2592 lines
69 KiB
C
2592 lines
69 KiB
C
// SPDX-License-Identifier: ISC
|
|
/*
|
|
* Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
|
|
* Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/etherdevice.h>
|
|
#include <net/ieee80211_radiotap.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
#include "wil6210.h"
|
|
#include "wmi.h"
|
|
#include "txrx.h"
|
|
#include "trace.h"
|
|
#include "txrx_edma.h"
|
|
|
|
bool rx_align_2;
|
|
module_param(rx_align_2, bool, 0444);
|
|
MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
|
|
|
|
bool rx_large_buf;
|
|
module_param(rx_large_buf, bool, 0444);
|
|
MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
|
|
|
|
/* Drop Tx packets in case Tx ring is full */
|
|
bool drop_if_ring_full;
|
|
|
|
static inline uint wil_rx_snaplen(void)
|
|
{
|
|
return rx_align_2 ? 6 : 0;
|
|
}
|
|
|
|
/* wil_ring_wmark_low - low watermark for available descriptor space */
|
|
static inline int wil_ring_wmark_low(struct wil_ring *ring)
|
|
{
|
|
return ring->size / 8;
|
|
}
|
|
|
|
/* wil_ring_wmark_high - high watermark for available descriptor space */
|
|
static inline int wil_ring_wmark_high(struct wil_ring *ring)
|
|
{
|
|
return ring->size / 4;
|
|
}
|
|
|
|
/* returns true if num avail descriptors is lower than wmark_low */
|
|
static inline int wil_ring_avail_low(struct wil_ring *ring)
|
|
{
|
|
return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
|
|
}
|
|
|
|
/* returns true if num avail descriptors is higher than wmark_high */
|
|
static inline int wil_ring_avail_high(struct wil_ring *ring)
|
|
{
|
|
return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
|
|
}
|
|
|
|
/* returns true when all tx vrings are empty */
|
|
bool wil_is_tx_idle(struct wil6210_priv *wil)
|
|
{
|
|
int i;
|
|
unsigned long data_comp_to;
|
|
int min_ring_id = wil_get_min_tx_ring_id(wil);
|
|
|
|
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
|
|
struct wil_ring *vring = &wil->ring_tx[i];
|
|
int vring_index = vring - wil->ring_tx;
|
|
struct wil_ring_tx_data *txdata =
|
|
&wil->ring_tx_data[vring_index];
|
|
|
|
spin_lock(&txdata->lock);
|
|
|
|
if (!vring->va || !txdata->enabled) {
|
|
spin_unlock(&txdata->lock);
|
|
continue;
|
|
}
|
|
|
|
data_comp_to = jiffies + msecs_to_jiffies(
|
|
WIL_DATA_COMPLETION_TO_MS);
|
|
if (test_bit(wil_status_napi_en, wil->status)) {
|
|
while (!wil_ring_is_empty(vring)) {
|
|
if (time_after(jiffies, data_comp_to)) {
|
|
wil_dbg_pm(wil,
|
|
"TO waiting for idle tx\n");
|
|
spin_unlock(&txdata->lock);
|
|
return false;
|
|
}
|
|
wil_dbg_ratelimited(wil,
|
|
"tx vring is not empty -> NAPI\n");
|
|
spin_unlock(&txdata->lock);
|
|
napi_synchronize(&wil->napi_tx);
|
|
msleep(20);
|
|
spin_lock(&txdata->lock);
|
|
if (!vring->va || !txdata->enabled)
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&txdata->lock);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
size_t sz = vring->size * sizeof(vring->va[0]);
|
|
uint i;
|
|
|
|
wil_dbg_misc(wil, "vring_alloc:\n");
|
|
|
|
BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
|
|
|
|
vring->swhead = 0;
|
|
vring->swtail = 0;
|
|
vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
|
|
if (!vring->ctx) {
|
|
vring->va = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* vring->va should be aligned on its size rounded up to power of 2
|
|
* This is granted by the dma_alloc_coherent.
|
|
*
|
|
* HW has limitation that all vrings addresses must share the same
|
|
* upper 16 msb bits part of 48 bits address. To workaround that,
|
|
* if we are using more than 32 bit addresses switch to 32 bit
|
|
* allocation before allocating vring memory.
|
|
*
|
|
* There's no check for the return value of dma_set_mask_and_coherent,
|
|
* since we assume if we were able to set the mask during
|
|
* initialization in this system it will not fail if we set it again
|
|
*/
|
|
if (wil->dma_addr_size > 32)
|
|
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
|
|
|
|
vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
|
|
if (!vring->va) {
|
|
kfree(vring->ctx);
|
|
vring->ctx = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (wil->dma_addr_size > 32)
|
|
dma_set_mask_and_coherent(dev,
|
|
DMA_BIT_MASK(wil->dma_addr_size));
|
|
|
|
/* initially, all descriptors are SW owned
|
|
* For Tx and Rx, ownership bit is at the same location, thus
|
|
* we can use any
|
|
*/
|
|
for (i = 0; i < vring->size; i++) {
|
|
volatile struct vring_tx_desc *_d =
|
|
&vring->va[i].tx.legacy;
|
|
|
|
_d->dma.status = TX_DMA_STATUS_DU;
|
|
}
|
|
|
|
wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
|
|
vring->va, &vring->pa, vring->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
|
|
struct wil_ctx *ctx)
|
|
{
|
|
struct vring_tx_desc *d = &desc->legacy;
|
|
dma_addr_t pa = wil_desc_addr(&d->dma.addr);
|
|
u16 dmalen = le16_to_cpu(d->dma.length);
|
|
|
|
switch (ctx->mapped_as) {
|
|
case wil_mapped_as_single:
|
|
dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
|
|
break;
|
|
case wil_mapped_as_page:
|
|
dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
size_t sz = vring->size * sizeof(vring->va[0]);
|
|
|
|
lockdep_assert_held(&wil->mutex);
|
|
if (!vring->is_rx) {
|
|
int vring_index = vring - wil->ring_tx;
|
|
|
|
wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
|
|
vring_index, vring->size, vring->va,
|
|
&vring->pa, vring->ctx);
|
|
} else {
|
|
wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
|
|
vring->size, vring->va,
|
|
&vring->pa, vring->ctx);
|
|
}
|
|
|
|
while (!wil_ring_is_empty(vring)) {
|
|
dma_addr_t pa;
|
|
u16 dmalen;
|
|
struct wil_ctx *ctx;
|
|
|
|
if (!vring->is_rx) {
|
|
struct vring_tx_desc dd, *d = ⅆ
|
|
volatile struct vring_tx_desc *_d =
|
|
&vring->va[vring->swtail].tx.legacy;
|
|
|
|
ctx = &vring->ctx[vring->swtail];
|
|
if (!ctx) {
|
|
wil_dbg_txrx(wil,
|
|
"ctx(%d) was already completed\n",
|
|
vring->swtail);
|
|
vring->swtail = wil_ring_next_tail(vring);
|
|
continue;
|
|
}
|
|
*d = *_d;
|
|
wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
|
|
if (ctx->skb)
|
|
dev_kfree_skb_any(ctx->skb);
|
|
vring->swtail = wil_ring_next_tail(vring);
|
|
} else { /* rx */
|
|
struct vring_rx_desc dd, *d = ⅆ
|
|
volatile struct vring_rx_desc *_d =
|
|
&vring->va[vring->swhead].rx.legacy;
|
|
|
|
ctx = &vring->ctx[vring->swhead];
|
|
*d = *_d;
|
|
pa = wil_desc_addr(&d->dma.addr);
|
|
dmalen = le16_to_cpu(d->dma.length);
|
|
dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
|
|
kfree_skb(ctx->skb);
|
|
wil_ring_advance_head(vring, 1);
|
|
}
|
|
}
|
|
dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
|
|
kfree(vring->ctx);
|
|
vring->pa = 0;
|
|
vring->va = NULL;
|
|
vring->ctx = NULL;
|
|
}
|
|
|
|
/* Allocate one skb for Rx VRING
|
|
*
|
|
* Safe to call from IRQ
|
|
*/
|
|
static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
|
|
u32 i, int headroom)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
|
|
struct vring_rx_desc dd, *d = ⅆ
|
|
volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
|
|
dma_addr_t pa;
|
|
struct sk_buff *skb = dev_alloc_skb(sz + headroom);
|
|
|
|
if (unlikely(!skb))
|
|
return -ENOMEM;
|
|
|
|
skb_reserve(skb, headroom);
|
|
skb_put(skb, sz);
|
|
|
|
/**
|
|
* Make sure that the network stack calculates checksum for packets
|
|
* which failed the HW checksum calculation
|
|
*/
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
|
|
pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(dev, pa))) {
|
|
kfree_skb(skb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
|
|
wil_desc_addr_set(&d->dma.addr, pa);
|
|
/* ip_length don't care */
|
|
/* b11 don't care */
|
|
/* error don't care */
|
|
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
|
|
d->dma.length = cpu_to_le16(sz);
|
|
*_d = *d;
|
|
vring->ctx[i].skb = skb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Adds radiotap header
|
|
*
|
|
* Any error indicated as "Bad FCS"
|
|
*
|
|
* Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
|
|
* - Rx descriptor: 32 bytes
|
|
* - Phy info
|
|
*/
|
|
static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct wil6210_rtap {
|
|
struct ieee80211_radiotap_header rthdr;
|
|
/* fields should be in the order of bits in rthdr.it_present */
|
|
/* flags */
|
|
u8 flags;
|
|
/* channel */
|
|
__le16 chnl_freq __aligned(2);
|
|
__le16 chnl_flags;
|
|
/* MCS */
|
|
u8 mcs_present;
|
|
u8 mcs_flags;
|
|
u8 mcs_index;
|
|
} __packed;
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
struct wil6210_rtap *rtap;
|
|
int rtap_len = sizeof(struct wil6210_rtap);
|
|
struct ieee80211_channel *ch = wil->monitor_chandef.chan;
|
|
|
|
if (skb_headroom(skb) < rtap_len &&
|
|
pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
|
|
wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
|
|
return;
|
|
}
|
|
|
|
rtap = skb_push(skb, rtap_len);
|
|
memset(rtap, 0, rtap_len);
|
|
|
|
rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
|
|
rtap->rthdr.it_len = cpu_to_le16(rtap_len);
|
|
rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
|
|
(1 << IEEE80211_RADIOTAP_CHANNEL) |
|
|
(1 << IEEE80211_RADIOTAP_MCS));
|
|
if (d->dma.status & RX_DMA_STATUS_ERROR)
|
|
rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
|
|
rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
|
|
rtap->chnl_flags = cpu_to_le16(0);
|
|
|
|
rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
|
|
rtap->mcs_flags = 0;
|
|
rtap->mcs_index = wil_rxdesc_mcs(d);
|
|
}
|
|
|
|
static bool wil_is_rx_idle(struct wil6210_priv *wil)
|
|
{
|
|
struct vring_rx_desc *_d;
|
|
struct wil_ring *ring = &wil->ring_rx;
|
|
|
|
_d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
|
|
if (_d->dma.status & RX_DMA_STATUS_DU)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
|
|
{
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
int mid = wil_rxdesc_mid(d);
|
|
struct wil6210_vif *vif = wil->vifs[mid];
|
|
/* cid from DMA descriptor is limited to 3 bits.
|
|
* In case of cid>=8, the value would be cid modulo 8 and we need to
|
|
* find real cid by locating the transmitter (ta) inside sta array
|
|
*/
|
|
int cid = wil_rxdesc_cid(d);
|
|
unsigned int snaplen = wil_rx_snaplen();
|
|
struct ieee80211_hdr_3addr *hdr;
|
|
int i;
|
|
unsigned char *ta;
|
|
u8 ftype;
|
|
|
|
/* in monitor mode there are no connections */
|
|
if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
|
|
return cid;
|
|
|
|
ftype = wil_rxdesc_ftype(d) << 2;
|
|
if (likely(ftype == IEEE80211_FTYPE_DATA)) {
|
|
if (unlikely(skb->len < ETH_HLEN + snaplen)) {
|
|
wil_err_ratelimited(wil,
|
|
"Short data frame, len = %d\n",
|
|
skb->len);
|
|
return -ENOENT;
|
|
}
|
|
ta = wil_skb_get_sa(skb);
|
|
} else {
|
|
if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
|
|
wil_err_ratelimited(wil, "Short frame, len = %d\n",
|
|
skb->len);
|
|
return -ENOENT;
|
|
}
|
|
hdr = (void *)skb->data;
|
|
ta = hdr->addr2;
|
|
}
|
|
|
|
if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
|
|
return cid;
|
|
|
|
/* assuming no concurrency between AP interfaces and STA interfaces.
|
|
* multista is used only in P2P_GO or AP mode. In other modes return
|
|
* cid from the rx descriptor
|
|
*/
|
|
if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
|
|
vif->wdev.iftype != NL80211_IFTYPE_AP)
|
|
return cid;
|
|
|
|
/* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
|
|
* to find the real cid, compare transmitter address with the stored
|
|
* stations mac address in the driver sta array
|
|
*/
|
|
for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
|
|
if (wil->sta[i].status != wil_sta_unused &&
|
|
ether_addr_equal(wil->sta[i].addr, ta)) {
|
|
cid = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= wil->max_assoc_sta) {
|
|
wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
|
|
ta, vif->wdev.iftype, ftype, skb->len);
|
|
cid = -ENOENT;
|
|
}
|
|
|
|
return cid;
|
|
}
|
|
|
|
/* reap 1 frame from @swhead
|
|
*
|
|
* Rx descriptor copied to skb->cb
|
|
*
|
|
* Safe to call from IRQ
|
|
*/
|
|
static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
|
|
struct wil_ring *vring)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
struct wil6210_vif *vif;
|
|
struct net_device *ndev;
|
|
volatile struct vring_rx_desc *_d;
|
|
struct vring_rx_desc *d;
|
|
struct sk_buff *skb;
|
|
dma_addr_t pa;
|
|
unsigned int snaplen = wil_rx_snaplen();
|
|
unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
|
|
u16 dmalen;
|
|
u8 ftype;
|
|
int cid, mid;
|
|
int i;
|
|
struct wil_net_stats *stats;
|
|
|
|
BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
|
|
|
|
again:
|
|
if (unlikely(wil_ring_is_empty(vring)))
|
|
return NULL;
|
|
|
|
i = (int)vring->swhead;
|
|
_d = &vring->va[i].rx.legacy;
|
|
if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
|
|
/* it is not error, we just reached end of Rx done area */
|
|
return NULL;
|
|
}
|
|
|
|
skb = vring->ctx[i].skb;
|
|
vring->ctx[i].skb = NULL;
|
|
wil_ring_advance_head(vring, 1);
|
|
if (!skb) {
|
|
wil_err(wil, "No Rx skb at [%d]\n", i);
|
|
goto again;
|
|
}
|
|
d = wil_skb_rxdesc(skb);
|
|
*d = *_d;
|
|
pa = wil_desc_addr(&d->dma.addr);
|
|
|
|
dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
|
|
dmalen = le16_to_cpu(d->dma.length);
|
|
|
|
trace_wil6210_rx(i, d);
|
|
wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
|
|
wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
|
|
(const void *)d, sizeof(*d), false);
|
|
|
|
mid = wil_rxdesc_mid(d);
|
|
vif = wil->vifs[mid];
|
|
|
|
if (unlikely(!vif)) {
|
|
wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
|
|
mid);
|
|
kfree_skb(skb);
|
|
goto again;
|
|
}
|
|
ndev = vif_to_ndev(vif);
|
|
if (unlikely(dmalen > sz)) {
|
|
wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
|
|
dmalen);
|
|
kfree_skb(skb);
|
|
goto again;
|
|
}
|
|
skb_trim(skb, dmalen);
|
|
|
|
prefetch(skb->data);
|
|
|
|
wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
|
|
skb->data, skb_headlen(skb), false);
|
|
|
|
cid = wil_rx_get_cid_by_skb(wil, skb);
|
|
if (cid == -ENOENT) {
|
|
kfree_skb(skb);
|
|
goto again;
|
|
}
|
|
wil_skb_set_cid(skb, (u8)cid);
|
|
stats = &wil->sta[cid].stats;
|
|
|
|
stats->last_mcs_rx = wil_rxdesc_mcs(d);
|
|
if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
|
|
stats->rx_per_mcs[stats->last_mcs_rx]++;
|
|
|
|
/* use radiotap header only if required */
|
|
if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
|
|
wil_rx_add_radiotap_header(wil, skb);
|
|
|
|
/* no extra checks if in sniffer mode */
|
|
if (ndev->type != ARPHRD_ETHER)
|
|
return skb;
|
|
/* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
|
|
* Driver should recognize it by frame type, that is found
|
|
* in Rx descriptor. If type is not data, it is 802.11 frame as is
|
|
*/
|
|
ftype = wil_rxdesc_ftype(d) << 2;
|
|
if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
|
|
u8 fc1 = wil_rxdesc_fc1(d);
|
|
int tid = wil_rxdesc_tid(d);
|
|
u16 seq = wil_rxdesc_seq(d);
|
|
|
|
wil_dbg_txrx(wil,
|
|
"Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
|
|
fc1, mid, cid, tid, seq);
|
|
stats->rx_non_data_frame++;
|
|
if (wil_is_back_req(fc1)) {
|
|
wil_dbg_txrx(wil,
|
|
"BAR: MID %d CID %d TID %d Seq 0x%03x\n",
|
|
mid, cid, tid, seq);
|
|
wil_rx_bar(wil, vif, cid, tid, seq);
|
|
} else {
|
|
/* print again all info. One can enable only this
|
|
* without overhead for printing every Rx frame
|
|
*/
|
|
wil_dbg_txrx(wil,
|
|
"Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
|
|
fc1, mid, cid, tid, seq);
|
|
wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
|
|
(const void *)d, sizeof(*d), false);
|
|
wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
|
|
skb->data, skb_headlen(skb), false);
|
|
}
|
|
kfree_skb(skb);
|
|
goto again;
|
|
}
|
|
|
|
/* L4 IDENT is on when HW calculated checksum, check status
|
|
* and in case of error drop the packet
|
|
* higher stack layers will handle retransmission (if required)
|
|
*/
|
|
if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
|
|
/* L4 protocol identified, csum calculated */
|
|
if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
/* If HW reports bad checksum, let IP stack re-check it
|
|
* For example, HW don't understand Microsoft IP stack that
|
|
* mis-calculates TCP checksum - if it should be 0x0,
|
|
* it writes 0xffff in violation of RFC 1624
|
|
*/
|
|
else
|
|
stats->rx_csum_err++;
|
|
}
|
|
|
|
if (snaplen) {
|
|
/* Packet layout
|
|
* +-------+-------+---------+------------+------+
|
|
* | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
|
|
* +-------+-------+---------+------------+------+
|
|
* Need to remove SNAP, shifting SA and DA forward
|
|
*/
|
|
memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
|
|
skb_pull(skb, snaplen);
|
|
}
|
|
|
|
return skb;
|
|
}
|
|
|
|
/* allocate and fill up to @count buffers in rx ring
|
|
* buffers posted at @swtail
|
|
* Note: we have a single RX queue for servicing all VIFs, but we
|
|
* allocate skbs with headroom according to main interface only. This
|
|
* means it will not work with monitor interface together with other VIFs.
|
|
* Currently we only support monitor interface on its own without other VIFs,
|
|
* and we will need to fix this code once we add support.
|
|
*/
|
|
static int wil_rx_refill(struct wil6210_priv *wil, int count)
|
|
{
|
|
struct net_device *ndev = wil->main_ndev;
|
|
struct wil_ring *v = &wil->ring_rx;
|
|
u32 next_tail;
|
|
int rc = 0;
|
|
int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
|
|
WIL6210_RTAP_SIZE : 0;
|
|
|
|
for (; next_tail = wil_ring_next_tail(v),
|
|
(next_tail != v->swhead) && (count-- > 0);
|
|
v->swtail = next_tail) {
|
|
rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
|
|
if (unlikely(rc)) {
|
|
wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
|
|
rc, v->swtail);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* make sure all writes to descriptors (shared memory) are done before
|
|
* committing them to HW
|
|
*/
|
|
wmb();
|
|
|
|
wil_w(wil, v->hwtail, v->swtail);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* reverse_memcmp - Compare two areas of memory, in reverse order
|
|
* @cs: One area of memory
|
|
* @ct: Another area of memory
|
|
* @count: The size of the area.
|
|
*
|
|
* Cut'n'paste from original memcmp (see lib/string.c)
|
|
* with minimal modifications
|
|
*/
|
|
int reverse_memcmp(const void *cs, const void *ct, size_t count)
|
|
{
|
|
const unsigned char *su1, *su2;
|
|
int res = 0;
|
|
|
|
for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
|
|
--su1, --su2, count--) {
|
|
res = *su1 - *su2;
|
|
if (res)
|
|
break;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
|
|
{
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
int cid = wil_skb_get_cid(skb);
|
|
int tid = wil_rxdesc_tid(d);
|
|
int key_id = wil_rxdesc_key_id(d);
|
|
int mc = wil_rxdesc_mcast(d);
|
|
struct wil_sta_info *s = &wil->sta[cid];
|
|
struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
|
|
&s->tid_crypto_rx[tid];
|
|
struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
|
|
const u8 *pn = (u8 *)&d->mac.pn_15_0;
|
|
|
|
if (!cc->key_set) {
|
|
wil_err_ratelimited(wil,
|
|
"Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
|
|
cid, tid, mc, key_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
|
|
wil_err_ratelimited(wil,
|
|
"Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
|
|
cid, tid, mc, key_id, pn, cc->pn);
|
|
return -EINVAL;
|
|
}
|
|
memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
|
|
struct wil_net_stats *stats)
|
|
{
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
|
|
if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
|
|
(d->dma.error & RX_DMA_ERROR_MIC)) {
|
|
stats->rx_mic_error++;
|
|
wil_dbg_txrx(wil, "MIC error, dropping packet\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
|
|
int *security)
|
|
{
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
|
|
*cid = wil_skb_get_cid(skb);
|
|
*security = wil_rxdesc_security(d);
|
|
}
|
|
|
|
/*
|
|
* Check if skb is ptk eapol key message
|
|
*
|
|
* returns a pointer to the start of the eapol key structure, NULL
|
|
* if frame is not PTK eapol key
|
|
*/
|
|
static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
|
|
struct sk_buff *skb)
|
|
{
|
|
u8 *buf;
|
|
const struct wil_1x_hdr *hdr;
|
|
struct wil_eapol_key *key;
|
|
u16 key_info;
|
|
int len = skb->len;
|
|
|
|
if (!skb_mac_header_was_set(skb)) {
|
|
wil_err(wil, "mac header was not set\n");
|
|
return NULL;
|
|
}
|
|
|
|
len -= skb_mac_offset(skb);
|
|
|
|
if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
|
|
sizeof(struct wil_eapol_key))
|
|
return NULL;
|
|
|
|
buf = skb_mac_header(skb) + sizeof(struct ethhdr);
|
|
|
|
hdr = (const struct wil_1x_hdr *)buf;
|
|
if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
|
|
return NULL;
|
|
|
|
key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
|
|
if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
|
|
key->type != WIL_EAPOL_KEY_TYPE_RSN)
|
|
return NULL;
|
|
|
|
key_info = be16_to_cpu(key->key_info);
|
|
if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
|
|
return NULL;
|
|
|
|
return key;
|
|
}
|
|
|
|
static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
|
|
{
|
|
struct wil_eapol_key *key;
|
|
u16 key_info;
|
|
|
|
key = wil_is_ptk_eapol_key(wil, skb);
|
|
if (!key)
|
|
return false;
|
|
|
|
key_info = be16_to_cpu(key->key_info);
|
|
if (key_info & (WIL_KEY_INFO_MIC |
|
|
WIL_KEY_INFO_ENCR_KEY_DATA)) {
|
|
/* 3/4 of 4-Way Handshake */
|
|
wil_dbg_misc(wil, "EAPOL key message 3\n");
|
|
return true;
|
|
}
|
|
/* 1/4 of 4-Way Handshake */
|
|
wil_dbg_misc(wil, "EAPOL key message 1\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
|
|
{
|
|
struct wil_eapol_key *key;
|
|
u32 *nonce, i;
|
|
|
|
key = wil_is_ptk_eapol_key(wil, skb);
|
|
if (!key)
|
|
return false;
|
|
|
|
nonce = (u32 *)key->key_nonce;
|
|
for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
|
|
if (*nonce != 0) {
|
|
/* message 2/4 */
|
|
wil_dbg_misc(wil, "EAPOL key message 2\n");
|
|
return false;
|
|
}
|
|
}
|
|
wil_dbg_misc(wil, "EAPOL key message 4\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
void wil_enable_tx_key_worker(struct work_struct *work)
|
|
{
|
|
struct wil6210_vif *vif = container_of(work,
|
|
struct wil6210_vif, enable_tx_key_worker);
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
int rc, cid;
|
|
|
|
rtnl_lock();
|
|
if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
|
|
wil_dbg_misc(wil, "Invalid rekey state = %d\n",
|
|
vif->ptk_rekey_state);
|
|
rtnl_unlock();
|
|
return;
|
|
}
|
|
|
|
cid = wil_find_cid_by_idx(wil, vif->mid, 0);
|
|
if (!wil_cid_valid(wil, cid)) {
|
|
wil_err(wil, "Invalid cid = %d\n", cid);
|
|
rtnl_unlock();
|
|
return;
|
|
}
|
|
|
|
wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
|
|
rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
|
|
WMI_KEY_USE_APPLY_PTK);
|
|
|
|
vif->ptk_rekey_state = WIL_REKEY_IDLE;
|
|
rtnl_unlock();
|
|
|
|
if (rc)
|
|
wil_err(wil, "Apply PTK key failed %d\n", rc);
|
|
}
|
|
|
|
void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
struct wireless_dev *wdev = vif_to_wdev(vif);
|
|
bool q = false;
|
|
|
|
if (wdev->iftype != NL80211_IFTYPE_STATION ||
|
|
!test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
|
|
return;
|
|
|
|
/* check if skb is an EAP message 4/4 */
|
|
if (!wil_skb_is_eap_4(wil, skb))
|
|
return;
|
|
|
|
spin_lock_bh(&wil->eap_lock);
|
|
switch (vif->ptk_rekey_state) {
|
|
case WIL_REKEY_IDLE:
|
|
/* ignore idle state, can happen due to M4 retransmission */
|
|
break;
|
|
case WIL_REKEY_M3_RECEIVED:
|
|
vif->ptk_rekey_state = WIL_REKEY_IDLE;
|
|
break;
|
|
case WIL_REKEY_WAIT_M4_SENT:
|
|
q = true;
|
|
break;
|
|
default:
|
|
wil_err(wil, "Unknown rekey state = %d",
|
|
vif->ptk_rekey_state);
|
|
}
|
|
spin_unlock_bh(&wil->eap_lock);
|
|
|
|
if (q) {
|
|
q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
|
|
wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
|
|
q);
|
|
}
|
|
}
|
|
|
|
static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
struct wireless_dev *wdev = vif_to_wdev(vif);
|
|
|
|
if (wdev->iftype != NL80211_IFTYPE_STATION ||
|
|
!test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
|
|
return;
|
|
|
|
/* check if skb is a EAP message 3/4 */
|
|
if (!wil_skb_is_eap_3(wil, skb))
|
|
return;
|
|
|
|
if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
|
|
vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
|
|
}
|
|
|
|
/*
|
|
* Pass Rx packet to the netif. Update statistics.
|
|
* Called in softirq context (NAPI poll).
|
|
*/
|
|
void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
|
|
struct wil_net_stats *stats, bool gro)
|
|
{
|
|
struct wil6210_vif *vif = ndev_to_vif(ndev);
|
|
struct wil6210_priv *wil = ndev_to_wil(ndev);
|
|
struct wireless_dev *wdev = vif_to_wdev(vif);
|
|
unsigned int len = skb->len;
|
|
u8 *sa, *da = wil_skb_get_da(skb);
|
|
/* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
|
|
* is not suitable, need to look at data
|
|
*/
|
|
int mcast = is_multicast_ether_addr(da);
|
|
struct sk_buff *xmit_skb = NULL;
|
|
|
|
if (wdev->iftype == NL80211_IFTYPE_STATION) {
|
|
sa = wil_skb_get_sa(skb);
|
|
if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
|
|
/* mcast packet looped back to us */
|
|
dev_kfree_skb(skb);
|
|
ndev->stats.rx_dropped++;
|
|
stats->rx_dropped++;
|
|
wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
|
|
return;
|
|
}
|
|
} else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
|
|
if (mcast) {
|
|
/* send multicast frames both to higher layers in
|
|
* local net stack and back to the wireless medium
|
|
*/
|
|
xmit_skb = skb_copy(skb, GFP_ATOMIC);
|
|
} else {
|
|
int xmit_cid = wil_find_cid(wil, vif->mid, da);
|
|
|
|
if (xmit_cid >= 0) {
|
|
/* The destination station is associated to
|
|
* this AP (in this VLAN), so send the frame
|
|
* directly to it and do not pass it to local
|
|
* net stack.
|
|
*/
|
|
xmit_skb = skb;
|
|
skb = NULL;
|
|
}
|
|
}
|
|
}
|
|
if (xmit_skb) {
|
|
/* Send to wireless media and increase priority by 256 to
|
|
* keep the received priority instead of reclassifying
|
|
* the frame (see cfg80211_classify8021d).
|
|
*/
|
|
xmit_skb->dev = ndev;
|
|
xmit_skb->priority += 256;
|
|
xmit_skb->protocol = htons(ETH_P_802_3);
|
|
skb_reset_network_header(xmit_skb);
|
|
skb_reset_mac_header(xmit_skb);
|
|
wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
|
|
dev_queue_xmit(xmit_skb);
|
|
}
|
|
|
|
if (skb) { /* deliver to local stack */
|
|
skb->protocol = eth_type_trans(skb, ndev);
|
|
skb->dev = ndev;
|
|
|
|
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
|
|
wil_rx_handle_eapol(vif, skb);
|
|
|
|
if (gro)
|
|
napi_gro_receive(&wil->napi_rx, skb);
|
|
else
|
|
netif_rx(skb);
|
|
}
|
|
ndev->stats.rx_packets++;
|
|
stats->rx_packets++;
|
|
ndev->stats.rx_bytes += len;
|
|
stats->rx_bytes += len;
|
|
if (mcast)
|
|
ndev->stats.multicast++;
|
|
}
|
|
|
|
void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
int cid, security;
|
|
struct wil6210_priv *wil = ndev_to_wil(ndev);
|
|
struct wil_net_stats *stats;
|
|
|
|
wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
|
|
|
|
stats = &wil->sta[cid].stats;
|
|
|
|
skb_orphan(skb);
|
|
|
|
if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
|
|
wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
|
|
dev_kfree_skb(skb);
|
|
ndev->stats.rx_dropped++;
|
|
stats->rx_replay++;
|
|
stats->rx_dropped++;
|
|
return;
|
|
}
|
|
|
|
/* check errors reported by HW and update statistics */
|
|
if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
|
|
dev_kfree_skb(skb);
|
|
return;
|
|
}
|
|
|
|
wil_netif_rx(skb, ndev, cid, stats, true);
|
|
}
|
|
|
|
/* Proceed all completed skb's from Rx VRING
|
|
*
|
|
* Safe to call from NAPI poll, i.e. softirq with interrupts enabled
|
|
*/
|
|
void wil_rx_handle(struct wil6210_priv *wil, int *quota)
|
|
{
|
|
struct net_device *ndev = wil->main_ndev;
|
|
struct wireless_dev *wdev = ndev->ieee80211_ptr;
|
|
struct wil_ring *v = &wil->ring_rx;
|
|
struct sk_buff *skb;
|
|
|
|
if (unlikely(!v->va)) {
|
|
wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
|
|
return;
|
|
}
|
|
wil_dbg_txrx(wil, "rx_handle\n");
|
|
while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
|
|
(*quota)--;
|
|
|
|
/* monitor is currently supported on main interface only */
|
|
if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
|
|
skb->dev = ndev;
|
|
skb_reset_mac_header(skb);
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->pkt_type = PACKET_OTHERHOST;
|
|
skb->protocol = htons(ETH_P_802_2);
|
|
wil_netif_rx_any(skb, ndev);
|
|
} else {
|
|
wil_rx_reorder(wil, skb);
|
|
}
|
|
}
|
|
wil_rx_refill(wil, v->size);
|
|
}
|
|
|
|
static void wil_rx_buf_len_init(struct wil6210_priv *wil)
|
|
{
|
|
wil->rx_buf_len = rx_large_buf ?
|
|
WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
|
|
if (mtu_max > wil->rx_buf_len) {
|
|
/* do not allow RX buffers to be smaller than mtu_max, for
|
|
* backward compatibility (mtu_max parameter was also used
|
|
* to support receiving large packets)
|
|
*/
|
|
wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
|
|
wil->rx_buf_len = mtu_max;
|
|
}
|
|
}
|
|
|
|
static int wil_rx_init(struct wil6210_priv *wil, uint order)
|
|
{
|
|
struct wil_ring *vring = &wil->ring_rx;
|
|
int rc;
|
|
|
|
wil_dbg_misc(wil, "rx_init\n");
|
|
|
|
if (vring->va) {
|
|
wil_err(wil, "Rx ring already allocated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
wil_rx_buf_len_init(wil);
|
|
|
|
vring->size = 1 << order;
|
|
vring->is_rx = true;
|
|
rc = wil_vring_alloc(wil, vring);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = wmi_rx_chain_add(wil, vring);
|
|
if (rc)
|
|
goto err_free;
|
|
|
|
rc = wil_rx_refill(wil, vring->size);
|
|
if (rc)
|
|
goto err_free;
|
|
|
|
return 0;
|
|
err_free:
|
|
wil_vring_free(wil, vring);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void wil_rx_fini(struct wil6210_priv *wil)
|
|
{
|
|
struct wil_ring *vring = &wil->ring_rx;
|
|
|
|
wil_dbg_misc(wil, "rx_fini\n");
|
|
|
|
if (vring->va)
|
|
wil_vring_free(wil, vring);
|
|
}
|
|
|
|
static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
|
|
u32 len, int vring_index)
|
|
{
|
|
struct vring_tx_desc *d = &desc->legacy;
|
|
|
|
wil_desc_addr_set(&d->dma.addr, pa);
|
|
d->dma.ip_length = 0;
|
|
/* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
|
|
d->dma.b11 = 0/*14 | BIT(7)*/;
|
|
d->dma.error = 0;
|
|
d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
|
|
d->dma.length = cpu_to_le16((u16)len);
|
|
d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
|
|
d->mac.d[0] = 0;
|
|
d->mac.d[1] = 0;
|
|
d->mac.d[2] = 0;
|
|
d->mac.ucode_cmd = 0;
|
|
/* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
|
|
d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
|
|
(1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void wil_tx_data_init(struct wil_ring_tx_data *txdata)
|
|
{
|
|
spin_lock_bh(&txdata->lock);
|
|
txdata->dot1x_open = false;
|
|
txdata->enabled = 0;
|
|
txdata->idle = 0;
|
|
txdata->last_idle = 0;
|
|
txdata->begin = 0;
|
|
txdata->agg_wsize = 0;
|
|
txdata->agg_timeout = 0;
|
|
txdata->agg_amsdu = 0;
|
|
txdata->addba_in_progress = false;
|
|
txdata->mid = U8_MAX;
|
|
spin_unlock_bh(&txdata->lock);
|
|
}
|
|
|
|
static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
|
|
int cid, int tid)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
int rc;
|
|
struct wmi_vring_cfg_cmd cmd = {
|
|
.action = cpu_to_le32(WMI_VRING_CMD_ADD),
|
|
.vring_cfg = {
|
|
.tx_sw_ring = {
|
|
.max_mpdu_size =
|
|
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
|
|
.ring_size = cpu_to_le16(size),
|
|
},
|
|
.ringid = id,
|
|
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
|
|
.mac_ctrl = 0,
|
|
.to_resolution = 0,
|
|
.agg_max_wsize = 0,
|
|
.schd_params = {
|
|
.priority = cpu_to_le16(0),
|
|
.timeslot_us = cpu_to_le16(0xfff),
|
|
},
|
|
},
|
|
};
|
|
struct {
|
|
struct wmi_cmd_hdr wmi;
|
|
struct wmi_vring_cfg_done_event cmd;
|
|
} __packed reply = {
|
|
.cmd = {.status = WMI_FW_STATUS_FAILURE},
|
|
};
|
|
struct wil_ring *vring = &wil->ring_tx[id];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
|
|
|
|
if (cid >= WIL6210_RX_DESC_MAX_CID) {
|
|
cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
|
|
cmd.vring_cfg.cid = cid;
|
|
cmd.vring_cfg.tid = tid;
|
|
} else {
|
|
cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
|
|
}
|
|
|
|
wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
|
|
cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
|
|
lockdep_assert_held(&wil->mutex);
|
|
|
|
if (vring->va) {
|
|
wil_err(wil, "Tx ring [%d] already allocated\n", id);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
wil_tx_data_init(txdata);
|
|
vring->is_rx = false;
|
|
vring->size = size;
|
|
rc = wil_vring_alloc(wil, vring);
|
|
if (rc)
|
|
goto out;
|
|
|
|
wil->ring2cid_tid[id][0] = cid;
|
|
wil->ring2cid_tid[id][1] = tid;
|
|
|
|
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
|
|
|
|
if (!vif->privacy)
|
|
txdata->dot1x_open = true;
|
|
rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
|
|
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
|
|
WIL_WMI_CALL_GENERAL_TO_MS);
|
|
if (rc)
|
|
goto out_free;
|
|
|
|
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
|
|
wil_err(wil, "Tx config failed, status 0x%02x\n",
|
|
reply.cmd.status);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
spin_lock_bh(&txdata->lock);
|
|
vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
|
|
txdata->mid = vif->mid;
|
|
txdata->enabled = 1;
|
|
spin_unlock_bh(&txdata->lock);
|
|
|
|
if (txdata->dot1x_open && (agg_wsize >= 0))
|
|
wil_addba_tx_request(wil, id, agg_wsize);
|
|
|
|
return 0;
|
|
out_free:
|
|
spin_lock_bh(&txdata->lock);
|
|
txdata->dot1x_open = false;
|
|
txdata->enabled = 0;
|
|
spin_unlock_bh(&txdata->lock);
|
|
wil_vring_free(wil, vring);
|
|
wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
|
|
wil->ring2cid_tid[id][1] = 0;
|
|
|
|
out:
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
|
|
int tid)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
int rc;
|
|
struct wmi_vring_cfg_cmd cmd = {
|
|
.action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
|
|
.vring_cfg = {
|
|
.tx_sw_ring = {
|
|
.max_mpdu_size =
|
|
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
|
|
.ring_size = 0,
|
|
},
|
|
.ringid = ring_id,
|
|
.cidxtid = mk_cidxtid(cid, tid),
|
|
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
|
|
.mac_ctrl = 0,
|
|
.to_resolution = 0,
|
|
.agg_max_wsize = 0,
|
|
.schd_params = {
|
|
.priority = cpu_to_le16(0),
|
|
.timeslot_us = cpu_to_le16(0xfff),
|
|
},
|
|
},
|
|
};
|
|
struct {
|
|
struct wmi_cmd_hdr wmi;
|
|
struct wmi_vring_cfg_done_event cmd;
|
|
} __packed reply = {
|
|
.cmd = {.status = WMI_FW_STATUS_FAILURE},
|
|
};
|
|
struct wil_ring *vring = &wil->ring_tx[ring_id];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
|
|
|
|
wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
|
|
cid, tid);
|
|
lockdep_assert_held(&wil->mutex);
|
|
|
|
if (!vring->va) {
|
|
wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (wil->ring2cid_tid[ring_id][0] != cid ||
|
|
wil->ring2cid_tid[ring_id][1] != tid) {
|
|
wil_err(wil, "ring info does not match cid=%u tid=%u\n",
|
|
wil->ring2cid_tid[ring_id][0],
|
|
wil->ring2cid_tid[ring_id][1]);
|
|
}
|
|
|
|
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
|
|
|
|
rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
|
|
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
|
|
WIL_WMI_CALL_GENERAL_TO_MS);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
|
|
wil_err(wil, "Tx modify failed, status 0x%02x\n",
|
|
reply.cmd.status);
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
/* set BA aggregation window size to 0 to force a new BA with the
|
|
* new AP
|
|
*/
|
|
txdata->agg_wsize = 0;
|
|
if (txdata->dot1x_open && agg_wsize >= 0)
|
|
wil_addba_tx_request(wil, ring_id, agg_wsize);
|
|
|
|
return 0;
|
|
fail:
|
|
spin_lock_bh(&txdata->lock);
|
|
txdata->dot1x_open = false;
|
|
txdata->enabled = 0;
|
|
spin_unlock_bh(&txdata->lock);
|
|
wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
|
|
wil->ring2cid_tid[ring_id][1] = 0;
|
|
return rc;
|
|
}
|
|
|
|
int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
int rc;
|
|
struct wmi_bcast_vring_cfg_cmd cmd = {
|
|
.action = cpu_to_le32(WMI_VRING_CMD_ADD),
|
|
.vring_cfg = {
|
|
.tx_sw_ring = {
|
|
.max_mpdu_size =
|
|
cpu_to_le16(wil_mtu2macbuf(mtu_max)),
|
|
.ring_size = cpu_to_le16(size),
|
|
},
|
|
.ringid = id,
|
|
.encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
|
|
},
|
|
};
|
|
struct {
|
|
struct wmi_cmd_hdr wmi;
|
|
struct wmi_vring_cfg_done_event cmd;
|
|
} __packed reply = {
|
|
.cmd = {.status = WMI_FW_STATUS_FAILURE},
|
|
};
|
|
struct wil_ring *vring = &wil->ring_tx[id];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
|
|
|
|
wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
|
|
cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
|
|
lockdep_assert_held(&wil->mutex);
|
|
|
|
if (vring->va) {
|
|
wil_err(wil, "Tx ring [%d] already allocated\n", id);
|
|
rc = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
wil_tx_data_init(txdata);
|
|
vring->is_rx = false;
|
|
vring->size = size;
|
|
rc = wil_vring_alloc(wil, vring);
|
|
if (rc)
|
|
goto out;
|
|
|
|
wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
|
|
wil->ring2cid_tid[id][1] = 0; /* TID */
|
|
|
|
cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
|
|
|
|
if (!vif->privacy)
|
|
txdata->dot1x_open = true;
|
|
rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
|
|
&cmd, sizeof(cmd),
|
|
WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
|
|
WIL_WMI_CALL_GENERAL_TO_MS);
|
|
if (rc)
|
|
goto out_free;
|
|
|
|
if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
|
|
wil_err(wil, "Tx config failed, status 0x%02x\n",
|
|
reply.cmd.status);
|
|
rc = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
spin_lock_bh(&txdata->lock);
|
|
vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
|
|
txdata->mid = vif->mid;
|
|
txdata->enabled = 1;
|
|
spin_unlock_bh(&txdata->lock);
|
|
|
|
return 0;
|
|
out_free:
|
|
spin_lock_bh(&txdata->lock);
|
|
txdata->enabled = 0;
|
|
txdata->dot1x_open = false;
|
|
spin_unlock_bh(&txdata->lock);
|
|
wil_vring_free(wil, vring);
|
|
out:
|
|
|
|
return rc;
|
|
}
|
|
|
|
static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
|
|
struct wil6210_vif *vif,
|
|
struct sk_buff *skb)
|
|
{
|
|
int i, cid;
|
|
const u8 *da = wil_skb_get_da(skb);
|
|
int min_ring_id = wil_get_min_tx_ring_id(wil);
|
|
|
|
cid = wil_find_cid(wil, vif->mid, da);
|
|
|
|
if (cid < 0 || cid >= wil->max_assoc_sta)
|
|
return NULL;
|
|
|
|
/* TODO: fix for multiple TID */
|
|
for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
|
|
if (!wil->ring_tx_data[i].dot1x_open &&
|
|
skb->protocol != cpu_to_be16(ETH_P_PAE))
|
|
continue;
|
|
if (wil->ring2cid_tid[i][0] == cid) {
|
|
struct wil_ring *v = &wil->ring_tx[i];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
|
|
|
|
wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
|
|
da, i);
|
|
if (v->va && txdata->enabled) {
|
|
return v;
|
|
} else {
|
|
wil_dbg_txrx(wil,
|
|
"find_tx_ucast: vring[%d] not valid\n",
|
|
i);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *ring, struct sk_buff *skb);
|
|
|
|
static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
|
|
struct wil6210_vif *vif,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct wil_ring *ring;
|
|
int i;
|
|
u8 cid;
|
|
struct wil_ring_tx_data *txdata;
|
|
int min_ring_id = wil_get_min_tx_ring_id(wil);
|
|
|
|
/* In the STA mode, it is expected to have only 1 VRING
|
|
* for the AP we connected to.
|
|
* find 1-st vring eligible for this skb and use it.
|
|
*/
|
|
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
|
|
ring = &wil->ring_tx[i];
|
|
txdata = &wil->ring_tx_data[i];
|
|
if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
|
|
continue;
|
|
|
|
cid = wil->ring2cid_tid[i][0];
|
|
if (cid >= wil->max_assoc_sta) /* skip BCAST */
|
|
continue;
|
|
|
|
if (!wil->ring_tx_data[i].dot1x_open &&
|
|
skb->protocol != cpu_to_be16(ETH_P_PAE))
|
|
continue;
|
|
|
|
wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
|
|
|
|
return ring;
|
|
}
|
|
|
|
wil_dbg_txrx(wil, "Tx while no rings active?\n");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Use one of 2 strategies:
|
|
*
|
|
* 1. New (real broadcast):
|
|
* use dedicated broadcast vring
|
|
* 2. Old (pseudo-DMS):
|
|
* Find 1-st vring and return it;
|
|
* duplicate skb and send it to other active vrings;
|
|
* in all cases override dest address to unicast peer's address
|
|
* Use old strategy when new is not supported yet:
|
|
* - for PBSS
|
|
*/
|
|
static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
|
|
struct wil6210_vif *vif,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct wil_ring *v;
|
|
struct wil_ring_tx_data *txdata;
|
|
int i = vif->bcast_ring;
|
|
|
|
if (i < 0)
|
|
return NULL;
|
|
v = &wil->ring_tx[i];
|
|
txdata = &wil->ring_tx_data[i];
|
|
if (!v->va || !txdata->enabled)
|
|
return NULL;
|
|
if (!wil->ring_tx_data[i].dot1x_open &&
|
|
skb->protocol != cpu_to_be16(ETH_P_PAE))
|
|
return NULL;
|
|
|
|
return v;
|
|
}
|
|
|
|
/* apply multicast to unicast only for ARP and IP packets
|
|
* (see NL80211_CMD_SET_MULTICAST_TO_UNICAST for more info)
|
|
*/
|
|
static bool wil_check_multicast_to_unicast(struct wil6210_priv *wil,
|
|
struct sk_buff *skb)
|
|
{
|
|
const struct ethhdr *eth = (void *)skb->data;
|
|
const struct vlan_ethhdr *ethvlan = (void *)skb->data;
|
|
__be16 ethertype;
|
|
|
|
if (!wil->multicast_to_unicast)
|
|
return false;
|
|
|
|
/* multicast to unicast conversion only for some payload */
|
|
ethertype = eth->h_proto;
|
|
if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN)
|
|
ethertype = ethvlan->h_vlan_encapsulated_proto;
|
|
switch (ethertype) {
|
|
case htons(ETH_P_ARP):
|
|
case htons(ETH_P_IP):
|
|
case htons(ETH_P_IPV6):
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void wil_set_da_for_vring(struct wil6210_priv *wil,
|
|
struct sk_buff *skb, int vring_index)
|
|
{
|
|
u8 *da = wil_skb_get_da(skb);
|
|
int cid = wil->ring2cid_tid[vring_index][0];
|
|
|
|
ether_addr_copy(da, wil->sta[cid].addr);
|
|
}
|
|
|
|
static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
|
|
struct wil6210_vif *vif,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct wil_ring *v, *v2;
|
|
struct sk_buff *skb2;
|
|
int i;
|
|
u8 cid;
|
|
const u8 *src = wil_skb_get_sa(skb);
|
|
struct wil_ring_tx_data *txdata, *txdata2;
|
|
int min_ring_id = wil_get_min_tx_ring_id(wil);
|
|
|
|
/* find 1-st vring eligible for data */
|
|
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
|
|
v = &wil->ring_tx[i];
|
|
txdata = &wil->ring_tx_data[i];
|
|
if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
|
|
continue;
|
|
|
|
cid = wil->ring2cid_tid[i][0];
|
|
if (cid >= wil->max_assoc_sta) /* skip BCAST */
|
|
continue;
|
|
if (!wil->ring_tx_data[i].dot1x_open &&
|
|
skb->protocol != cpu_to_be16(ETH_P_PAE))
|
|
continue;
|
|
|
|
/* don't Tx back to source when re-routing Rx->Tx at the AP */
|
|
if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
|
|
continue;
|
|
|
|
goto found;
|
|
}
|
|
|
|
wil_dbg_txrx(wil, "Tx while no vrings active?\n");
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
|
|
wil_set_da_for_vring(wil, skb, i);
|
|
|
|
/* find other active vrings and duplicate skb for each */
|
|
for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
|
|
v2 = &wil->ring_tx[i];
|
|
txdata2 = &wil->ring_tx_data[i];
|
|
if (!v2->va || txdata2->mid != vif->mid)
|
|
continue;
|
|
cid = wil->ring2cid_tid[i][0];
|
|
if (cid >= wil->max_assoc_sta) /* skip BCAST */
|
|
continue;
|
|
if (!wil->ring_tx_data[i].dot1x_open &&
|
|
skb->protocol != cpu_to_be16(ETH_P_PAE))
|
|
continue;
|
|
|
|
if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
|
|
continue;
|
|
|
|
skb2 = skb_copy(skb, GFP_ATOMIC);
|
|
if (skb2) {
|
|
wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
|
|
wil_set_da_for_vring(wil, skb2, i);
|
|
wil_tx_ring(wil, vif, v2, skb2);
|
|
/* successful call to wil_tx_ring takes skb2 ref */
|
|
dev_kfree_skb_any(skb2);
|
|
} else {
|
|
wil_err(wil, "skb_copy failed\n");
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static inline
|
|
void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
|
|
{
|
|
d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
|
|
}
|
|
|
|
/* Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
|
|
* @skb is used to obtain the protocol and headers length.
|
|
* @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
|
|
* 2 - middle, 3 - last descriptor.
|
|
*/
|
|
|
|
static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
|
|
struct sk_buff *skb,
|
|
int tso_desc_type, bool is_ipv4,
|
|
int tcp_hdr_len, int skb_net_hdr_len)
|
|
{
|
|
d->dma.b11 = ETH_HLEN; /* MAC header length */
|
|
d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
|
|
|
|
d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
|
|
/* L4 header len: TCP header length */
|
|
d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
|
|
|
|
/* Setup TSO: bit and desc type */
|
|
d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
|
|
(tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
|
|
d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
|
|
|
|
d->dma.ip_length = skb_net_hdr_len;
|
|
/* Enable TCP/UDP checksum */
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
|
|
/* Calculate pseudo-header */
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
|
|
}
|
|
|
|
/* Sets the descriptor @d up for csum. The corresponding
|
|
* @skb is used to obtain the protocol and headers length.
|
|
* Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
|
|
* Note, if d==NULL, the function only returns the protocol result.
|
|
*
|
|
* It is very similar to previous wil_tx_desc_offload_setup_tso. This
|
|
* is "if unrolling" to optimize the critical path.
|
|
*/
|
|
|
|
static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
|
|
struct sk_buff *skb){
|
|
int protocol;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
d->dma.b11 = ETH_HLEN; /* MAC header length */
|
|
|
|
switch (skb->protocol) {
|
|
case cpu_to_be16(ETH_P_IP):
|
|
protocol = ip_hdr(skb)->protocol;
|
|
d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
|
|
break;
|
|
case cpu_to_be16(ETH_P_IPV6):
|
|
protocol = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (protocol) {
|
|
case IPPROTO_TCP:
|
|
d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
|
|
/* L4 header len: TCP header length */
|
|
d->dma.d0 |=
|
|
(tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
/* L4 header len: UDP header length */
|
|
d->dma.d0 |=
|
|
(sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
d->dma.ip_length = skb_network_header_len(skb);
|
|
/* Enable TCP/UDP checksum */
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
|
|
/* Calculate pseudo-header */
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void wil_tx_last_desc(struct vring_tx_desc *d)
|
|
{
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
|
|
BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
|
|
BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
|
|
}
|
|
|
|
static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
|
|
{
|
|
d->dma.d0 |= wil_tso_type_lst <<
|
|
DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
|
|
}
|
|
|
|
static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *vring, struct sk_buff *skb)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
|
|
/* point to descriptors in shared memory */
|
|
volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
|
|
*_first_desc = NULL;
|
|
|
|
/* pointers to shadow descriptors */
|
|
struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
|
|
*d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
|
|
*first_desc = &first_desc_mem;
|
|
|
|
/* pointer to shadow descriptors' context */
|
|
struct wil_ctx *hdr_ctx, *first_ctx = NULL;
|
|
|
|
int descs_used = 0; /* total number of used descriptors */
|
|
int sg_desc_cnt = 0; /* number of descriptors for current mss*/
|
|
|
|
u32 swhead = vring->swhead;
|
|
int used, avail = wil_ring_avail_tx(vring);
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
int min_desc_required = nr_frags + 1;
|
|
int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
|
|
int f, len, hdrlen, headlen;
|
|
int vring_index = vring - wil->ring_tx;
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
|
|
uint i = swhead;
|
|
dma_addr_t pa;
|
|
const skb_frag_t *frag = NULL;
|
|
int rem_data = mss;
|
|
int lenmss;
|
|
int hdr_compensation_need = true;
|
|
int desc_tso_type = wil_tso_type_first;
|
|
bool is_ipv4;
|
|
int tcp_hdr_len;
|
|
int skb_net_hdr_len;
|
|
int gso_type;
|
|
int rc = -EINVAL;
|
|
|
|
wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
|
|
vring_index);
|
|
|
|
if (unlikely(!txdata->enabled))
|
|
return -EINVAL;
|
|
|
|
/* A typical page 4K is 3-4 payloads, we assume each fragment
|
|
* is a full payload, that's how min_desc_required has been
|
|
* calculated. In real we might need more or less descriptors,
|
|
* this is the initial check only.
|
|
*/
|
|
if (unlikely(avail < min_desc_required)) {
|
|
wil_err_ratelimited(wil,
|
|
"TSO: Tx ring[%2d] full. No space for %d fragments\n",
|
|
vring_index, min_desc_required);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Header Length = MAC header len + IP header len + TCP header len*/
|
|
hdrlen = ETH_HLEN +
|
|
(int)skb_network_header_len(skb) +
|
|
tcp_hdrlen(skb);
|
|
|
|
gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
|
|
switch (gso_type) {
|
|
case SKB_GSO_TCPV4:
|
|
/* TCP v4, zero out the IP length and IPv4 checksum fields
|
|
* as required by the offloading doc
|
|
*/
|
|
ip_hdr(skb)->tot_len = 0;
|
|
ip_hdr(skb)->check = 0;
|
|
is_ipv4 = true;
|
|
break;
|
|
case SKB_GSO_TCPV6:
|
|
/* TCP v6, zero out the payload length */
|
|
ipv6_hdr(skb)->payload_len = 0;
|
|
is_ipv4 = false;
|
|
break;
|
|
default:
|
|
/* other than TCPv4 or TCPv6 types are not supported for TSO.
|
|
* It is also illegal for both to be set simultaneously
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return -EINVAL;
|
|
|
|
/* tcp header length and skb network header length are fixed for all
|
|
* packet's descriptors - read then once here
|
|
*/
|
|
tcp_hdr_len = tcp_hdrlen(skb);
|
|
skb_net_hdr_len = skb_network_header_len(skb);
|
|
|
|
_hdr_desc = &vring->va[i].tx.legacy;
|
|
|
|
pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(dev, pa))) {
|
|
wil_err(wil, "TSO: Skb head DMA map error\n");
|
|
goto err_exit;
|
|
}
|
|
|
|
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
|
|
hdrlen, vring_index);
|
|
wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
|
|
tcp_hdr_len, skb_net_hdr_len);
|
|
wil_tx_last_desc(hdr_desc);
|
|
|
|
vring->ctx[i].mapped_as = wil_mapped_as_single;
|
|
hdr_ctx = &vring->ctx[i];
|
|
|
|
descs_used++;
|
|
headlen = skb_headlen(skb) - hdrlen;
|
|
|
|
for (f = headlen ? -1 : 0; f < nr_frags; f++) {
|
|
if (headlen) {
|
|
len = headlen;
|
|
wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
|
|
len);
|
|
} else {
|
|
frag = &skb_shinfo(skb)->frags[f];
|
|
len = skb_frag_size(frag);
|
|
wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
|
|
}
|
|
|
|
while (len) {
|
|
wil_dbg_txrx(wil,
|
|
"TSO: len %d, rem_data %d, descs_used %d\n",
|
|
len, rem_data, descs_used);
|
|
|
|
if (descs_used == avail) {
|
|
wil_err_ratelimited(wil, "TSO: ring overflow\n");
|
|
rc = -ENOMEM;
|
|
goto mem_error;
|
|
}
|
|
|
|
lenmss = min_t(int, rem_data, len);
|
|
i = (swhead + descs_used) % vring->size;
|
|
wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
|
|
|
|
if (!headlen) {
|
|
pa = skb_frag_dma_map(dev, frag,
|
|
skb_frag_size(frag) - len,
|
|
lenmss, DMA_TO_DEVICE);
|
|
vring->ctx[i].mapped_as = wil_mapped_as_page;
|
|
} else {
|
|
pa = dma_map_single(dev,
|
|
skb->data +
|
|
skb_headlen(skb) - headlen,
|
|
lenmss,
|
|
DMA_TO_DEVICE);
|
|
vring->ctx[i].mapped_as = wil_mapped_as_single;
|
|
headlen -= lenmss;
|
|
}
|
|
|
|
if (unlikely(dma_mapping_error(dev, pa))) {
|
|
wil_err(wil, "TSO: DMA map page error\n");
|
|
goto mem_error;
|
|
}
|
|
|
|
_desc = &vring->va[i].tx.legacy;
|
|
|
|
if (!_first_desc) {
|
|
_first_desc = _desc;
|
|
first_ctx = &vring->ctx[i];
|
|
d = first_desc;
|
|
} else {
|
|
d = &desc_mem;
|
|
}
|
|
|
|
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
|
|
pa, lenmss, vring_index);
|
|
wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
|
|
is_ipv4, tcp_hdr_len,
|
|
skb_net_hdr_len);
|
|
|
|
/* use tso_type_first only once */
|
|
desc_tso_type = wil_tso_type_mid;
|
|
|
|
descs_used++; /* desc used so far */
|
|
sg_desc_cnt++; /* desc used for this segment */
|
|
len -= lenmss;
|
|
rem_data -= lenmss;
|
|
|
|
wil_dbg_txrx(wil,
|
|
"TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
|
|
len, rem_data, descs_used, sg_desc_cnt);
|
|
|
|
/* Close the segment if reached mss size or last frag*/
|
|
if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
|
|
if (hdr_compensation_need) {
|
|
/* first segment include hdr desc for
|
|
* release
|
|
*/
|
|
hdr_ctx->nr_frags = sg_desc_cnt;
|
|
wil_tx_desc_set_nr_frags(first_desc,
|
|
sg_desc_cnt +
|
|
1);
|
|
hdr_compensation_need = false;
|
|
} else {
|
|
wil_tx_desc_set_nr_frags(first_desc,
|
|
sg_desc_cnt);
|
|
}
|
|
first_ctx->nr_frags = sg_desc_cnt - 1;
|
|
|
|
wil_tx_last_desc(d);
|
|
|
|
/* first descriptor may also be the last
|
|
* for this mss - make sure not to copy
|
|
* it twice
|
|
*/
|
|
if (first_desc != d)
|
|
*_first_desc = *first_desc;
|
|
|
|
/*last descriptor will be copied at the end
|
|
* of this TS processing
|
|
*/
|
|
if (f < nr_frags - 1 || len > 0)
|
|
*_desc = *d;
|
|
|
|
rem_data = mss;
|
|
_first_desc = NULL;
|
|
sg_desc_cnt = 0;
|
|
} else if (first_desc != d) /* update mid descriptor */
|
|
*_desc = *d;
|
|
}
|
|
}
|
|
|
|
if (!_desc)
|
|
goto mem_error;
|
|
|
|
/* first descriptor may also be the last.
|
|
* in this case d pointer is invalid
|
|
*/
|
|
if (_first_desc == _desc)
|
|
d = first_desc;
|
|
|
|
/* Last data descriptor */
|
|
wil_set_tx_desc_last_tso(d);
|
|
*_desc = *d;
|
|
|
|
/* Fill the total number of descriptors in first desc (hdr)*/
|
|
wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
|
|
*_hdr_desc = *hdr_desc;
|
|
|
|
/* hold reference to skb
|
|
* to prevent skb release before accounting
|
|
* in case of immediate "tx done"
|
|
*/
|
|
vring->ctx[i].skb = skb_get(skb);
|
|
|
|
/* performance monitoring */
|
|
used = wil_ring_used_tx(vring);
|
|
if (wil_val_in_range(wil->ring_idle_trsh,
|
|
used, used + descs_used)) {
|
|
txdata->idle += get_cycles() - txdata->last_idle;
|
|
wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
|
|
vring_index, used, used + descs_used);
|
|
}
|
|
|
|
/* Make sure to advance the head only after descriptor update is done.
|
|
* This will prevent a race condition where the completion thread
|
|
* will see the DU bit set from previous run and will handle the
|
|
* skb before it was completed.
|
|
*/
|
|
wmb();
|
|
|
|
/* advance swhead */
|
|
wil_ring_advance_head(vring, descs_used);
|
|
wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
|
|
|
|
/* make sure all writes to descriptors (shared memory) are done before
|
|
* committing them to HW
|
|
*/
|
|
wmb();
|
|
|
|
if (wil->tx_latency)
|
|
*(ktime_t *)&skb->cb = ktime_get();
|
|
else
|
|
memset(skb->cb, 0, sizeof(ktime_t));
|
|
|
|
wil_w(wil, vring->hwtail, vring->swhead);
|
|
return 0;
|
|
|
|
mem_error:
|
|
while (descs_used > 0) {
|
|
struct wil_ctx *ctx;
|
|
|
|
i = (swhead + descs_used - 1) % vring->size;
|
|
d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
|
|
_desc = &vring->va[i].tx.legacy;
|
|
*d = *_desc;
|
|
_desc->dma.status = TX_DMA_STATUS_DU;
|
|
ctx = &vring->ctx[i];
|
|
wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
descs_used--;
|
|
}
|
|
err_exit:
|
|
return rc;
|
|
}
|
|
|
|
static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *ring, struct sk_buff *skb)
|
|
{
|
|
struct device *dev = wil_to_dev(wil);
|
|
struct vring_tx_desc dd, *d = ⅆ
|
|
volatile struct vring_tx_desc *_d;
|
|
u32 swhead = ring->swhead;
|
|
int avail = wil_ring_avail_tx(ring);
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
uint f = 0;
|
|
int ring_index = ring - wil->ring_tx;
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
|
|
uint i = swhead;
|
|
dma_addr_t pa;
|
|
int used;
|
|
bool mcast = (ring_index == vif->bcast_ring);
|
|
uint len = skb_headlen(skb);
|
|
|
|
wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
|
|
skb->len, ring_index, nr_frags);
|
|
|
|
if (unlikely(!txdata->enabled))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(avail < 1 + nr_frags)) {
|
|
wil_err_ratelimited(wil,
|
|
"Tx ring[%2d] full. No space for %d fragments\n",
|
|
ring_index, 1 + nr_frags);
|
|
return -ENOMEM;
|
|
}
|
|
_d = &ring->va[i].tx.legacy;
|
|
|
|
pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
|
|
skb_headlen(skb), skb->data, &pa);
|
|
wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
|
|
skb->data, skb_headlen(skb), false);
|
|
|
|
if (unlikely(dma_mapping_error(dev, pa)))
|
|
return -EINVAL;
|
|
ring->ctx[i].mapped_as = wil_mapped_as_single;
|
|
/* 1-st segment */
|
|
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
|
|
ring_index);
|
|
if (unlikely(mcast)) {
|
|
d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
|
|
if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
|
|
d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
|
|
}
|
|
/* Process TCP/UDP checksum offloading */
|
|
if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
|
|
wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
|
|
ring_index);
|
|
goto dma_error;
|
|
}
|
|
|
|
ring->ctx[i].nr_frags = nr_frags;
|
|
wil_tx_desc_set_nr_frags(d, nr_frags + 1);
|
|
|
|
/* middle segments */
|
|
for (; f < nr_frags; f++) {
|
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
|
|
int len = skb_frag_size(frag);
|
|
|
|
*_d = *d;
|
|
wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
|
|
wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
|
|
(const void *)d, sizeof(*d), false);
|
|
i = (swhead + f + 1) % ring->size;
|
|
_d = &ring->va[i].tx.legacy;
|
|
pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(dev, pa))) {
|
|
wil_err(wil, "Tx[%2d] failed to map fragment\n",
|
|
ring_index);
|
|
goto dma_error;
|
|
}
|
|
ring->ctx[i].mapped_as = wil_mapped_as_page;
|
|
wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
|
|
pa, len, ring_index);
|
|
/* no need to check return code -
|
|
* if it succeeded for 1-st descriptor,
|
|
* it will succeed here too
|
|
*/
|
|
wil_tx_desc_offload_setup(d, skb);
|
|
}
|
|
/* for the last seg only */
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
|
|
d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
|
|
*_d = *d;
|
|
wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
|
|
wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
|
|
(const void *)d, sizeof(*d), false);
|
|
|
|
/* hold reference to skb
|
|
* to prevent skb release before accounting
|
|
* in case of immediate "tx done"
|
|
*/
|
|
ring->ctx[i].skb = skb_get(skb);
|
|
|
|
/* performance monitoring */
|
|
used = wil_ring_used_tx(ring);
|
|
if (wil_val_in_range(wil->ring_idle_trsh,
|
|
used, used + nr_frags + 1)) {
|
|
txdata->idle += get_cycles() - txdata->last_idle;
|
|
wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
|
|
ring_index, used, used + nr_frags + 1);
|
|
}
|
|
|
|
/* Make sure to advance the head only after descriptor update is done.
|
|
* This will prevent a race condition where the completion thread
|
|
* will see the DU bit set from previous run and will handle the
|
|
* skb before it was completed.
|
|
*/
|
|
wmb();
|
|
|
|
/* advance swhead */
|
|
wil_ring_advance_head(ring, nr_frags + 1);
|
|
wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
|
|
ring->swhead);
|
|
trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
|
|
|
|
/* make sure all writes to descriptors (shared memory) are done before
|
|
* committing them to HW
|
|
*/
|
|
wmb();
|
|
|
|
if (wil->tx_latency)
|
|
*(ktime_t *)&skb->cb = ktime_get();
|
|
else
|
|
memset(skb->cb, 0, sizeof(ktime_t));
|
|
|
|
wil_w(wil, ring->hwtail, ring->swhead);
|
|
|
|
return 0;
|
|
dma_error:
|
|
/* unmap what we have mapped */
|
|
nr_frags = f + 1; /* frags mapped + one for skb head */
|
|
for (f = 0; f < nr_frags; f++) {
|
|
struct wil_ctx *ctx;
|
|
|
|
i = (swhead + f) % ring->size;
|
|
ctx = &ring->ctx[i];
|
|
_d = &ring->va[i].tx.legacy;
|
|
*d = *_d;
|
|
_d->dma.status = TX_DMA_STATUS_DU;
|
|
wil->txrx_ops.tx_desc_unmap(dev,
|
|
(union wil_tx_desc *)d,
|
|
ctx);
|
|
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *ring, struct sk_buff *skb)
|
|
{
|
|
int ring_index = ring - wil->ring_tx;
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
|
|
int rc;
|
|
|
|
spin_lock(&txdata->lock);
|
|
|
|
if (test_bit(wil_status_suspending, wil->status) ||
|
|
test_bit(wil_status_suspended, wil->status) ||
|
|
test_bit(wil_status_resuming, wil->status)) {
|
|
wil_dbg_txrx(wil,
|
|
"suspend/resume in progress. drop packet\n");
|
|
spin_unlock(&txdata->lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
|
|
(wil, vif, ring, skb);
|
|
|
|
spin_unlock(&txdata->lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Check status of tx vrings and stop/wake net queues if needed
|
|
* It will start/stop net queues of a specific VIF net_device.
|
|
*
|
|
* This function does one of two checks:
|
|
* In case check_stop is true, will check if net queues need to be stopped. If
|
|
* the conditions for stopping are met, netif_tx_stop_all_queues() is called.
|
|
* In case check_stop is false, will check if net queues need to be waked. If
|
|
* the conditions for waking are met, netif_tx_wake_all_queues() is called.
|
|
* vring is the vring which is currently being modified by either adding
|
|
* descriptors (tx) into it or removing descriptors (tx complete) from it. Can
|
|
* be null when irrelevant (e.g. connect/disconnect events).
|
|
*
|
|
* The implementation is to stop net queues if modified vring has low
|
|
* descriptor availability. Wake if all vrings are not in low descriptor
|
|
* availability and modified vring has high descriptor availability.
|
|
*/
|
|
static inline void __wil_update_net_queues(struct wil6210_priv *wil,
|
|
struct wil6210_vif *vif,
|
|
struct wil_ring *ring,
|
|
bool check_stop)
|
|
{
|
|
int i;
|
|
int min_ring_id = wil_get_min_tx_ring_id(wil);
|
|
|
|
if (unlikely(!vif))
|
|
return;
|
|
|
|
if (ring)
|
|
wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
|
|
(int)(ring - wil->ring_tx), vif->mid, check_stop,
|
|
vif->net_queue_stopped);
|
|
else
|
|
wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
|
|
check_stop, vif->mid, vif->net_queue_stopped);
|
|
|
|
if (ring && drop_if_ring_full)
|
|
/* no need to stop/wake net queues */
|
|
return;
|
|
|
|
if (check_stop == vif->net_queue_stopped)
|
|
/* net queues already in desired state */
|
|
return;
|
|
|
|
if (check_stop) {
|
|
if (!ring || unlikely(wil_ring_avail_low(ring))) {
|
|
/* not enough room in the vring */
|
|
netif_tx_stop_all_queues(vif_to_ndev(vif));
|
|
vif->net_queue_stopped = true;
|
|
wil_dbg_txrx(wil, "netif_tx_stop called\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Do not wake the queues in suspend flow */
|
|
if (test_bit(wil_status_suspending, wil->status) ||
|
|
test_bit(wil_status_suspended, wil->status))
|
|
return;
|
|
|
|
/* check wake */
|
|
for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
|
|
struct wil_ring *cur_ring = &wil->ring_tx[i];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
|
|
|
|
if (txdata->mid != vif->mid || !cur_ring->va ||
|
|
!txdata->enabled || cur_ring == ring)
|
|
continue;
|
|
|
|
if (wil_ring_avail_low(cur_ring)) {
|
|
wil_dbg_txrx(wil, "ring %d full, can't wake\n",
|
|
(int)(cur_ring - wil->ring_tx));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!ring || wil_ring_avail_high(ring)) {
|
|
/* enough room in the ring */
|
|
wil_dbg_txrx(wil, "calling netif_tx_wake\n");
|
|
netif_tx_wake_all_queues(vif_to_ndev(vif));
|
|
vif->net_queue_stopped = false;
|
|
}
|
|
}
|
|
|
|
void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *ring, bool check_stop)
|
|
{
|
|
spin_lock(&wil->net_queue_lock);
|
|
__wil_update_net_queues(wil, vif, ring, check_stop);
|
|
spin_unlock(&wil->net_queue_lock);
|
|
}
|
|
|
|
void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
|
|
struct wil_ring *ring, bool check_stop)
|
|
{
|
|
spin_lock_bh(&wil->net_queue_lock);
|
|
__wil_update_net_queues(wil, vif, ring, check_stop);
|
|
spin_unlock_bh(&wil->net_queue_lock);
|
|
}
|
|
|
|
netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct wil6210_vif *vif = ndev_to_vif(ndev);
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
const u8 *da = wil_skb_get_da(skb);
|
|
bool bcast = is_multicast_ether_addr(da);
|
|
struct wil_ring *ring;
|
|
static bool pr_once_fw;
|
|
int rc;
|
|
|
|
wil_dbg_txrx(wil, "start_xmit\n");
|
|
if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
|
|
if (!pr_once_fw) {
|
|
wil_err(wil, "FW not ready\n");
|
|
pr_once_fw = true;
|
|
}
|
|
goto drop;
|
|
}
|
|
if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
|
|
wil_dbg_ratelimited(wil,
|
|
"VIF not connected, packet dropped\n");
|
|
goto drop;
|
|
}
|
|
if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
|
|
wil_err(wil, "Xmit in monitor mode not supported\n");
|
|
goto drop;
|
|
}
|
|
pr_once_fw = false;
|
|
|
|
/* find vring */
|
|
if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
|
|
/* in STA mode (ESS), all to same VRING (to AP) */
|
|
ring = wil_find_tx_ring_sta(wil, vif, skb);
|
|
} else if (bcast) {
|
|
if (vif->pbss || wil_check_multicast_to_unicast(wil, skb))
|
|
/* in pbss, no bcast VRING - duplicate skb in
|
|
* all stations VRINGs
|
|
*/
|
|
ring = wil_find_tx_bcast_2(wil, vif, skb);
|
|
else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
|
|
/* AP has a dedicated bcast VRING */
|
|
ring = wil_find_tx_bcast_1(wil, vif, skb);
|
|
else
|
|
/* unexpected combination, fallback to duplicating
|
|
* the skb in all stations VRINGs
|
|
*/
|
|
ring = wil_find_tx_bcast_2(wil, vif, skb);
|
|
} else {
|
|
/* unicast, find specific VRING by dest. address */
|
|
ring = wil_find_tx_ucast(wil, vif, skb);
|
|
}
|
|
if (unlikely(!ring)) {
|
|
wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
|
|
goto drop;
|
|
}
|
|
/* set up vring entry */
|
|
rc = wil_tx_ring(wil, vif, ring, skb);
|
|
|
|
switch (rc) {
|
|
case 0:
|
|
/* shall we stop net queues? */
|
|
wil_update_net_queues_bh(wil, vif, ring, true);
|
|
/* statistics will be updated on the tx_complete */
|
|
dev_kfree_skb_any(skb);
|
|
return NETDEV_TX_OK;
|
|
case -ENOMEM:
|
|
if (drop_if_ring_full)
|
|
goto drop;
|
|
return NETDEV_TX_BUSY;
|
|
default:
|
|
break; /* goto drop; */
|
|
}
|
|
drop:
|
|
ndev->stats.tx_dropped++;
|
|
dev_kfree_skb_any(skb);
|
|
|
|
return NET_XMIT_DROP;
|
|
}
|
|
|
|
void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
|
|
struct wil_sta_info *sta)
|
|
{
|
|
int skb_time_us;
|
|
int bin;
|
|
|
|
if (!wil->tx_latency)
|
|
return;
|
|
|
|
if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
|
|
return;
|
|
|
|
skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
|
|
bin = skb_time_us / wil->tx_latency_res;
|
|
bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
|
|
|
|
wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
|
|
sta->tx_latency_bins[bin]++;
|
|
sta->stats.tx_latency_total_us += skb_time_us;
|
|
if (skb_time_us < sta->stats.tx_latency_min_us)
|
|
sta->stats.tx_latency_min_us = skb_time_us;
|
|
if (skb_time_us > sta->stats.tx_latency_max_us)
|
|
sta->stats.tx_latency_max_us = skb_time_us;
|
|
}
|
|
|
|
/* Clean up transmitted skb's from the Tx VRING
|
|
*
|
|
* Return number of descriptors cleared
|
|
*
|
|
* Safe to call from IRQ
|
|
*/
|
|
int wil_tx_complete(struct wil6210_vif *vif, int ringid)
|
|
{
|
|
struct wil6210_priv *wil = vif_to_wil(vif);
|
|
struct net_device *ndev = vif_to_ndev(vif);
|
|
struct device *dev = wil_to_dev(wil);
|
|
struct wil_ring *vring = &wil->ring_tx[ringid];
|
|
struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
|
|
int done = 0;
|
|
int cid = wil->ring2cid_tid[ringid][0];
|
|
struct wil_net_stats *stats = NULL;
|
|
volatile struct vring_tx_desc *_d;
|
|
int used_before_complete;
|
|
int used_new;
|
|
|
|
if (unlikely(!vring->va)) {
|
|
wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!txdata->enabled)) {
|
|
wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
|
|
return 0;
|
|
}
|
|
|
|
wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
|
|
|
|
used_before_complete = wil_ring_used_tx(vring);
|
|
|
|
if (cid < wil->max_assoc_sta)
|
|
stats = &wil->sta[cid].stats;
|
|
|
|
while (!wil_ring_is_empty(vring)) {
|
|
int new_swtail;
|
|
struct wil_ctx *ctx = &vring->ctx[vring->swtail];
|
|
/* For the fragmented skb, HW will set DU bit only for the
|
|
* last fragment. look for it.
|
|
* In TSO the first DU will include hdr desc
|
|
*/
|
|
int lf = (vring->swtail + ctx->nr_frags) % vring->size;
|
|
/* TODO: check we are not past head */
|
|
|
|
_d = &vring->va[lf].tx.legacy;
|
|
if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
|
|
break;
|
|
|
|
new_swtail = (lf + 1) % vring->size;
|
|
while (vring->swtail != new_swtail) {
|
|
struct vring_tx_desc dd, *d = ⅆ
|
|
u16 dmalen;
|
|
struct sk_buff *skb;
|
|
|
|
ctx = &vring->ctx[vring->swtail];
|
|
skb = ctx->skb;
|
|
_d = &vring->va[vring->swtail].tx.legacy;
|
|
|
|
*d = *_d;
|
|
|
|
dmalen = le16_to_cpu(d->dma.length);
|
|
trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
|
|
d->dma.error);
|
|
wil_dbg_txrx(wil,
|
|
"TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
|
|
ringid, vring->swtail, dmalen,
|
|
d->dma.status, d->dma.error);
|
|
wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
|
|
(const void *)d, sizeof(*d), false);
|
|
|
|
wil->txrx_ops.tx_desc_unmap(dev,
|
|
(union wil_tx_desc *)d,
|
|
ctx);
|
|
|
|
if (skb) {
|
|
if (likely(d->dma.error == 0)) {
|
|
ndev->stats.tx_packets++;
|
|
ndev->stats.tx_bytes += skb->len;
|
|
if (stats) {
|
|
stats->tx_packets++;
|
|
stats->tx_bytes += skb->len;
|
|
|
|
wil_tx_latency_calc(wil, skb,
|
|
&wil->sta[cid]);
|
|
}
|
|
} else {
|
|
ndev->stats.tx_errors++;
|
|
if (stats)
|
|
stats->tx_errors++;
|
|
}
|
|
|
|
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
|
|
wil_tx_complete_handle_eapol(vif, skb);
|
|
|
|
wil_consume_skb(skb, d->dma.error == 0);
|
|
}
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
/* Make sure the ctx is zeroed before updating the tail
|
|
* to prevent a case where wil_tx_ring will see
|
|
* this descriptor as used and handle it before ctx zero
|
|
* is completed.
|
|
*/
|
|
wmb();
|
|
/* There is no need to touch HW descriptor:
|
|
* - ststus bit TX_DMA_STATUS_DU is set by design,
|
|
* so hardware will not try to process this desc.,
|
|
* - rest of descriptor will be initialized on Tx.
|
|
*/
|
|
vring->swtail = wil_ring_next_tail(vring);
|
|
done++;
|
|
}
|
|
}
|
|
|
|
/* performance monitoring */
|
|
used_new = wil_ring_used_tx(vring);
|
|
if (wil_val_in_range(wil->ring_idle_trsh,
|
|
used_new, used_before_complete)) {
|
|
wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
|
|
ringid, used_before_complete, used_new);
|
|
txdata->last_idle = get_cycles();
|
|
}
|
|
|
|
/* shall we wake net queues? */
|
|
if (done)
|
|
wil_update_net_queues(wil, vif, vring, false);
|
|
|
|
return done;
|
|
}
|
|
|
|
static inline int wil_tx_init(struct wil6210_priv *wil)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void wil_tx_fini(struct wil6210_priv *wil) {}
|
|
|
|
static void wil_get_reorder_params(struct wil6210_priv *wil,
|
|
struct sk_buff *skb, int *tid, int *cid,
|
|
int *mid, u16 *seq, int *mcast, int *retry)
|
|
{
|
|
struct vring_rx_desc *d = wil_skb_rxdesc(skb);
|
|
|
|
*tid = wil_rxdesc_tid(d);
|
|
*cid = wil_skb_get_cid(skb);
|
|
*mid = wil_rxdesc_mid(d);
|
|
*seq = wil_rxdesc_seq(d);
|
|
*mcast = wil_rxdesc_mcast(d);
|
|
*retry = wil_rxdesc_retry(d);
|
|
}
|
|
|
|
void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
|
|
{
|
|
wil->txrx_ops.configure_interrupt_moderation =
|
|
wil_configure_interrupt_moderation;
|
|
/* TX ops */
|
|
wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
|
|
wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
|
|
wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso;
|
|
wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
|
|
wil->txrx_ops.ring_fini_tx = wil_vring_free;
|
|
wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
|
|
wil->txrx_ops.tx_init = wil_tx_init;
|
|
wil->txrx_ops.tx_fini = wil_tx_fini;
|
|
wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
|
|
/* RX ops */
|
|
wil->txrx_ops.rx_init = wil_rx_init;
|
|
wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
|
|
wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
|
|
wil->txrx_ops.get_netif_rx_params =
|
|
wil_get_netif_rx_params;
|
|
wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
|
|
wil->txrx_ops.rx_error_check = wil_rx_error_check;
|
|
wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
|
|
wil->txrx_ops.rx_fini = wil_rx_fini;
|
|
}
|