linux/linux-5.18.11/drivers/net/phy/dp83869.c

918 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Driver for the Texas Instruments DP83869 PHY
* Copyright (C) 2019 Texas Instruments Inc.
*/
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/delay.h>
#include <linux/bitfield.h>
#include <dt-bindings/net/ti-dp83869.h>
#define DP83869_PHY_ID 0x2000a0f1
#define DP83561_PHY_ID 0x2000a1a4
#define DP83869_DEVADDR 0x1f
#define MII_DP83869_PHYCTRL 0x10
#define MII_DP83869_MICR 0x12
#define MII_DP83869_ISR 0x13
#define DP83869_CFG2 0x14
#define DP83869_CTRL 0x1f
#define DP83869_CFG4 0x1e
/* Extended Registers */
#define DP83869_GEN_CFG3 0x0031
#define DP83869_RGMIICTL 0x0032
#define DP83869_STRAP_STS1 0x006e
#define DP83869_RGMIIDCTL 0x0086
#define DP83869_RXFCFG 0x0134
#define DP83869_RXFPMD1 0x0136
#define DP83869_RXFPMD2 0x0137
#define DP83869_RXFPMD3 0x0138
#define DP83869_RXFSOP1 0x0139
#define DP83869_RXFSOP2 0x013A
#define DP83869_RXFSOP3 0x013B
#define DP83869_IO_MUX_CFG 0x0170
#define DP83869_OP_MODE 0x01df
#define DP83869_FX_CTRL 0x0c00
#define DP83869_SW_RESET BIT(15)
#define DP83869_SW_RESTART BIT(14)
/* MICR Interrupt bits */
#define MII_DP83869_MICR_AN_ERR_INT_EN BIT(15)
#define MII_DP83869_MICR_SPEED_CHNG_INT_EN BIT(14)
#define MII_DP83869_MICR_DUP_MODE_CHNG_INT_EN BIT(13)
#define MII_DP83869_MICR_PAGE_RXD_INT_EN BIT(12)
#define MII_DP83869_MICR_AUTONEG_COMP_INT_EN BIT(11)
#define MII_DP83869_MICR_LINK_STS_CHNG_INT_EN BIT(10)
#define MII_DP83869_MICR_FALSE_CARRIER_INT_EN BIT(8)
#define MII_DP83869_MICR_SLEEP_MODE_CHNG_INT_EN BIT(4)
#define MII_DP83869_MICR_WOL_INT_EN BIT(3)
#define MII_DP83869_MICR_XGMII_ERR_INT_EN BIT(2)
#define MII_DP83869_MICR_POL_CHNG_INT_EN BIT(1)
#define MII_DP83869_MICR_JABBER_INT_EN BIT(0)
#define MII_DP83869_BMCR_DEFAULT (BMCR_ANENABLE | \
BMCR_FULLDPLX | \
BMCR_SPEED1000)
#define MII_DP83869_FIBER_ADVERTISE (ADVERTISED_FIBRE | \
ADVERTISED_Pause | \
ADVERTISED_Asym_Pause)
/* This is the same bit mask as the BMCR so re-use the BMCR default */
#define DP83869_FX_CTRL_DEFAULT MII_DP83869_BMCR_DEFAULT
/* CFG1 bits */
#define DP83869_CFG1_DEFAULT (ADVERTISE_1000HALF | \
ADVERTISE_1000FULL | \
CTL1000_AS_MASTER)
/* RGMIICTL bits */
#define DP83869_RGMII_TX_CLK_DELAY_EN BIT(1)
#define DP83869_RGMII_RX_CLK_DELAY_EN BIT(0)
/* RGMIIDCTL */
#define DP83869_RGMII_CLK_DELAY_SHIFT 4
#define DP83869_CLK_DELAY_DEF 7
/* STRAP_STS1 bits */
#define DP83869_STRAP_OP_MODE_MASK GENMASK(2, 0)
#define DP83869_STRAP_STS1_RESERVED BIT(11)
#define DP83869_STRAP_MIRROR_ENABLED BIT(12)
/* PHYCTRL bits */
#define DP83869_RX_FIFO_SHIFT 12
#define DP83869_TX_FIFO_SHIFT 14
/* PHY_CTRL lower bytes 0x48 are declared as reserved */
#define DP83869_PHY_CTRL_DEFAULT 0x48
#define DP83869_PHYCR_FIFO_DEPTH_MASK GENMASK(15, 12)
#define DP83869_PHYCR_RESERVED_MASK BIT(11)
/* IO_MUX_CFG bits */
#define DP83869_IO_MUX_CFG_IO_IMPEDANCE_CTRL 0x1f
#define DP83869_IO_MUX_CFG_IO_IMPEDANCE_MAX 0x0
#define DP83869_IO_MUX_CFG_IO_IMPEDANCE_MIN 0x1f
#define DP83869_IO_MUX_CFG_CLK_O_SEL_MASK (0x1f << 8)
#define DP83869_IO_MUX_CFG_CLK_O_SEL_SHIFT 8
/* CFG3 bits */
#define DP83869_CFG3_PORT_MIRROR_EN BIT(0)
/* CFG4 bits */
#define DP83869_INT_OE BIT(7)
/* OP MODE */
#define DP83869_OP_MODE_MII BIT(5)
#define DP83869_SGMII_RGMII_BRIDGE BIT(6)
/* RXFCFG bits*/
#define DP83869_WOL_MAGIC_EN BIT(0)
#define DP83869_WOL_PATTERN_EN BIT(1)
#define DP83869_WOL_BCAST_EN BIT(2)
#define DP83869_WOL_UCAST_EN BIT(4)
#define DP83869_WOL_SEC_EN BIT(5)
#define DP83869_WOL_ENH_MAC BIT(7)
/* CFG2 bits */
#define DP83869_DOWNSHIFT_EN (BIT(8) | BIT(9))
#define DP83869_DOWNSHIFT_ATTEMPT_MASK (BIT(10) | BIT(11))
#define DP83869_DOWNSHIFT_1_COUNT_VAL 0
#define DP83869_DOWNSHIFT_2_COUNT_VAL 1
#define DP83869_DOWNSHIFT_4_COUNT_VAL 2
#define DP83869_DOWNSHIFT_8_COUNT_VAL 3
#define DP83869_DOWNSHIFT_1_COUNT 1
#define DP83869_DOWNSHIFT_2_COUNT 2
#define DP83869_DOWNSHIFT_4_COUNT 4
#define DP83869_DOWNSHIFT_8_COUNT 8
enum {
DP83869_PORT_MIRRORING_KEEP,
DP83869_PORT_MIRRORING_EN,
DP83869_PORT_MIRRORING_DIS,
};
struct dp83869_private {
int tx_fifo_depth;
int rx_fifo_depth;
s32 rx_int_delay;
s32 tx_int_delay;
int io_impedance;
int port_mirroring;
bool rxctrl_strap_quirk;
int clk_output_sel;
int mode;
};
static int dp83869_read_status(struct phy_device *phydev)
{
struct dp83869_private *dp83869 = phydev->priv;
int ret;
ret = genphy_read_status(phydev);
if (ret)
return ret;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported)) {
if (phydev->link) {
if (dp83869->mode == DP83869_RGMII_100_BASE)
phydev->speed = SPEED_100;
} else {
phydev->speed = SPEED_UNKNOWN;
phydev->duplex = DUPLEX_UNKNOWN;
}
}
return 0;
}
static int dp83869_ack_interrupt(struct phy_device *phydev)
{
int err = phy_read(phydev, MII_DP83869_ISR);
if (err < 0)
return err;
return 0;
}
static int dp83869_config_intr(struct phy_device *phydev)
{
int micr_status = 0, err;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = dp83869_ack_interrupt(phydev);
if (err)
return err;
micr_status = phy_read(phydev, MII_DP83869_MICR);
if (micr_status < 0)
return micr_status;
micr_status |=
(MII_DP83869_MICR_AN_ERR_INT_EN |
MII_DP83869_MICR_SPEED_CHNG_INT_EN |
MII_DP83869_MICR_AUTONEG_COMP_INT_EN |
MII_DP83869_MICR_LINK_STS_CHNG_INT_EN |
MII_DP83869_MICR_DUP_MODE_CHNG_INT_EN |
MII_DP83869_MICR_SLEEP_MODE_CHNG_INT_EN);
err = phy_write(phydev, MII_DP83869_MICR, micr_status);
} else {
err = phy_write(phydev, MII_DP83869_MICR, micr_status);
if (err)
return err;
err = dp83869_ack_interrupt(phydev);
}
return err;
}
static irqreturn_t dp83869_handle_interrupt(struct phy_device *phydev)
{
int irq_status, irq_enabled;
irq_status = phy_read(phydev, MII_DP83869_ISR);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
irq_enabled = phy_read(phydev, MII_DP83869_MICR);
if (irq_enabled < 0) {
phy_error(phydev);
return IRQ_NONE;
}
if (!(irq_status & irq_enabled))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
static int dp83869_set_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
struct net_device *ndev = phydev->attached_dev;
int val_rxcfg, val_micr;
const u8 *mac;
int ret;
val_rxcfg = phy_read_mmd(phydev, DP83869_DEVADDR, DP83869_RXFCFG);
if (val_rxcfg < 0)
return val_rxcfg;
val_micr = phy_read(phydev, MII_DP83869_MICR);
if (val_micr < 0)
return val_micr;
if (wol->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_UCAST |
WAKE_BCAST)) {
val_rxcfg |= DP83869_WOL_ENH_MAC;
val_micr |= MII_DP83869_MICR_WOL_INT_EN;
if (wol->wolopts & WAKE_MAGIC ||
wol->wolopts & WAKE_MAGICSECURE) {
mac = (const u8 *)ndev->dev_addr;
if (!is_valid_ether_addr(mac))
return -EINVAL;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFPMD1,
mac[1] << 8 | mac[0]);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFPMD2,
mac[3] << 8 | mac[2]);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFPMD3,
mac[5] << 8 | mac[4]);
if (ret)
return ret;
val_rxcfg |= DP83869_WOL_MAGIC_EN;
} else {
val_rxcfg &= ~DP83869_WOL_MAGIC_EN;
}
if (wol->wolopts & WAKE_MAGICSECURE) {
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP1,
(wol->sopass[1] << 8) | wol->sopass[0]);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP2,
(wol->sopass[3] << 8) | wol->sopass[2]);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP3,
(wol->sopass[5] << 8) | wol->sopass[4]);
if (ret)
return ret;
val_rxcfg |= DP83869_WOL_SEC_EN;
} else {
val_rxcfg &= ~DP83869_WOL_SEC_EN;
}
if (wol->wolopts & WAKE_UCAST)
val_rxcfg |= DP83869_WOL_UCAST_EN;
else
val_rxcfg &= ~DP83869_WOL_UCAST_EN;
if (wol->wolopts & WAKE_BCAST)
val_rxcfg |= DP83869_WOL_BCAST_EN;
else
val_rxcfg &= ~DP83869_WOL_BCAST_EN;
} else {
val_rxcfg &= ~DP83869_WOL_ENH_MAC;
val_micr &= ~MII_DP83869_MICR_WOL_INT_EN;
}
ret = phy_write_mmd(phydev, DP83869_DEVADDR, DP83869_RXFCFG, val_rxcfg);
if (ret)
return ret;
return phy_write(phydev, MII_DP83869_MICR, val_micr);
}
static void dp83869_get_wol(struct phy_device *phydev,
struct ethtool_wolinfo *wol)
{
int value, sopass_val;
wol->supported = (WAKE_UCAST | WAKE_BCAST | WAKE_MAGIC |
WAKE_MAGICSECURE);
wol->wolopts = 0;
value = phy_read_mmd(phydev, DP83869_DEVADDR, DP83869_RXFCFG);
if (value < 0) {
phydev_err(phydev, "Failed to read RX CFG\n");
return;
}
if (value & DP83869_WOL_UCAST_EN)
wol->wolopts |= WAKE_UCAST;
if (value & DP83869_WOL_BCAST_EN)
wol->wolopts |= WAKE_BCAST;
if (value & DP83869_WOL_MAGIC_EN)
wol->wolopts |= WAKE_MAGIC;
if (value & DP83869_WOL_SEC_EN) {
sopass_val = phy_read_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP1);
if (sopass_val < 0) {
phydev_err(phydev, "Failed to read RX SOP 1\n");
return;
}
wol->sopass[0] = (sopass_val & 0xff);
wol->sopass[1] = (sopass_val >> 8);
sopass_val = phy_read_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP2);
if (sopass_val < 0) {
phydev_err(phydev, "Failed to read RX SOP 2\n");
return;
}
wol->sopass[2] = (sopass_val & 0xff);
wol->sopass[3] = (sopass_val >> 8);
sopass_val = phy_read_mmd(phydev, DP83869_DEVADDR,
DP83869_RXFSOP3);
if (sopass_val < 0) {
phydev_err(phydev, "Failed to read RX SOP 3\n");
return;
}
wol->sopass[4] = (sopass_val & 0xff);
wol->sopass[5] = (sopass_val >> 8);
wol->wolopts |= WAKE_MAGICSECURE;
}
if (!(value & DP83869_WOL_ENH_MAC))
wol->wolopts = 0;
}
static int dp83869_get_downshift(struct phy_device *phydev, u8 *data)
{
int val, cnt, enable, count;
val = phy_read(phydev, DP83869_CFG2);
if (val < 0)
return val;
enable = FIELD_GET(DP83869_DOWNSHIFT_EN, val);
cnt = FIELD_GET(DP83869_DOWNSHIFT_ATTEMPT_MASK, val);
switch (cnt) {
case DP83869_DOWNSHIFT_1_COUNT_VAL:
count = DP83869_DOWNSHIFT_1_COUNT;
break;
case DP83869_DOWNSHIFT_2_COUNT_VAL:
count = DP83869_DOWNSHIFT_2_COUNT;
break;
case DP83869_DOWNSHIFT_4_COUNT_VAL:
count = DP83869_DOWNSHIFT_4_COUNT;
break;
case DP83869_DOWNSHIFT_8_COUNT_VAL:
count = DP83869_DOWNSHIFT_8_COUNT;
break;
default:
return -EINVAL;
}
*data = enable ? count : DOWNSHIFT_DEV_DISABLE;
return 0;
}
static int dp83869_set_downshift(struct phy_device *phydev, u8 cnt)
{
int val, count;
if (cnt > DP83869_DOWNSHIFT_8_COUNT)
return -EINVAL;
if (!cnt)
return phy_clear_bits(phydev, DP83869_CFG2,
DP83869_DOWNSHIFT_EN);
switch (cnt) {
case DP83869_DOWNSHIFT_1_COUNT:
count = DP83869_DOWNSHIFT_1_COUNT_VAL;
break;
case DP83869_DOWNSHIFT_2_COUNT:
count = DP83869_DOWNSHIFT_2_COUNT_VAL;
break;
case DP83869_DOWNSHIFT_4_COUNT:
count = DP83869_DOWNSHIFT_4_COUNT_VAL;
break;
case DP83869_DOWNSHIFT_8_COUNT:
count = DP83869_DOWNSHIFT_8_COUNT_VAL;
break;
default:
phydev_err(phydev,
"Downshift count must be 1, 2, 4 or 8\n");
return -EINVAL;
}
val = DP83869_DOWNSHIFT_EN;
val |= FIELD_PREP(DP83869_DOWNSHIFT_ATTEMPT_MASK, count);
return phy_modify(phydev, DP83869_CFG2,
DP83869_DOWNSHIFT_EN | DP83869_DOWNSHIFT_ATTEMPT_MASK,
val);
}
static int dp83869_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return dp83869_get_downshift(phydev, data);
default:
return -EOPNOTSUPP;
}
}
static int dp83869_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return dp83869_set_downshift(phydev, *(const u8 *)data);
default:
return -EOPNOTSUPP;
}
}
static int dp83869_config_port_mirroring(struct phy_device *phydev)
{
struct dp83869_private *dp83869 = phydev->priv;
if (dp83869->port_mirroring == DP83869_PORT_MIRRORING_EN)
return phy_set_bits_mmd(phydev, DP83869_DEVADDR,
DP83869_GEN_CFG3,
DP83869_CFG3_PORT_MIRROR_EN);
else
return phy_clear_bits_mmd(phydev, DP83869_DEVADDR,
DP83869_GEN_CFG3,
DP83869_CFG3_PORT_MIRROR_EN);
}
static int dp83869_set_strapped_mode(struct phy_device *phydev)
{
struct dp83869_private *dp83869 = phydev->priv;
int val;
val = phy_read_mmd(phydev, DP83869_DEVADDR, DP83869_STRAP_STS1);
if (val < 0)
return val;
dp83869->mode = val & DP83869_STRAP_OP_MODE_MASK;
return 0;
}
#if IS_ENABLED(CONFIG_OF_MDIO)
static const int dp83869_internal_delay[] = {250, 500, 750, 1000, 1250, 1500,
1750, 2000, 2250, 2500, 2750, 3000,
3250, 3500, 3750, 4000};
static int dp83869_of_init(struct phy_device *phydev)
{
struct dp83869_private *dp83869 = phydev->priv;
struct device *dev = &phydev->mdio.dev;
struct device_node *of_node = dev->of_node;
int delay_size = ARRAY_SIZE(dp83869_internal_delay);
int ret;
if (!of_node)
return -ENODEV;
dp83869->io_impedance = -EINVAL;
/* Optional configuration */
ret = of_property_read_u32(of_node, "ti,clk-output-sel",
&dp83869->clk_output_sel);
if (ret || dp83869->clk_output_sel > DP83869_CLK_O_SEL_REF_CLK)
dp83869->clk_output_sel = DP83869_CLK_O_SEL_REF_CLK;
ret = of_property_read_u32(of_node, "ti,op-mode", &dp83869->mode);
if (ret == 0) {
if (dp83869->mode < DP83869_RGMII_COPPER_ETHERNET ||
dp83869->mode > DP83869_SGMII_COPPER_ETHERNET)
return -EINVAL;
} else {
ret = dp83869_set_strapped_mode(phydev);
if (ret)
return ret;
}
if (of_property_read_bool(of_node, "ti,max-output-impedance"))
dp83869->io_impedance = DP83869_IO_MUX_CFG_IO_IMPEDANCE_MAX;
else if (of_property_read_bool(of_node, "ti,min-output-impedance"))
dp83869->io_impedance = DP83869_IO_MUX_CFG_IO_IMPEDANCE_MIN;
if (of_property_read_bool(of_node, "enet-phy-lane-swap")) {
dp83869->port_mirroring = DP83869_PORT_MIRRORING_EN;
} else {
/* If the lane swap is not in the DT then check the straps */
ret = phy_read_mmd(phydev, DP83869_DEVADDR, DP83869_STRAP_STS1);
if (ret < 0)
return ret;
if (ret & DP83869_STRAP_MIRROR_ENABLED)
dp83869->port_mirroring = DP83869_PORT_MIRRORING_EN;
else
dp83869->port_mirroring = DP83869_PORT_MIRRORING_DIS;
ret = 0;
}
if (of_property_read_u32(of_node, "rx-fifo-depth",
&dp83869->rx_fifo_depth))
dp83869->rx_fifo_depth = DP83869_PHYCR_FIFO_DEPTH_4_B_NIB;
if (of_property_read_u32(of_node, "tx-fifo-depth",
&dp83869->tx_fifo_depth))
dp83869->tx_fifo_depth = DP83869_PHYCR_FIFO_DEPTH_4_B_NIB;
dp83869->rx_int_delay = phy_get_internal_delay(phydev, dev,
&dp83869_internal_delay[0],
delay_size, true);
if (dp83869->rx_int_delay < 0)
dp83869->rx_int_delay =
dp83869_internal_delay[DP83869_CLK_DELAY_DEF];
dp83869->tx_int_delay = phy_get_internal_delay(phydev, dev,
&dp83869_internal_delay[0],
delay_size, false);
if (dp83869->tx_int_delay < 0)
dp83869->tx_int_delay =
dp83869_internal_delay[DP83869_CLK_DELAY_DEF];
return ret;
}
#else
static int dp83869_of_init(struct phy_device *phydev)
{
return dp83869_set_strapped_mode(phydev);
}
#endif /* CONFIG_OF_MDIO */
static int dp83869_configure_rgmii(struct phy_device *phydev,
struct dp83869_private *dp83869)
{
int ret = 0, val;
if (phy_interface_is_rgmii(phydev)) {
val = phy_read(phydev, MII_DP83869_PHYCTRL);
if (val < 0)
return val;
val &= ~DP83869_PHYCR_FIFO_DEPTH_MASK;
val |= (dp83869->tx_fifo_depth << DP83869_TX_FIFO_SHIFT);
val |= (dp83869->rx_fifo_depth << DP83869_RX_FIFO_SHIFT);
ret = phy_write(phydev, MII_DP83869_PHYCTRL, val);
if (ret)
return ret;
}
if (dp83869->io_impedance >= 0)
ret = phy_modify_mmd(phydev, DP83869_DEVADDR,
DP83869_IO_MUX_CFG,
DP83869_IO_MUX_CFG_IO_IMPEDANCE_CTRL,
dp83869->io_impedance &
DP83869_IO_MUX_CFG_IO_IMPEDANCE_CTRL);
return ret;
}
static int dp83869_configure_fiber(struct phy_device *phydev,
struct dp83869_private *dp83869)
{
int bmcr;
int ret;
/* Only allow advertising what this PHY supports */
linkmode_and(phydev->advertising, phydev->advertising,
phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported);
linkmode_set_bit(ADVERTISED_FIBRE, phydev->advertising);
if (dp83869->mode == DP83869_RGMII_1000_BASE) {
linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
phydev->supported);
} else {
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseFX_Full_BIT,
phydev->supported);
linkmode_set_bit(ETHTOOL_LINK_MODE_100baseFX_Half_BIT,
phydev->supported);
/* Auto neg is not supported in 100base FX mode */
bmcr = phy_read(phydev, MII_BMCR);
if (bmcr < 0)
return bmcr;
phydev->autoneg = AUTONEG_DISABLE;
linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported);
linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->advertising);
if (bmcr & BMCR_ANENABLE) {
ret = phy_modify(phydev, MII_BMCR, BMCR_ANENABLE, 0);
if (ret < 0)
return ret;
}
}
/* Update advertising from supported */
linkmode_or(phydev->advertising, phydev->advertising,
phydev->supported);
return 0;
}
static int dp83869_configure_mode(struct phy_device *phydev,
struct dp83869_private *dp83869)
{
int phy_ctrl_val;
int ret;
if (dp83869->mode < DP83869_RGMII_COPPER_ETHERNET ||
dp83869->mode > DP83869_SGMII_COPPER_ETHERNET)
return -EINVAL;
/* Below init sequence for each operational mode is defined in
* section 9.4.8 of the datasheet.
*/
ret = phy_write_mmd(phydev, DP83869_DEVADDR, DP83869_OP_MODE,
dp83869->mode);
if (ret)
return ret;
ret = phy_write(phydev, MII_BMCR, MII_DP83869_BMCR_DEFAULT);
if (ret)
return ret;
phy_ctrl_val = (dp83869->rx_fifo_depth << DP83869_RX_FIFO_SHIFT |
dp83869->tx_fifo_depth << DP83869_TX_FIFO_SHIFT |
DP83869_PHY_CTRL_DEFAULT);
switch (dp83869->mode) {
case DP83869_RGMII_COPPER_ETHERNET:
ret = phy_write(phydev, MII_DP83869_PHYCTRL,
phy_ctrl_val);
if (ret)
return ret;
ret = phy_write(phydev, MII_CTRL1000, DP83869_CFG1_DEFAULT);
if (ret)
return ret;
ret = dp83869_configure_rgmii(phydev, dp83869);
if (ret)
return ret;
break;
case DP83869_RGMII_SGMII_BRIDGE:
ret = phy_modify_mmd(phydev, DP83869_DEVADDR, DP83869_OP_MODE,
DP83869_SGMII_RGMII_BRIDGE,
DP83869_SGMII_RGMII_BRIDGE);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_FX_CTRL, DP83869_FX_CTRL_DEFAULT);
if (ret)
return ret;
break;
case DP83869_1000M_MEDIA_CONVERT:
ret = phy_write(phydev, MII_DP83869_PHYCTRL,
phy_ctrl_val);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_FX_CTRL, DP83869_FX_CTRL_DEFAULT);
if (ret)
return ret;
break;
case DP83869_100M_MEDIA_CONVERT:
ret = phy_write(phydev, MII_DP83869_PHYCTRL,
phy_ctrl_val);
if (ret)
return ret;
break;
case DP83869_SGMII_COPPER_ETHERNET:
ret = phy_write(phydev, MII_DP83869_PHYCTRL,
phy_ctrl_val);
if (ret)
return ret;
ret = phy_write(phydev, MII_CTRL1000, DP83869_CFG1_DEFAULT);
if (ret)
return ret;
ret = phy_write_mmd(phydev, DP83869_DEVADDR,
DP83869_FX_CTRL, DP83869_FX_CTRL_DEFAULT);
if (ret)
return ret;
break;
case DP83869_RGMII_1000_BASE:
case DP83869_RGMII_100_BASE:
ret = dp83869_configure_fiber(phydev, dp83869);
break;
default:
return -EINVAL;
}
return ret;
}
static int dp83869_config_init(struct phy_device *phydev)
{
struct dp83869_private *dp83869 = phydev->priv;
int ret, val;
/* Force speed optimization for the PHY even if it strapped */
ret = phy_modify(phydev, DP83869_CFG2, DP83869_DOWNSHIFT_EN,
DP83869_DOWNSHIFT_EN);
if (ret)
return ret;
ret = dp83869_configure_mode(phydev, dp83869);
if (ret)
return ret;
/* Enable Interrupt output INT_OE in CFG4 register */
if (phy_interrupt_is_valid(phydev)) {
val = phy_read(phydev, DP83869_CFG4);
val |= DP83869_INT_OE;
phy_write(phydev, DP83869_CFG4, val);
}
if (dp83869->port_mirroring != DP83869_PORT_MIRRORING_KEEP)
dp83869_config_port_mirroring(phydev);
/* Clock output selection if muxing property is set */
if (dp83869->clk_output_sel != DP83869_CLK_O_SEL_REF_CLK)
ret = phy_modify_mmd(phydev,
DP83869_DEVADDR, DP83869_IO_MUX_CFG,
DP83869_IO_MUX_CFG_CLK_O_SEL_MASK,
dp83869->clk_output_sel <<
DP83869_IO_MUX_CFG_CLK_O_SEL_SHIFT);
if (phy_interface_is_rgmii(phydev)) {
ret = phy_write_mmd(phydev, DP83869_DEVADDR, DP83869_RGMIIDCTL,
dp83869->rx_int_delay |
dp83869->tx_int_delay << DP83869_RGMII_CLK_DELAY_SHIFT);
if (ret)
return ret;
val = phy_read_mmd(phydev, DP83869_DEVADDR, DP83869_RGMIICTL);
val |= (DP83869_RGMII_TX_CLK_DELAY_EN |
DP83869_RGMII_RX_CLK_DELAY_EN);
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
val &= ~(DP83869_RGMII_TX_CLK_DELAY_EN |
DP83869_RGMII_RX_CLK_DELAY_EN);
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
val &= ~DP83869_RGMII_TX_CLK_DELAY_EN;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
val &= ~DP83869_RGMII_RX_CLK_DELAY_EN;
ret = phy_write_mmd(phydev, DP83869_DEVADDR, DP83869_RGMIICTL,
val);
}
return ret;
}
static int dp83869_probe(struct phy_device *phydev)
{
struct dp83869_private *dp83869;
int ret;
dp83869 = devm_kzalloc(&phydev->mdio.dev, sizeof(*dp83869),
GFP_KERNEL);
if (!dp83869)
return -ENOMEM;
phydev->priv = dp83869;
ret = dp83869_of_init(phydev);
if (ret)
return ret;
if (dp83869->mode == DP83869_RGMII_100_BASE ||
dp83869->mode == DP83869_RGMII_1000_BASE)
phydev->port = PORT_FIBRE;
return dp83869_config_init(phydev);
}
static int dp83869_phy_reset(struct phy_device *phydev)
{
int ret;
ret = phy_write(phydev, DP83869_CTRL, DP83869_SW_RESET);
if (ret < 0)
return ret;
usleep_range(10, 20);
/* Global sw reset sets all registers to default.
* Need to set the registers in the PHY to the right config.
*/
return dp83869_config_init(phydev);
}
#define DP83869_PHY_DRIVER(_id, _name) \
{ \
PHY_ID_MATCH_MODEL(_id), \
.name = (_name), \
.probe = dp83869_probe, \
.config_init = dp83869_config_init, \
.soft_reset = dp83869_phy_reset, \
.config_intr = dp83869_config_intr, \
.handle_interrupt = dp83869_handle_interrupt, \
.read_status = dp83869_read_status, \
.get_tunable = dp83869_get_tunable, \
.set_tunable = dp83869_set_tunable, \
.get_wol = dp83869_get_wol, \
.set_wol = dp83869_set_wol, \
.suspend = genphy_suspend, \
.resume = genphy_resume, \
}
static struct phy_driver dp83869_driver[] = {
DP83869_PHY_DRIVER(DP83869_PHY_ID, "TI DP83869"),
DP83869_PHY_DRIVER(DP83561_PHY_ID, "TI DP83561-SP"),
};
module_phy_driver(dp83869_driver);
static struct mdio_device_id __maybe_unused dp83869_tbl[] = {
{ PHY_ID_MATCH_MODEL(DP83869_PHY_ID) },
{ PHY_ID_MATCH_MODEL(DP83561_PHY_ID) },
{ }
};
MODULE_DEVICE_TABLE(mdio, dp83869_tbl);
MODULE_DESCRIPTION("Texas Instruments DP83869 PHY driver");
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com");
MODULE_LICENSE("GPL v2");