPE thresholds, with PPET16 set to 0,
* PPET8 set to 7
*/
.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
},
},
};
static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_supported_band *sband,
u8 tx_chains, u8 rx_chains)
{
struct ieee80211_sta_ht_cap ht_cap;
struct ieee80211_sta_vht_cap vht_cap = {};
struct ieee80211_sband_iftype_data *iftype_data;
u16 he_6ghz_capa = 0;
u32 exp;
int i;
if (sband->band != NL80211_BAND_6GHZ)
return;
/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
tx_chains, rx_chains);
WARN_ON(!ht_cap.ht_supported);
iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
WARN_ON(!vht_cap.vht_supported);
he_6ghz_capa |=
u16_encode_bits(ht_cap.ampdu_density,
IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
exp = u32_get_bits(vht_cap.cap,
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
he_6ghz_capa |=
u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
he_6ghz_capa |=
u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
/* we know it's writable - we set it before ourselves */
iftype_data = (void *)(uintptr_t)sband->iftype_data;
for (i = 0; i < sband->n_iftype_data; i++)
iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
}
static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
struct ieee80211_supported_band *sband,
struct ieee80211_sband_iftype_data *iftype_data,
u8 tx_chains, u8 rx_chains,
const struct iwl_fw *fw)
{
bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
/* Advertise an A-MPDU exponent extension based on
* operating band
*/
if (sband->band != NL80211_BAND_2GHZ)
iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
else
iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
if (is_ap && iwlwifi_mod_params.nvm_file)
iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
if ((tx_chains & rx_chains) == ANT_AB) {
iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
if (!is_ap)
iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
IEEE80211_HE_PHY_CAP7_MAX_NC_2;
} else if (!is_ap) {
/* If not 2x2, we need to indicate 1x1 in the
* Midamble RX Max NSTS - but not for AP mode
*/
iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
IEEE80211_HE_PHY_CAP7_MAX_NC_1;
}
switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
case IWL_CFG_RF_TYPE_GF:
case IWL_CFG_RF_TYPE_MR:
case IWL_CFG_RF_TYPE_MS:
iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
if (!is_ap)
iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
break;
}
if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
IEEE80211_HE_MAC_CAP2_BCAST_TWT;
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
!is_ap) {
iftype_data->vendor_elems.data = iwl_vendor_caps;
iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
}
}
static void iwl_init_he_hw_capab(struct iwl_trans *trans,
struct iwl_nvm_data *data,
struct ieee80211_supported_band *sband,
u8 tx_chains, u8 rx_chains,
const struct iwl_fw *fw)
{
struct ieee80211_sband_iftype_data *iftype_data;
int i;
/* should only initialize once */
if (WARN_ON(sband->iftype_data))
return;
BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_capa));
BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_capa));
switch (sband->band) {
case NL80211_BAND_2GHZ:
iftype_data = data->iftd.low;
break;
case NL80211_BAND_5GHZ:
case NL80211_BAND_6GHZ:
iftype_data = data->iftd.high;
break;
default:
WARN_ON(1);
return;
}
memcpy(iftype_data, iwl_he_capa, sizeof(iwl_he_capa));
sband->iftype_data = iftype_data;
sband->n_iftype_data = ARRAY_SIZE(iwl_he_capa);
for (i = 0; i < sband->n_iftype_data; i++)
iwl_nvm_fixup_sband_iftd(trans, sband, &iftype_data[i],
tx_chains, rx_chains, fw);
iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
}
static void iwl_init_sbands(struct iwl_trans *trans,
struct iwl_nvm_data *data,
const void *nvm_ch_flags, u8 tx_chains,
u8 rx_chains, u32 sbands_flags, bool v4,
const struct iwl_fw *fw)
{
struct device *dev = trans->dev;
const struct iwl_cfg *cfg = trans->cfg;
int n_channels;
int n_used = 0;
struct ieee80211_supported_band *sband;
n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
sbands_flags, v4);
sband = &data->bands[NL80211_BAND_2GHZ];
sband->band = NL80211_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_2GHZ);
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
tx_chains, rx_chains);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
sband = &data->bands[NL80211_BAND_5GHZ];
sband->band = NL80211_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_5GHZ);
iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
tx_chains, rx_chains);
if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
tx_chains, rx_chains);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
/* 6GHz band. */
sband = &data->bands[NL80211_BAND_6GHZ];
sband->band = NL80211_BAND_6GHZ;
/* use the same rates as 5GHz band */
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
NL80211_BAND_6GHZ);
if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
fw);
else
sband->n_channels = 0;
if (n_channels != n_used)
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
n_used, n_channels);
}
static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
const __le16 *phy_sku)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + SKU);
return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
}
static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + NVM_VERSION);
else
return le32_to_cpup((const __le32 *)(nvm_sw +
NVM_VERSION_EXT_NVM));
}
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
const __le16 *phy_sku)
{
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + RADIO_CFG);
return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
}
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
{
int n_hw_addr;
if (cfg->nvm_type != IWL_NVM_EXT)
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
return n_hw_addr & N_HW_ADDR_MASK;
}
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
u32 radio_cfg)
{
if (cfg->nvm_type != IWL_NVM_EXT) {
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
}
static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
{
const u8 *hw_addr;
hw_addr = (const u8 *)&mac_addr0;
dest[0] = hw_addr[3];
dest[1] = hw_addr[2];
dest[2] = hw_addr[1];
dest[3] = hw_addr[0];
hw_addr = (const u8 *)&mac_addr1;
dest[4] = hw_addr[1];
dest[5] = hw_addr[0];
}
static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
struct iwl_nvm_data *data)
{
__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
CSR_MAC_ADDR0_STRAP(trans)));
__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
CSR_MAC_ADDR1_STRAP(trans)));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
/*
* If the OEM fused a valid address, use it instead of the one in the
* OTP
*/
if (is_valid_ether_addr(data->hw_addr))
return;
mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
}
static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *mac_override,
const __be16 *nvm_hw)
{
const u8 *hw_addr;
if (mac_override) {
static const u8 reserved_mac[] = {
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
};
hw_addr = (const u8 *)(mac_override +
MAC_ADDRESS_OVERRIDE_EXT_NVM);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
memcpy(data->hw_addr, hw_addr, ETH_ALEN);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (is_valid_ether_addr(data->hw_addr) &&
memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
return;
IWL_ERR(trans,
"mac address from nvm override section is not valid\n");
}
if (nvm_hw) {
/* read the mac address from WFMP registers */
__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
WFMP_MAC_ADDR_0));
__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
WFMP_MAC_ADDR_1));
iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
return;
}
IWL_ERR(trans, "mac address is not found\n");
}
static int iwl_set_hw_address(struct iwl_trans *trans,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data, const __be16 *nvm_hw,
const __le16 *mac_override)
{
if (cfg->mac_addr_from_csr) {
iwl_set_hw_address_from_csr(trans, data);
} else if (cfg->nvm_type != IWL_NVM_EXT) {
const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else {
iwl_set_hw_address_family_8000(trans, cfg, data,
mac_override, nvm_hw);
}
if (!is_valid_ether_addr(data->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
return -EINVAL;
}
if (!trans->csme_own)
IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
return 0;
}
static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const __be16 *nvm_hw)
{
/*
* Workaround a bug in Indonesia SKUs where the regulatory in
* some 7000-family OTPs erroneously allow wide channels in
* 5GHz. To check for Indonesia, we take the SKU value from
* bits 1-4 in the subsystem ID and check if it is either 5 or
* 9. In those cases, we need to force-disable wide channels
* in 5GHz otherwise the FW will throw a sysassert when we try
* to use them.
*/
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
/*
* Unlike the other sections in the NVM, the hw
* section uses big-endian.
*/
u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
u8 sku = (subsystem_id & 0x1e) >> 1;
if (sku == 5 || sku == 9) {
IWL_DEBUG_EEPROM(trans->dev,
"disabling wide channels in 5GHz (0x%0x %d)\n",
subsystem_id, sku);
return true;
}
}
return false;
}
struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const struct iwl_mei_nvm *mei_nvm,
const struct iwl_fw *fw)
{
struct iwl_nvm_data *data;
u32 sbands_flags = 0;
u8 rx_chains = fw->valid_rx_ant;
u8 tx_chains = fw->valid_rx_ant;
if (cfg->uhb_supported)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_UHB),
GFP_KERNEL);
else
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_EXT),
GFP_KERNEL);
if (!data)
return NULL;
BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
IWL_NVM_NUM_CHANNELS_UHB);
data->nvm_version = mei_nvm->nvm_version;
iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
if (data->valid_tx_ant)
tx_chains &= data->valid_tx_ant;
if (data->valid_rx_ant)
rx_chains &= data->valid_rx_ant;
data->sku_cap_mimo_disabled = false;
data->sku_cap_band_24ghz_enable = true;
data->sku_cap_band_52ghz_enable = true;
data->sku_cap_11n_enable =
!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
data->sku_cap_11ac_enable = true;
data->sku_cap_11ax_enable =
mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
data->n_hw_addrs = mei_nvm->n_hw_addrs;
/* If no valid mac address was found - bail out */
if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
kfree(data);
return NULL;
}
if (data->lar_enabled &&
fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
sbands_flags, true, fw);
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
const struct iwl_fw *fw,
const __be16 *nvm_hw, const __le16 *nvm_sw,
const __le16 *nvm_calib, const __le16 *regulatory,
const __le16 *mac_override, const __le16 *phy_sku,
u8 tx_chains, u8 rx_chains)
{
struct iwl_nvm_data *data;
bool lar_enabled;
u32 sku, radio_cfg;
u32 sbands_flags = 0;
u16 lar_config;
const __le16 *ch_section;
if (cfg->uhb_supported)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_UHB),
GFP_KERNEL);
else if (cfg->nvm_type != IWL_NVM_EXT)
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS),
GFP_KERNEL);
else
data = kzalloc(struct_size(data, channels,
IWL_NVM_NUM_CHANNELS_EXT),
GFP_KERNEL);
if (!data)
return NULL;
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
iwl_set_radio_cfg(cfg, data, radio_cfg);
if (data->valid_tx_ant)
tx_chains &= data->valid_tx_ant;
if (data->valid_rx_ant)
rx_chains &= data->valid_rx_ant;
sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
data->sku_cap_11n_enable = false;
data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
(sku & NVM_SKU_CAP_11AC_ENABLE);
data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
if (cfg->nvm_type != IWL_NVM_EXT) {
/* Checking for required sections */
if (!nvm_calib) {
IWL_ERR(trans,
"Can't parse empty Calib NVM sections\n");
kfree(data);
return NULL;
}
ch_section = cfg->nvm_type == IWL_NVM_SDP ?
&regulatory[NVM_CHANNELS_SDP] :
&nvm_sw[NVM_CHANNELS];
/* in family 8000 Xtal calibration values moved to OTP */
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
lar_enabled = true;
} else {
u16 lar_offset = data->nvm_version < 0xE39 ?
NVM_LAR_OFFSET_OLD :
NVM_LAR_OFFSET;
lar_config = le16_to_cpup(regulatory + lar_offset);
data->lar_enabled = !!(lar_config &
NVM_LAR_ENABLED);
lar_enabled = data->lar_enabled;
ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
}
/* If no valid mac address was found - bail out */
if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
kfree(data);
return NULL;
}
if (lar_enabled &&
fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
sbands_flags, false, fw);
data->calib_version = 255;
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
int ch_idx, u16 nvm_flags,
struct iwl_reg_capa reg_capa,
const struct iwl_cfg *cfg)
{
u32 flags = NL80211_RRF_NO_HT40;
if (ch_idx < NUM_2GHZ_CHANNELS &&
(nvm_flags & NVM_CHANNEL_40MHZ)) {
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
flags &= ~NL80211_RRF_NO_HT40PLUS;
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
flags &= ~NL80211_RRF_NO_HT40MINUS;
} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
flags &= ~NL80211_RRF_NO_HT40PLUS;
else
flags &= ~NL80211_RRF_NO_HT40MINUS;
}
if (!(nvm_flags & NVM_CHANNEL_80MHZ))
flags |= NL80211_RRF_NO_80MHZ;
if (!(nvm_flags & NVM_CHANNEL_160MHZ))
flags |= NL80211_RRF_NO_160MHZ;
if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
flags |= NL80211_RRF_NO_IR;
if (nvm_flags & NVM_CHANNEL_RADAR)
flags |= NL80211_RRF_DFS;
if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
flags |= NL80211_RRF_NO_OUTDOOR;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(flags & NL80211_RRF_NO_IR))
flags |= NL80211_RRF_GO_CONCURRENT;
/*
* reg_capa is per regulatory domain so apply it for every channel
*/
if (ch_idx >= NUM_2GHZ_CHANNELS) {
if (!reg_capa.allow_40mhz)
flags |= NL80211_RRF_NO_HT40;
if (!reg_capa.allow_80mhz)
flags |= NL80211_RRF_NO_80MHZ;
if (!reg_capa.allow_160mhz)
flags |= NL80211_RRF_NO_160MHZ;
}
if (reg_capa.disable_11ax)
flags |= NL80211_RRF_NO_HE;
return flags;
}
static struct iwl_reg_capa iwl_get_reg_capa(u16 flags, u8 resp_ver)
{
struct iwl_reg_capa reg_capa;
if (resp_ver >= REG_CAPA_V2_RESP_VER) {
reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
} else {
reg_capa.allow_40mhz = !(flags & REG_CAPA_40MHZ_FORBIDDEN);
reg_capa.allow_80mhz = flags & REG_CAPA_80MHZ_ALLOWED;
reg_capa.allow_160mhz = flags & REG_CAPA_160MHZ_ALLOWED;
reg_capa.disable_11ax = flags & REG_CAPA_11AX_DISABLED;
}
return reg_capa;
}
struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
int num_of_ch, __le32 *channels, u16 fw_mcc,
u16 geo_info, u16 cap, u8 resp_ver)
{
int ch_idx;
u16 ch_flags;
u32 reg_rule_flags, prev_reg_rule_flags = 0;
const u16 *nvm_chan;
struct ieee80211_regdomain *regd, *copy_rd;
struct ieee80211_reg_rule *rule;
enum nl80211_band band;
int center_freq, prev_center_freq = 0;
int valid_rules = 0;
bool new_rule;
int max_num_ch;
struct iwl_reg_capa reg_capa;
if (cfg->uhb_supported) {
max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
nvm_chan = iwl_uhb_nvm_channels;
} else if (cfg->nvm_type == IWL_NVM_EXT) {
max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
nvm_chan = iwl_ext_nvm_channels;
} else {
max_num_ch = IWL_NVM_NUM_CHANNELS;
nvm_chan = iwl_nvm_channels;
}
if (num_of_ch > max_num_ch) {
IWL_DEBUG_DEV(dev, IWL_DL_LAR,
"Num of channels (%d) is greater than expected. Truncating to %d\n",
num_of_ch, max_num_ch);
num_of_ch = max_num_ch;
}
if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
return ERR_PTR(-EINVAL);
IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
num_of_ch);
/* build a regdomain rule for every valid channel */
regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
if (!regd)
return ERR_PTR(-ENOMEM);
/* set alpha2 from FW. */
regd->alpha2[0] = fw_mcc >> 8;
regd->alpha2[1] = fw_mcc & 0xff;
/* parse regulatory capability flags */
reg_capa = iwl_get_reg_capa(cap, resp_ver);
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
band = iwl_nl80211_band_from_channel_idx(ch_idx);
center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
band);
new_rule = false;
if (!(ch_flags & NVM_CHANNEL_VALID)) {
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
nvm_chan[ch_idx], ch_flags);
continue;
}
reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
ch_flags, reg_capa,
cfg);
/* we can't continue the same rule */
if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
center_freq - prev_center_freq > 20) {
valid_rules++;
new_rule = true;
}
rule = &regd->reg_rules[valid_rules - 1];
if (new_rule)
rule->freq_range.start_freq_khz =
MHZ_TO_KHZ(center_freq - 10);
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
/* this doesn't matter - not used by FW */
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
rule->power_rule.max_eirp =
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
rule->flags = reg_rule_flags;
/* rely on auto-calculation to merge BW of contiguous chans */
rule->flags |= NL80211_RRF_AUTO_BW;
rule->freq_range.max_bandwidth_khz = 0;
prev_center_freq = center_freq;
prev_reg_rule_flags = reg_rule_flags;
iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
nvm_chan[ch_idx], ch_flags);
if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
band == NL80211_BAND_2GHZ)
continue;
reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
}
/*
* Certain firmware versions might report no valid channels
* if booted in RF-kill, i.e. not all calibrations etc. are
* running. We'll get out of this situation later when the
* rfkill is removed and we update the regdomain again, but
* since cfg80211 doesn't accept an empty regdomain, add a
* dummy (unusable) rule here in this case so we can init.
*/
if (!valid_rules) {
valid_rules = 1;
rule = &regd->reg_rules[valid_rules - 1];
rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
rule->power_rule.max_eirp =
DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
}
regd->n_reg_rules = valid_rules;
/*
* Narrow down regdom for unused regulatory rules to prevent hole
* between reg rules to wmm rules.
*/
copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
GFP_KERNEL);
if (!copy_rd)
copy_rd = ERR_PTR(-ENOMEM);
kfree(regd);
return copy_rd;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
#define IWL_MAX_NVM_SECTION_SIZE 0x1b58
#define IWL_MAX_EXT_NVM_SECTION_SIZE 0x1ffc
#define MAX_NVM_FILE_LEN 16384
void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
unsigned int len)
{
#define IWL_4165_DEVICE_ID 0x5501
#define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
if (section == NVM_SECTION_TYPE_PHY_SKU &&
hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
(data[4] & NVM_SKU_CAP_MIMO_DISABLE))
/* OTP 0x52 bug work around: it's a 1x1 device */
data[3] = ANT_B | (ANT_B << 4);
}
IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
/*
* Reads external NVM from a file into mvm->nvm_sections
*
* HOW TO CREATE THE NVM FILE FORMAT:
* ------------------------------
* 1. create hex file, format:
* 3800 -> header
* 0000 -> header
* 5a40 -> data
*
* rev - 6 bit (word1)
* len - 10 bit (word1)
* id - 4 bit (word2)
* rsv - 12 bit (word2)
*
* 2. flip 8bits with 8 bits per line to get the right NVM file format
*
* 3. create binary file from the hex file
*
* 4. save as "iNVM_xxx.bin" under /lib/firmware
*/
int iwl_read_external_nvm(struct iwl_trans *trans,
const char *nvm_file_name,
struct iwl_nvm_section *nvm_sections)
{
int ret, section_size;
u16 section_id;
const struct firmware *fw_entry;
const struct {
__le16 word1;
__le16 word2;
u8 data[];
} *file_sec;
const u8 *eof;
u8 *temp;
int max_section_size;
const __le32 *dword_buff;
#define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
#define NVM_WORD2_ID(x) (x >> 12)
#define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
#define EXT_NVM_WORD1_ID(x) ((x) >> 4)
#define NVM_HEADER_0 (0x2A504C54)
#define NVM_HEADER_1 (0x4E564D2A)
#define NVM_HEADER_SIZE (4 * sizeof(u32))
IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
/* Maximal size depends on NVM version */
if (trans->cfg->nvm_type != IWL_NVM_EXT)
max_section_size = IWL_MAX_NVM_SECTION_SIZE;
else
max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
/*
* Obtain NVM image via request_firmware. Since we already used
* request_firmware_nowait() for the firmware binary load and only
* get here after that we assume the NVM request can be satisfied
* synchronously.
*/
ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
if (ret) {
IWL_ERR(trans, "ERROR: %s isn't available %d\n",
nvm_file_name, ret);
return ret;
}
IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
nvm_file_name, fw_entry->size);
if (fw_entry->size > MAX_NVM_FILE_LEN) {
IWL_ERR(trans, "NVM file too large\n");
ret = -EINVAL;
goto out;
}
eof = fw_entry->data + fw_entry->size;
dword_buff = (const __le32 *)fw_entry->data;
/* some NVM file will contain a header.
* The header is identified by 2 dwords header as follow:
* dword[0] = 0x2A504C54
* dword[1] = 0x4E564D2A
*
* This header must be skipped when providing the NVM data to the FW.
*/
if (fw_entry->size > NVM_HEADER_SIZE &&
dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
IWL_INFO(trans, "NVM Manufacturing date %08X\n",
le32_to_cpu(dword_buff[3]));
/* nvm file validation, dword_buff[2] holds the file version */
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
trans->hw_rev_step == SILICON_C_STEP &&
le32_to_cpu(dword_buff[2]) < 0xE4A) {
ret = -EFAULT;
goto out;
}
} else {
file_sec = (const void *)fw_entry->data;
}
while (true) {
if (file_sec->data > eof) {
IWL_ERR(trans,
"ERROR - NVM file too short for section header\n");
ret = -EINVAL;
break;
}
/* check for EOF marker */
if (!file_sec->word1 && !file_sec->word2) {
ret = 0;
break;
}
if (trans->cfg->nvm_type != IWL_NVM_EXT) {
section_size =
2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
} else {
section_size = 2 * EXT_NVM_WORD2_LEN(
le16_to_cpu(file_sec->word2));
section_id = EXT_NVM_WORD1_ID(
le16_to_cpu(file_sec->word1));
}
if (section_size > max_section_size) {
IWL_ERR(trans, "ERROR - section too large (%d)\n",
section_size);
ret = -EINVAL;
break;
}
if (!section_size) {
IWL_ERR(trans, "ERROR - section empty\n");
ret = -EINVAL;
break;
}
if (file_sec->data + section_size > eof) {
IWL_ERR(trans,
"ERROR - NVM file too short for section (%d bytes)\n",
section_size);
ret = -EINVAL;
break;
}
if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
"Invalid NVM section ID %d\n", section_id)) {
ret = -EINVAL;
break;
}
temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
if (!temp) {
ret = -ENOMEM;
break;
}
iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
kfree(nvm_sections[section_id].data);
nvm_sections[section_id].data = temp;
nvm_sections[section_id].length = section_size;
/* advance to the next section */
file_sec = (const void *)(file_sec->data + section_size);
}
out:
release_firmware(fw_entry);
return ret;
}
IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
const struct iwl_fw *fw)
{
struct iwl_nvm_get_info cmd = {};
struct iwl_nvm_data *nvm;
struct iwl_host_cmd hcmd = {
.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
.data = { &cmd, },
.len = { sizeof(cmd) },
.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
};
int ret;
bool empty_otp;
u32 mac_flags;
u32 sbands_flags = 0;
/*
* All the values in iwl_nvm_get_info_rsp v4 are the same as
* in v3, except for the channel profile part of the
* regulatory. So we can just access the new struct, with the
* exception of the latter.
*/
struct iwl_nvm_get_info_rsp *rsp;
struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
bool v4 = fw_has_api(&fw->ucode_capa,
IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
void *channel_profile;
ret = iwl_trans_send_cmd(trans, &hcmd);
if (ret)
return ERR_PTR(ret);
if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
"Invalid payload len in NVM response from FW %d",
iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
ret = -EINVAL;
goto out;
}
rsp = (void *)hcmd.resp_pkt->data;
empty_otp = !!(le32_to_cpu(rsp->general.flags) &
NVM_GENERAL_FLAGS_EMPTY_OTP);
if (empty_otp)
IWL_INFO(trans, "OTP is empty\n");
nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
if (!nvm) {
ret = -ENOMEM;
goto out;
}
iwl_set_hw_address_from_csr(trans, nvm);
/* TODO: if platform NVM has MAC address - override it here */
if (!is_valid_ether_addr(nvm->hw_addr)) {
IWL_ERR(trans, "no valid mac address was found\n");
ret = -EINVAL;
goto err_free;
}
IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
/* Initialize general data */
nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
nvm->n_hw_addrs = rsp->general.n_hw_addrs;
if (nvm->n_hw_addrs == 0)
IWL_WARN(trans,
"Firmware declares no reserved mac addresses. OTP is empty: %d\n",
empty_otp);
/* Initialize MAC sku data */
mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
nvm->sku_cap_11ac_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
nvm->sku_cap_11n_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
nvm->sku_cap_11ax_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
nvm->sku_cap_band_24ghz_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
nvm->sku_cap_band_52ghz_enable =
!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
nvm->sku_cap_mimo_disabled =
!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
/* Initialize PHY sku data */
nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
fw_has_capa(&fw->ucode_capa,
IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
nvm->lar_enabled = true;
sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
}
rsp_v3 = (void *)rsp;
channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
(void *)rsp_v3->regulatory.channel_profile;
iwl_init_sbands(trans, nvm,
channel_profile,
nvm->valid_tx_ant & fw->valid_tx_ant,
nvm->valid_rx_ant & fw->valid_rx_ant,
sbands_flags, v4, fw);
iwl_free_resp(&hcmd);
return nvm;
err_free:
kfree(nvm);
out:
iwl_free_resp(&hcmd);
return ERR_PTR(ret);
}
IWL_EXPORT_SYMBOL(iwl_get_nvm);