linux/linux-5.18.11/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c

7505 lines
199 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
ST Ethernet IPs are built around a Synopsys IP Core.
Copyright(C) 2007-2011 STMicroelectronics Ltd
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Documentation available at:
http://www.stlinux.com
Support available at:
https://bugzilla.stlinux.com/
*******************************************************************************/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/prefetch.h>
#include <linux/pinctrl/consumer.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif /* CONFIG_DEBUG_FS */
#include <linux/net_tstamp.h>
#include <linux/phylink.h>
#include <linux/udp.h>
#include <linux/bpf_trace.h>
#include <net/pkt_cls.h>
#include <net/xdp_sock_drv.h>
#include "stmmac_ptp.h"
#include "stmmac.h"
#include "stmmac_xdp.h"
#include <linux/reset.h>
#include <linux/of_mdio.h>
#include "dwmac1000.h"
#include "dwxgmac2.h"
#include "hwif.h"
/* As long as the interface is active, we keep the timestamping counter enabled
* with fine resolution and binary rollover. This avoid non-monotonic behavior
* (clock jumps) when changing timestamping settings at runtime.
*/
#define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
PTP_TCR_TSCTRLSSR)
#define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
#define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
/* Module parameters */
#define TX_TIMEO 5000
static int watchdog = TX_TIMEO;
module_param(watchdog, int, 0644);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
static int debug = -1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
static int phyaddr = -1;
module_param(phyaddr, int, 0444);
MODULE_PARM_DESC(phyaddr, "Physical device address");
#define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
#define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
/* Limit to make sure XDP TX and slow path can coexist */
#define STMMAC_XSK_TX_BUDGET_MAX 256
#define STMMAC_TX_XSK_AVAIL 16
#define STMMAC_RX_FILL_BATCH 16
#define STMMAC_XDP_PASS 0
#define STMMAC_XDP_CONSUMED BIT(0)
#define STMMAC_XDP_TX BIT(1)
#define STMMAC_XDP_REDIRECT BIT(2)
static int flow_ctrl = FLOW_AUTO;
module_param(flow_ctrl, int, 0644);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
static int pause = PAUSE_TIME;
module_param(pause, int, 0644);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");
#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, 0644);
MODULE_PARM_DESC(tc, "DMA threshold control value");
#define DEFAULT_BUFSIZE 1536
static int buf_sz = DEFAULT_BUFSIZE;
module_param(buf_sz, int, 0644);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");
#define STMMAC_RX_COPYBREAK 256
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
#define STMMAC_DEFAULT_LPI_TIMER 1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, 0644);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
/* By default the driver will use the ring mode to manage tx and rx descriptors,
* but allow user to force to use the chain instead of the ring
*/
static unsigned int chain_mode;
module_param(chain_mode, int, 0444);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
/* For MSI interrupts handling */
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
u32 rxmode, u32 chan);
#ifdef CONFIG_DEBUG_FS
static const struct net_device_ops stmmac_netdev_ops;
static void stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(struct net_device *dev);
#endif
#define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
{
int ret = 0;
if (enabled) {
ret = clk_prepare_enable(priv->plat->stmmac_clk);
if (ret)
return ret;
ret = clk_prepare_enable(priv->plat->pclk);
if (ret) {
clk_disable_unprepare(priv->plat->stmmac_clk);
return ret;
}
if (priv->plat->clks_config) {
ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
if (ret) {
clk_disable_unprepare(priv->plat->stmmac_clk);
clk_disable_unprepare(priv->plat->pclk);
return ret;
}
}
} else {
clk_disable_unprepare(priv->plat->stmmac_clk);
clk_disable_unprepare(priv->plat->pclk);
if (priv->plat->clks_config)
priv->plat->clks_config(priv->plat->bsp_priv, enabled);
}
return ret;
}
EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
/**
* stmmac_verify_args - verify the driver parameters.
* Description: it checks the driver parameters and set a default in case of
* errors.
*/
static void stmmac_verify_args(void)
{
if (unlikely(watchdog < 0))
watchdog = TX_TIMEO;
if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
buf_sz = DEFAULT_BUFSIZE;
if (unlikely(flow_ctrl > 1))
flow_ctrl = FLOW_AUTO;
else if (likely(flow_ctrl < 0))
flow_ctrl = FLOW_OFF;
if (unlikely((pause < 0) || (pause > 0xffff)))
pause = PAUSE_TIME;
if (eee_timer < 0)
eee_timer = STMMAC_DEFAULT_LPI_TIMER;
}
static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
u32 queue;
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps)) {
napi_disable(&ch->rxtx_napi);
continue;
}
if (queue < rx_queues_cnt)
napi_disable(&ch->rx_napi);
if (queue < tx_queues_cnt)
napi_disable(&ch->tx_napi);
}
}
/**
* stmmac_disable_all_queues - Disable all queues
* @priv: driver private structure
*/
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
struct stmmac_rx_queue *rx_q;
u32 queue;
/* synchronize_rcu() needed for pending XDP buffers to drain */
for (queue = 0; queue < rx_queues_cnt; queue++) {
rx_q = &priv->rx_queue[queue];
if (rx_q->xsk_pool) {
synchronize_rcu();
break;
}
}
__stmmac_disable_all_queues(priv);
}
/**
* stmmac_enable_all_queues - Enable all queues
* @priv: driver private structure
*/
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
u32 queue;
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps)) {
napi_enable(&ch->rxtx_napi);
continue;
}
if (queue < rx_queues_cnt)
napi_enable(&ch->rx_napi);
if (queue < tx_queues_cnt)
napi_enable(&ch->tx_napi);
}
}
static void stmmac_service_event_schedule(struct stmmac_priv *priv)
{
if (!test_bit(STMMAC_DOWN, &priv->state) &&
!test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
queue_work(priv->wq, &priv->service_task);
}
static void stmmac_global_err(struct stmmac_priv *priv)
{
netif_carrier_off(priv->dev);
set_bit(STMMAC_RESET_REQUESTED, &priv->state);
stmmac_service_event_schedule(priv);
}
/**
* stmmac_clk_csr_set - dynamically set the MDC clock
* @priv: driver private structure
* Description: this is to dynamically set the MDC clock according to the csr
* clock input.
* Note:
* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed (as reported in the driver
* documentation). Viceversa the driver will try to set the MDC
* clock dynamically according to the actual clock input.
*/
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
u32 clk_rate;
clk_rate = clk_get_rate(priv->plat->stmmac_clk);
/* Platform provided default clk_csr would be assumed valid
* for all other cases except for the below mentioned ones.
* For values higher than the IEEE 802.3 specified frequency
* we can not estimate the proper divider as it is not known
* the frequency of clk_csr_i. So we do not change the default
* divider.
*/
if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
if (clk_rate < CSR_F_35M)
priv->clk_csr = STMMAC_CSR_20_35M;
else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
priv->clk_csr = STMMAC_CSR_35_60M;
else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
priv->clk_csr = STMMAC_CSR_60_100M;
else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
priv->clk_csr = STMMAC_CSR_100_150M;
else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
priv->clk_csr = STMMAC_CSR_150_250M;
else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
priv->clk_csr = STMMAC_CSR_250_300M;
}
if (priv->plat->has_sun8i) {
if (clk_rate > 160000000)
priv->clk_csr = 0x03;
else if (clk_rate > 80000000)
priv->clk_csr = 0x02;
else if (clk_rate > 40000000)
priv->clk_csr = 0x01;
else
priv->clk_csr = 0;
}
if (priv->plat->has_xgmac) {
if (clk_rate > 400000000)
priv->clk_csr = 0x5;
else if (clk_rate > 350000000)
priv->clk_csr = 0x4;
else if (clk_rate > 300000000)
priv->clk_csr = 0x3;
else if (clk_rate > 250000000)
priv->clk_csr = 0x2;
else if (clk_rate > 150000000)
priv->clk_csr = 0x1;
else
priv->clk_csr = 0x0;
}
}
static void print_pkt(unsigned char *buf, int len)
{
pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
}
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
u32 avail;
if (tx_q->dirty_tx > tx_q->cur_tx)
avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
else
avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
return avail;
}
/**
* stmmac_rx_dirty - Get RX queue dirty
* @priv: driver private structure
* @queue: RX queue index
*/
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
u32 dirty;
if (rx_q->dirty_rx <= rx_q->cur_rx)
dirty = rx_q->cur_rx - rx_q->dirty_rx;
else
dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
return dirty;
}
static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
{
int tx_lpi_timer;
/* Clear/set the SW EEE timer flag based on LPI ET enablement */
priv->eee_sw_timer_en = en ? 0 : 1;
tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
}
/**
* stmmac_enable_eee_mode - check and enter in LPI mode
* @priv: driver private structure
* Description: this function is to verify and enter in LPI mode in case of
* EEE.
*/
static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* check if all TX queues have the work finished */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->dirty_tx != tx_q->cur_tx)
return -EBUSY; /* still unfinished work */
}
/* Check and enter in LPI mode */
if (!priv->tx_path_in_lpi_mode)
stmmac_set_eee_mode(priv, priv->hw,
priv->plat->en_tx_lpi_clockgating);
return 0;
}
/**
* stmmac_disable_eee_mode - disable and exit from LPI mode
* @priv: driver private structure
* Description: this function is to exit and disable EEE in case of
* LPI state is true. This is called by the xmit.
*/
void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
if (!priv->eee_sw_timer_en) {
stmmac_lpi_entry_timer_config(priv, 0);
return;
}
stmmac_reset_eee_mode(priv, priv->hw);
del_timer_sync(&priv->eee_ctrl_timer);
priv->tx_path_in_lpi_mode = false;
}
/**
* stmmac_eee_ctrl_timer - EEE TX SW timer.
* @t: timer_list struct containing private info
* Description:
* if there is no data transfer and if we are not in LPI state,
* then MAC Transmitter can be moved to LPI state.
*/
static void stmmac_eee_ctrl_timer(struct timer_list *t)
{
struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
if (stmmac_enable_eee_mode(priv))
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
}
/**
* stmmac_eee_init - init EEE
* @priv: driver private structure
* Description:
* if the GMAC supports the EEE (from the HW cap reg) and the phy device
* can also manage EEE, this function enable the LPI state and start related
* timer.
*/
bool stmmac_eee_init(struct stmmac_priv *priv)
{
int eee_tw_timer = priv->eee_tw_timer;
/* Using PCS we cannot dial with the phy registers at this stage
* so we do not support extra feature like EEE.
*/
if (priv->hw->pcs == STMMAC_PCS_TBI ||
priv->hw->pcs == STMMAC_PCS_RTBI)
return false;
/* Check if MAC core supports the EEE feature. */
if (!priv->dma_cap.eee)
return false;
mutex_lock(&priv->lock);
/* Check if it needs to be deactivated */
if (!priv->eee_active) {
if (priv->eee_enabled) {
netdev_dbg(priv->dev, "disable EEE\n");
stmmac_lpi_entry_timer_config(priv, 0);
del_timer_sync(&priv->eee_ctrl_timer);
stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
if (priv->hw->xpcs)
xpcs_config_eee(priv->hw->xpcs,
priv->plat->mult_fact_100ns,
false);
}
mutex_unlock(&priv->lock);
return false;
}
if (priv->eee_active && !priv->eee_enabled) {
timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
eee_tw_timer);
if (priv->hw->xpcs)
xpcs_config_eee(priv->hw->xpcs,
priv->plat->mult_fact_100ns,
true);
}
if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
del_timer_sync(&priv->eee_ctrl_timer);
priv->tx_path_in_lpi_mode = false;
stmmac_lpi_entry_timer_config(priv, 1);
} else {
stmmac_lpi_entry_timer_config(priv, 0);
mod_timer(&priv->eee_ctrl_timer,
STMMAC_LPI_T(priv->tx_lpi_timer));
}
mutex_unlock(&priv->lock);
netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
return true;
}
/* stmmac_get_tx_hwtstamp - get HW TX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read timestamp from the descriptor & pass it to stack.
* and also perform some sanity checks.
*/
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
struct dma_desc *p, struct sk_buff *skb)
{
struct skb_shared_hwtstamps shhwtstamp;
bool found = false;
u64 ns = 0;
if (!priv->hwts_tx_en)
return;
/* exit if skb doesn't support hw tstamp */
if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
return;
/* check tx tstamp status */
if (stmmac_get_tx_timestamp_status(priv, p)) {
stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
found = true;
} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
found = true;
}
if (found) {
ns -= priv->plat->cdc_error_adj;
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp.hwtstamp = ns_to_ktime(ns);
netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
/* pass tstamp to stack */
skb_tstamp_tx(skb, &shhwtstamp);
}
}
/* stmmac_get_rx_hwtstamp - get HW RX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @np : next descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read received packet's timestamp from the descriptor
* and pass it to stack. It also perform some sanity checks.
*/
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
struct dma_desc *np, struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamp = NULL;
struct dma_desc *desc = p;
u64 ns = 0;
if (!priv->hwts_rx_en)
return;
/* For GMAC4, the valid timestamp is from CTX next desc. */
if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
desc = np;
/* Check if timestamp is available */
if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
ns -= priv->plat->cdc_error_adj;
netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
shhwtstamp = skb_hwtstamps(skb);
memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp->hwtstamp = ns_to_ktime(ns);
} else {
netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
}
}
/**
* stmmac_hwtstamp_set - control hardware timestamping.
* @dev: device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* Description:
* This function configures the MAC to enable/disable both outgoing(TX)
* and incoming(RX) packets time stamping based on user input.
* Return Value:
* 0 on success and an appropriate -ve integer on failure.
*/
static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct hwtstamp_config config;
u32 ptp_v2 = 0;
u32 tstamp_all = 0;
u32 ptp_over_ipv4_udp = 0;
u32 ptp_over_ipv6_udp = 0;
u32 ptp_over_ethernet = 0;
u32 snap_type_sel = 0;
u32 ts_master_en = 0;
u32 ts_event_en = 0;
if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
netdev_alert(priv->dev, "No support for HW time stamping\n");
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
return -EOPNOTSUPP;
}
if (copy_from_user(&config, ifr->ifr_data,
sizeof(config)))
return -EFAULT;
netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
__func__, config.flags, config.tx_type, config.rx_filter);
if (config.tx_type != HWTSTAMP_TX_OFF &&
config.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
if (priv->adv_ts) {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
/* time stamp no incoming packet at all */
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
/* 'xmac' hardware can support Sync, Pdelay_Req and
* Pdelay_resp by setting bit14 and bits17/16 to 01
* This leaves Delay_Req timestamps out.
* Enable all events *and* general purpose message
* timestamping
*/
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
/* PTP v1, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
/* PTP v1, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
/* PTP v2, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for all event messages */
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
/* PTP v2, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
/* PTP v2, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
/* PTP v2/802.AS1 any layer, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
if (priv->synopsys_id < DWMAC_CORE_4_10)
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_SYNC:
/* PTP v2/802.AS1, any layer, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* PTP v2/802.AS1, any layer, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
/* time stamp any incoming packet */
config.rx_filter = HWTSTAMP_FILTER_ALL;
tstamp_all = PTP_TCR_TSENALL;
break;
default:
return -ERANGE;
}
} else {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
default:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
}
}
priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
priv->systime_flags = STMMAC_HWTS_ACTIVE;
if (priv->hwts_tx_en || priv->hwts_rx_en) {
priv->systime_flags |= tstamp_all | ptp_v2 |
ptp_over_ethernet | ptp_over_ipv6_udp |
ptp_over_ipv4_udp | ts_event_en |
ts_master_en | snap_type_sel;
}
stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
memcpy(&priv->tstamp_config, &config, sizeof(config));
return copy_to_user(ifr->ifr_data, &config,
sizeof(config)) ? -EFAULT : 0;
}
/**
* stmmac_hwtstamp_get - read hardware timestamping.
* @dev: device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* Description:
* This function obtain the current hardware timestamping settings
* as requested.
*/
static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct hwtstamp_config *config = &priv->tstamp_config;
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
return -EOPNOTSUPP;
return copy_to_user(ifr->ifr_data, config,
sizeof(*config)) ? -EFAULT : 0;
}
/**
* stmmac_init_tstamp_counter - init hardware timestamping counter
* @priv: driver private structure
* @systime_flags: timestamping flags
* Description:
* Initialize hardware counter for packet timestamping.
* This is valid as long as the interface is open and not suspended.
* Will be rerun after resuming from suspend, case in which the timestamping
* flags updated by stmmac_hwtstamp_set() also need to be restored.
*/
int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
{
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
struct timespec64 now;
u32 sec_inc = 0;
u64 temp = 0;
int ret;
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
return -EOPNOTSUPP;
ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
if (ret < 0) {
netdev_warn(priv->dev,
"failed to enable PTP reference clock: %pe\n",
ERR_PTR(ret));
return ret;
}
stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
priv->systime_flags = systime_flags;
/* program Sub Second Increment reg */
stmmac_config_sub_second_increment(priv, priv->ptpaddr,
priv->plat->clk_ptp_rate,
xmac, &sec_inc);
temp = div_u64(1000000000ULL, sec_inc);
/* Store sub second increment for later use */
priv->sub_second_inc = sec_inc;
/* calculate default added value:
* formula is :
* addend = (2^32)/freq_div_ratio;
* where, freq_div_ratio = 1e9ns/sec_inc
*/
temp = (u64)(temp << 32);
priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
/* initialize system time */
ktime_get_real_ts64(&now);
/* lower 32 bits of tv_sec are safe until y2106 */
stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
/**
* stmmac_init_ptp - init PTP
* @priv: driver private structure
* Description: this is to verify if the HW supports the PTPv1 or PTPv2.
* This is done by looking at the HW cap. register.
* This function also registers the ptp driver.
*/
static int stmmac_init_ptp(struct stmmac_priv *priv)
{
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
int ret;
if (priv->plat->ptp_clk_freq_config)
priv->plat->ptp_clk_freq_config(priv);
ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
if (ret)
return ret;
priv->adv_ts = 0;
/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
if (xmac && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
/* Dwmac 3.x core with extend_desc can support adv_ts */
else if (priv->extend_desc && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
if (priv->dma_cap.time_stamp)
netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
if (priv->adv_ts)
netdev_info(priv->dev,
"IEEE 1588-2008 Advanced Timestamp supported\n");
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
return 0;
}
static void stmmac_release_ptp(struct stmmac_priv *priv)
{
clk_disable_unprepare(priv->plat->clk_ptp_ref);
stmmac_ptp_unregister(priv);
}
/**
* stmmac_mac_flow_ctrl - Configure flow control in all queues
* @priv: driver private structure
* @duplex: duplex passed to the next function
* Description: It is used for configuring the flow control in all queues
*/
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
priv->pause, tx_cnt);
}
static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
if (!priv->hw->xpcs)
return NULL;
return &priv->hw->xpcs->pcs;
}
static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
/* Nothing to do, xpcs_config() handles everything */
}
static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
{
struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
bool *hs_enable = &fpe_cfg->hs_enable;
if (is_up && *hs_enable) {
stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
} else {
*lo_state = FPE_STATE_OFF;
*lp_state = FPE_STATE_OFF;
}
}
static void stmmac_mac_link_down(struct phylink_config *config,
unsigned int mode, phy_interface_t interface)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
stmmac_mac_set(priv, priv->ioaddr, false);
priv->eee_active = false;
priv->tx_lpi_enabled = false;
priv->eee_enabled = stmmac_eee_init(priv);
stmmac_set_eee_pls(priv, priv->hw, false);
if (priv->dma_cap.fpesel)
stmmac_fpe_link_state_handle(priv, false);
}
static void stmmac_mac_link_up(struct phylink_config *config,
struct phy_device *phy,
unsigned int mode, phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
u32 ctrl;
ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
ctrl &= ~priv->hw->link.speed_mask;
if (interface == PHY_INTERFACE_MODE_USXGMII) {
switch (speed) {
case SPEED_10000:
ctrl |= priv->hw->link.xgmii.speed10000;
break;
case SPEED_5000:
ctrl |= priv->hw->link.xgmii.speed5000;
break;
case SPEED_2500:
ctrl |= priv->hw->link.xgmii.speed2500;
break;
default:
return;
}
} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
switch (speed) {
case SPEED_100000:
ctrl |= priv->hw->link.xlgmii.speed100000;
break;
case SPEED_50000:
ctrl |= priv->hw->link.xlgmii.speed50000;
break;
case SPEED_40000:
ctrl |= priv->hw->link.xlgmii.speed40000;
break;
case SPEED_25000:
ctrl |= priv->hw->link.xlgmii.speed25000;
break;
case SPEED_10000:
ctrl |= priv->hw->link.xgmii.speed10000;
break;
case SPEED_2500:
ctrl |= priv->hw->link.speed2500;
break;
case SPEED_1000:
ctrl |= priv->hw->link.speed1000;
break;
default:
return;
}
} else {
switch (speed) {
case SPEED_2500:
ctrl |= priv->hw->link.speed2500;
break;
case SPEED_1000:
ctrl |= priv->hw->link.speed1000;
break;
case SPEED_100:
ctrl |= priv->hw->link.speed100;
break;
case SPEED_10:
ctrl |= priv->hw->link.speed10;
break;
default:
return;
}
}
priv->speed = speed;
if (priv->plat->fix_mac_speed)
priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
if (!duplex)
ctrl &= ~priv->hw->link.duplex;
else
ctrl |= priv->hw->link.duplex;
/* Flow Control operation */
if (tx_pause && rx_pause)
stmmac_mac_flow_ctrl(priv, duplex);
writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
stmmac_mac_set(priv, priv->ioaddr, true);
if (phy && priv->dma_cap.eee) {
priv->eee_active = phy_init_eee(phy, 1) >= 0;
priv->eee_enabled = stmmac_eee_init(priv);
priv->tx_lpi_enabled = priv->eee_enabled;
stmmac_set_eee_pls(priv, priv->hw, true);
}
if (priv->dma_cap.fpesel)
stmmac_fpe_link_state_handle(priv, true);
}
static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
.validate = phylink_generic_validate,
.mac_select_pcs = stmmac_mac_select_pcs,
.mac_config = stmmac_mac_config,
.mac_link_down = stmmac_mac_link_down,
.mac_link_up = stmmac_mac_link_up,
};
/**
* stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
* @priv: driver private structure
* Description: this is to verify if the HW supports the PCS.
* Physical Coding Sublayer (PCS) interface that can be used when the MAC is
* configured for the TBI, RTBI, or SGMII PHY interface.
*/
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
int interface = priv->plat->interface;
if (priv->dma_cap.pcs) {
if ((interface == PHY_INTERFACE_MODE_RGMII) ||
(interface == PHY_INTERFACE_MODE_RGMII_ID) ||
(interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
(interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_RGMII;
} else if (interface == PHY_INTERFACE_MODE_SGMII) {
netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_SGMII;
}
}
}
/**
* stmmac_init_phy - PHY initialization
* @dev: net device structure
* Description: it initializes the driver's PHY state, and attaches the PHY
* to the mac driver.
* Return value:
* 0 on success
*/
static int stmmac_init_phy(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct device_node *node;
int ret;
node = priv->plat->phylink_node;
if (node)
ret = phylink_of_phy_connect(priv->phylink, node, 0);
/* Some DT bindings do not set-up the PHY handle. Let's try to
* manually parse it
*/
if (!node || ret) {
int addr = priv->plat->phy_addr;
struct phy_device *phydev;
phydev = mdiobus_get_phy(priv->mii, addr);
if (!phydev) {
netdev_err(priv->dev, "no phy at addr %d\n", addr);
return -ENODEV;
}
ret = phylink_connect_phy(priv->phylink, phydev);
}
if (!priv->plat->pmt) {
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
phylink_ethtool_get_wol(priv->phylink, &wol);
device_set_wakeup_capable(priv->device, !!wol.supported);
}
return ret;
}
static int stmmac_phy_setup(struct stmmac_priv *priv)
{
struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
int max_speed = priv->plat->max_speed;
int mode = priv->plat->phy_interface;
struct phylink *phylink;
priv->phylink_config.dev = &priv->dev->dev;
priv->phylink_config.type = PHYLINK_NETDEV;
if (priv->plat->mdio_bus_data)
priv->phylink_config.ovr_an_inband =
mdio_bus_data->xpcs_an_inband;
if (!fwnode)
fwnode = dev_fwnode(priv->device);
/* Set the platform/firmware specified interface mode */
__set_bit(mode, priv->phylink_config.supported_interfaces);
/* If we have an xpcs, it defines which PHY interfaces are supported. */
if (priv->hw->xpcs)
xpcs_get_interfaces(priv->hw->xpcs,
priv->phylink_config.supported_interfaces);
priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_10 | MAC_100;
if (!max_speed || max_speed >= 1000)
priv->phylink_config.mac_capabilities |= MAC_1000;
if (priv->plat->has_gmac4) {
if (!max_speed || max_speed >= 2500)
priv->phylink_config.mac_capabilities |= MAC_2500FD;
} else if (priv->plat->has_xgmac) {
if (!max_speed || max_speed >= 2500)
priv->phylink_config.mac_capabilities |= MAC_2500FD;
if (!max_speed || max_speed >= 5000)
priv->phylink_config.mac_capabilities |= MAC_5000FD;
if (!max_speed || max_speed >= 10000)
priv->phylink_config.mac_capabilities |= MAC_10000FD;
if (!max_speed || max_speed >= 25000)
priv->phylink_config.mac_capabilities |= MAC_25000FD;
if (!max_speed || max_speed >= 40000)
priv->phylink_config.mac_capabilities |= MAC_40000FD;
if (!max_speed || max_speed >= 50000)
priv->phylink_config.mac_capabilities |= MAC_50000FD;
if (!max_speed || max_speed >= 100000)
priv->phylink_config.mac_capabilities |= MAC_100000FD;
}
/* Half-Duplex can only work with single queue */
if (priv->plat->tx_queues_to_use > 1)
priv->phylink_config.mac_capabilities &=
~(MAC_10HD | MAC_100HD | MAC_1000HD);
phylink = phylink_create(&priv->phylink_config, fwnode,
mode, &stmmac_phylink_mac_ops);
if (IS_ERR(phylink))
return PTR_ERR(phylink);
priv->phylink = phylink;
return 0;
}
static void stmmac_display_rx_rings(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
unsigned int desc_size;
void *head_rx;
u32 queue;
/* Display RX rings */
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
pr_info("\tRX Queue %u rings\n", queue);
if (priv->extend_desc) {
head_rx = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
head_rx = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
/* Display RX ring */
stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
}
static void stmmac_display_tx_rings(struct stmmac_priv *priv)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
unsigned int desc_size;
void *head_tx;
u32 queue;
/* Display TX rings */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
pr_info("\tTX Queue %d rings\n", queue);
if (priv->extend_desc) {
head_tx = (void *)tx_q->dma_etx;
desc_size = sizeof(struct dma_extended_desc);
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
head_tx = (void *)tx_q->dma_entx;
desc_size = sizeof(struct dma_edesc);
} else {
head_tx = (void *)tx_q->dma_tx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
tx_q->dma_tx_phy, desc_size);
}
}
static void stmmac_display_rings(struct stmmac_priv *priv)
{
/* Display RX ring */
stmmac_display_rx_rings(priv);
/* Display TX ring */
stmmac_display_tx_rings(priv);
}
static int stmmac_set_bfsize(int mtu, int bufsize)
{
int ret = bufsize;
if (mtu >= BUF_SIZE_8KiB)
ret = BUF_SIZE_16KiB;
else if (mtu >= BUF_SIZE_4KiB)
ret = BUF_SIZE_8KiB;
else if (mtu >= BUF_SIZE_2KiB)
ret = BUF_SIZE_4KiB;
else if (mtu > DEFAULT_BUFSIZE)
ret = BUF_SIZE_2KiB;
else
ret = DEFAULT_BUFSIZE;
return ret;
}
/**
* stmmac_clear_rx_descriptors - clear RX descriptors
* @priv: driver private structure
* @queue: RX queue index
* Description: this function is called to clear the RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int i;
/* Clear the RX descriptors */
for (i = 0; i < priv->dma_rx_size; i++)
if (priv->extend_desc)
stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
priv->use_riwt, priv->mode,
(i == priv->dma_rx_size - 1),
priv->dma_buf_sz);
else
stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
priv->use_riwt, priv->mode,
(i == priv->dma_rx_size - 1),
priv->dma_buf_sz);
}
/**
* stmmac_clear_tx_descriptors - clear tx descriptors
* @priv: driver private structure
* @queue: TX queue index.
* Description: this function is called to clear the TX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
int i;
/* Clear the TX descriptors */
for (i = 0; i < priv->dma_tx_size; i++) {
int last = (i == (priv->dma_tx_size - 1));
struct dma_desc *p;
if (priv->extend_desc)
p = &tx_q->dma_etx[i].basic;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[i].basic;
else
p = &tx_q->dma_tx[i];
stmmac_init_tx_desc(priv, p, priv->mode, last);
}
}
/**
* stmmac_clear_descriptors - clear descriptors
* @priv: driver private structure
* Description: this function is called to clear the TX and RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* Clear the RX descriptors */
for (queue = 0; queue < rx_queue_cnt; queue++)
stmmac_clear_rx_descriptors(priv, queue);
/* Clear the TX descriptors */
for (queue = 0; queue < tx_queue_cnt; queue++)
stmmac_clear_tx_descriptors(priv, queue);
}
/**
* stmmac_init_rx_buffers - init the RX descriptor buffer.
* @priv: driver private structure
* @p: descriptor pointer
* @i: descriptor index
* @flags: gfp flag
* @queue: RX queue index
* Description: this function is called to allocate a receive buffer, perform
* the DMA mapping and init the descriptor.
*/
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
int i, gfp_t flags, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
if (priv->dma_cap.addr64 <= 32)
gfp |= GFP_DMA32;
if (!buf->page) {
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->page)
return -ENOMEM;
buf->page_offset = stmmac_rx_offset(priv);
}
if (priv->sph && !buf->sec_page) {
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->sec_page)
return -ENOMEM;
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
} else {
buf->sec_page = NULL;
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
}
buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
stmmac_set_desc_addr(priv, p, buf->addr);
if (priv->dma_buf_sz == BUF_SIZE_16KiB)
stmmac_init_desc3(priv, p);
return 0;
}
/**
* stmmac_free_rx_buffer - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
* @i: buffer index.
*/
static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
if (buf->page)
page_pool_put_full_page(rx_q->page_pool, buf->page, false);
buf->page = NULL;
if (buf->sec_page)
page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
buf->sec_page = NULL;
}
/**
* stmmac_free_tx_buffer - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
* @i: buffer index.
*/
static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->tx_skbuff_dma[i].buf &&
tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
if (tx_q->tx_skbuff_dma[i].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
}
if (tx_q->xdpf[i] &&
(tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
xdp_return_frame(tx_q->xdpf[i]);
tx_q->xdpf[i] = NULL;
}
if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
tx_q->xsk_frames_done++;
if (tx_q->tx_skbuff[i] &&
tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
dev_kfree_skb_any(tx_q->tx_skbuff[i]);
tx_q->tx_skbuff[i] = NULL;
}
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
}
/**
* dma_free_rx_skbufs - free RX dma buffers
* @priv: private structure
* @queue: RX queue index
*/
static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
{
int i;
for (i = 0; i < priv->dma_rx_size; i++)
stmmac_free_rx_buffer(priv, queue, i);
}
static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
gfp_t flags)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int i;
for (i = 0; i < priv->dma_rx_size; i++) {
struct dma_desc *p;
int ret;
if (priv->extend_desc)
p = &((rx_q->dma_erx + i)->basic);
else
p = rx_q->dma_rx + i;
ret = stmmac_init_rx_buffers(priv, p, i, flags,
queue);
if (ret)
return ret;
rx_q->buf_alloc_num++;
}
return 0;
}
/**
* dma_free_rx_xskbufs - free RX dma buffers from XSK pool
* @priv: private structure
* @queue: RX queue index
*/
static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int i;
for (i = 0; i < priv->dma_rx_size; i++) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
if (!buf->xdp)
continue;
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
}
}
static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int i;
for (i = 0; i < priv->dma_rx_size; i++) {
struct stmmac_rx_buffer *buf;
dma_addr_t dma_addr;
struct dma_desc *p;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + i);
else
p = rx_q->dma_rx + i;
buf = &rx_q->buf_pool[i];
buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
if (!buf->xdp)
return -ENOMEM;
dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
stmmac_set_desc_addr(priv, p, dma_addr);
rx_q->buf_alloc_num++;
}
return 0;
}
static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
{
if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
return NULL;
return xsk_get_pool_from_qid(priv->dev, queue);
}
/**
* __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
* @priv: driver private structure
* @queue: RX queue index
* @flags: gfp flag.
* Description: this function initializes the DMA RX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int ret;
netif_dbg(priv, probe, priv->dev,
"(%s) dma_rx_phy=0x%08x\n", __func__,
(u32)rx_q->dma_rx_phy);
stmmac_clear_rx_descriptors(priv, queue);
xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
if (rx_q->xsk_pool) {
WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL));
netdev_info(priv->dev,
"Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
rx_q->queue_index);
xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
} else {
WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
MEM_TYPE_PAGE_POOL,
rx_q->page_pool));
netdev_info(priv->dev,
"Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
rx_q->queue_index);
}
if (rx_q->xsk_pool) {
/* RX XDP ZC buffer pool may not be populated, e.g.
* xdpsock TX-only.
*/
stmmac_alloc_rx_buffers_zc(priv, queue);
} else {
ret = stmmac_alloc_rx_buffers(priv, queue, flags);
if (ret < 0)
return -ENOMEM;
}
rx_q->cur_rx = 0;
rx_q->dirty_rx = 0;
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
stmmac_mode_init(priv, rx_q->dma_erx,
rx_q->dma_rx_phy,
priv->dma_rx_size, 1);
else
stmmac_mode_init(priv, rx_q->dma_rx,
rx_q->dma_rx_phy,
priv->dma_rx_size, 0);
}
return 0;
}
static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
int queue;
int ret;
/* RX INITIALIZATION */
netif_dbg(priv, probe, priv->dev,
"SKB addresses:\nskb\t\tskb data\tdma data\n");
for (queue = 0; queue < rx_count; queue++) {
ret = __init_dma_rx_desc_rings(priv, queue, flags);
if (ret)
goto err_init_rx_buffers;
}
return 0;
err_init_rx_buffers:
while (queue >= 0) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
if (rx_q->xsk_pool)
dma_free_rx_xskbufs(priv, queue);
else
dma_free_rx_skbufs(priv, queue);
rx_q->buf_alloc_num = 0;
rx_q->xsk_pool = NULL;
queue--;
}
return ret;
}
/**
* __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
* @priv: driver private structure
* @queue : TX queue index
* Description: this function initializes the DMA TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
int i;
netif_dbg(priv, probe, priv->dev,
"(%s) dma_tx_phy=0x%08x\n", __func__,
(u32)tx_q->dma_tx_phy);
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
stmmac_mode_init(priv, tx_q->dma_etx,
tx_q->dma_tx_phy,
priv->dma_tx_size, 1);
else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
stmmac_mode_init(priv, tx_q->dma_tx,
tx_q->dma_tx_phy,
priv->dma_tx_size, 0);
}
tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
for (i = 0; i < priv->dma_tx_size; i++) {
struct dma_desc *p;
if (priv->extend_desc)
p = &((tx_q->dma_etx + i)->basic);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &((tx_q->dma_entx + i)->basic);
else
p = tx_q->dma_tx + i;
stmmac_clear_desc(priv, p);
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
tx_q->tx_skbuff_dma[i].len = 0;
tx_q->tx_skbuff_dma[i].last_segment = false;
tx_q->tx_skbuff[i] = NULL;
}
tx_q->dirty_tx = 0;
tx_q->cur_tx = 0;
tx_q->mss = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
return 0;
}
static int init_dma_tx_desc_rings(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_queue_cnt;
u32 queue;
tx_queue_cnt = priv->plat->tx_queues_to_use;
for (queue = 0; queue < tx_queue_cnt; queue++)
__init_dma_tx_desc_rings(priv, queue);
return 0;
}
/**
* init_dma_desc_rings - init the RX/TX descriptor rings
* @dev: net device structure
* @flags: gfp flag.
* Description: this function initializes the DMA RX/TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
ret = init_dma_rx_desc_rings(dev, flags);
if (ret)
return ret;
ret = init_dma_tx_desc_rings(dev);
stmmac_clear_descriptors(priv);
if (netif_msg_hw(priv))
stmmac_display_rings(priv);
return ret;
}
/**
* dma_free_tx_skbufs - free TX dma buffers
* @priv: private structure
* @queue: TX queue index
*/
static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
int i;
tx_q->xsk_frames_done = 0;
for (i = 0; i < priv->dma_tx_size; i++)
stmmac_free_tx_buffer(priv, queue, i);
if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
tx_q->xsk_frames_done = 0;
tx_q->xsk_pool = NULL;
}
}
/**
* stmmac_free_tx_skbufs - free TX skb buffers
* @priv: private structure
*/
static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
{
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < tx_queue_cnt; queue++)
dma_free_tx_skbufs(priv, queue);
}
/**
* __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
* @priv: private structure
* @queue: RX queue index
*/
static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
/* Release the DMA RX socket buffers */
if (rx_q->xsk_pool)
dma_free_rx_xskbufs(priv, queue);
else
dma_free_rx_skbufs(priv, queue);
rx_q->buf_alloc_num = 0;
rx_q->xsk_pool = NULL;
/* Free DMA regions of consistent memory previously allocated */
if (!priv->extend_desc)
dma_free_coherent(priv->device, priv->dma_rx_size *
sizeof(struct dma_desc),
rx_q->dma_rx, rx_q->dma_rx_phy);
else
dma_free_coherent(priv->device, priv->dma_rx_size *
sizeof(struct dma_extended_desc),
rx_q->dma_erx, rx_q->dma_rx_phy);
if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
xdp_rxq_info_unreg(&rx_q->xdp_rxq);
kfree(rx_q->buf_pool);
if (rx_q->page_pool)
page_pool_destroy(rx_q->page_pool);
}
static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
{
u32 rx_count = priv->plat->rx_queues_to_use;
u32 queue;
/* Free RX queue resources */
for (queue = 0; queue < rx_count; queue++)
__free_dma_rx_desc_resources(priv, queue);
}
/**
* __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
* @priv: private structure
* @queue: TX queue index
*/
static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
size_t size;
void *addr;
/* Release the DMA TX socket buffers */
dma_free_tx_skbufs(priv, queue);
if (priv->extend_desc) {
size = sizeof(struct dma_extended_desc);
addr = tx_q->dma_etx;
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
size = sizeof(struct dma_edesc);
addr = tx_q->dma_entx;
} else {
size = sizeof(struct dma_desc);
addr = tx_q->dma_tx;
}
size *= priv->dma_tx_size;
dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
kfree(tx_q->tx_skbuff_dma);
kfree(tx_q->tx_skbuff);
}
static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
/* Free TX queue resources */
for (queue = 0; queue < tx_count; queue++)
__free_dma_tx_desc_resources(priv, queue);
}
/**
* __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
* @priv: private structure
* @queue: RX queue index
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
bool xdp_prog = stmmac_xdp_is_enabled(priv);
struct page_pool_params pp_params = { 0 };
unsigned int num_pages;
unsigned int napi_id;
int ret;
rx_q->queue_index = queue;
rx_q->priv_data = priv;
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
pp_params.pool_size = priv->dma_rx_size;
num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
pp_params.order = ilog2(num_pages);
pp_params.nid = dev_to_node(priv->device);
pp_params.dev = priv->device;
pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
pp_params.offset = stmmac_rx_offset(priv);
pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
rx_q->page_pool = page_pool_create(&pp_params);
if (IS_ERR(rx_q->page_pool)) {
ret = PTR_ERR(rx_q->page_pool);
rx_q->page_pool = NULL;
return ret;
}
rx_q->buf_pool = kcalloc(priv->dma_rx_size,
sizeof(*rx_q->buf_pool),
GFP_KERNEL);
if (!rx_q->buf_pool)
return -ENOMEM;
if (priv->extend_desc) {
rx_q->dma_erx = dma_alloc_coherent(priv->device,
priv->dma_rx_size *
sizeof(struct dma_extended_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_erx)
return -ENOMEM;
} else {
rx_q->dma_rx = dma_alloc_coherent(priv->device,
priv->dma_rx_size *
sizeof(struct dma_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_rx)
return -ENOMEM;
}
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps))
napi_id = ch->rxtx_napi.napi_id;
else
napi_id = ch->rx_napi.napi_id;
ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
rx_q->queue_index,
napi_id);
if (ret) {
netdev_err(priv->dev, "Failed to register xdp rxq info\n");
return -EINVAL;
}
return 0;
}
static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
{
u32 rx_count = priv->plat->rx_queues_to_use;
u32 queue;
int ret;
/* RX queues buffers and DMA */
for (queue = 0; queue < rx_count; queue++) {
ret = __alloc_dma_rx_desc_resources(priv, queue);
if (ret)
goto err_dma;
}
return 0;
err_dma:
free_dma_rx_desc_resources(priv);
return ret;
}
/**
* __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
* @priv: private structure
* @queue: TX queue index
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
size_t size;
void *addr;
tx_q->queue_index = queue;
tx_q->priv_data = priv;
tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
sizeof(*tx_q->tx_skbuff_dma),
GFP_KERNEL);
if (!tx_q->tx_skbuff_dma)
return -ENOMEM;
tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!tx_q->tx_skbuff)
return -ENOMEM;
if (priv->extend_desc)
size = sizeof(struct dma_extended_desc);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
size = sizeof(struct dma_edesc);
else
size = sizeof(struct dma_desc);
size *= priv->dma_tx_size;
addr = dma_alloc_coherent(priv->device, size,
&tx_q->dma_tx_phy, GFP_KERNEL);
if (!addr)
return -ENOMEM;
if (priv->extend_desc)
tx_q->dma_etx = addr;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_q->dma_entx = addr;
else
tx_q->dma_tx = addr;
return 0;
}
static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
int ret;
/* TX queues buffers and DMA */
for (queue = 0; queue < tx_count; queue++) {
ret = __alloc_dma_tx_desc_resources(priv, queue);
if (ret)
goto err_dma;
}
return 0;
err_dma:
free_dma_tx_desc_resources(priv);
return ret;
}
/**
* alloc_dma_desc_resources - alloc TX/RX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_desc_resources(struct stmmac_priv *priv)
{
/* RX Allocation */
int ret = alloc_dma_rx_desc_resources(priv);
if (ret)
return ret;
ret = alloc_dma_tx_desc_resources(priv);
return ret;
}
/**
* free_dma_desc_resources - free dma desc resources
* @priv: private structure
*/
static void free_dma_desc_resources(struct stmmac_priv *priv)
{
/* Release the DMA TX socket buffers */
free_dma_tx_desc_resources(priv);
/* Release the DMA RX socket buffers later
* to ensure all pending XDP_TX buffers are returned.
*/
free_dma_rx_desc_resources(priv);
}
/**
* stmmac_mac_enable_rx_queues - Enable MAC rx queues
* @priv: driver private structure
* Description: It is used for enabling the rx queues in the MAC
*/
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
int queue;
u8 mode;
for (queue = 0; queue < rx_queues_count; queue++) {
mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
}
}
/**
* stmmac_start_rx_dma - start RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This starts a RX DMA channel
*/
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
stmmac_start_rx(priv, priv->ioaddr, chan);
}
/**
* stmmac_start_tx_dma - start TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This starts a TX DMA channel
*/
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
stmmac_start_tx(priv, priv->ioaddr, chan);
}
/**
* stmmac_stop_rx_dma - stop RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This stops a RX DMA channel
*/
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
stmmac_stop_rx(priv, priv->ioaddr, chan);
}
/**
* stmmac_stop_tx_dma - stop TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This stops a TX DMA channel
*/
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
stmmac_stop_tx(priv, priv->ioaddr, chan);
}
static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
u32 chan;
for (chan = 0; chan < dma_csr_ch; chan++) {
struct stmmac_channel *ch = &priv->channel[chan];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
}
/**
* stmmac_start_all_dma - start all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This starts all the RX and TX DMA channels
*/
static void stmmac_start_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_start_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_start_tx_dma(priv, chan);
}
/**
* stmmac_stop_all_dma - stop all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This stops the RX and TX DMA channels
*/
static void stmmac_stop_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_stop_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_stop_tx_dma(priv, chan);
}
/**
* stmmac_dma_operation_mode - HW DMA operation mode
* @priv: driver private structure
* Description: it is used for configuring the DMA operation mode register in
* order to program the tx/rx DMA thresholds or Store-And-Forward mode.
*/
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
u32 txmode = 0;
u32 rxmode = 0;
u32 chan = 0;
u8 qmode = 0;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Adjust for real per queue fifo size */
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
if (priv->plat->force_thresh_dma_mode) {
txmode = tc;
rxmode = tc;
} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
/*
* In case of GMAC, SF mode can be enabled
* to perform the TX COE in HW. This depends on:
* 1) TX COE if actually supported
* 2) There is no bugged Jumbo frame support
* that needs to not insert csum in the TDES.
*/
txmode = SF_DMA_MODE;
rxmode = SF_DMA_MODE;
priv->xstats.threshold = SF_DMA_MODE;
} else {
txmode = tc;
rxmode = SF_DMA_MODE;
}
/* configure all channels */
for (chan = 0; chan < rx_channels_count; chan++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
u32 buf_size;
qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
rxfifosz, qmode);
if (rx_q->xsk_pool) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
chan);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_buf_sz,
chan);
}
}
for (chan = 0; chan < tx_channels_count; chan++) {
qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
txfifosz, qmode);
}
}
static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
struct xsk_buff_pool *pool = tx_q->xsk_pool;
unsigned int entry = tx_q->cur_tx;
struct dma_desc *tx_desc = NULL;
struct xdp_desc xdp_desc;
bool work_done = true;
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
budget = min(budget, stmmac_tx_avail(priv, queue));
while (budget-- > 0) {
dma_addr_t dma_addr;
bool set_ic;
/* We are sharing with slow path and stop XSK TX desc submission when
* available TX ring is less than threshold.
*/
if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
!netif_carrier_ok(priv->dev)) {
work_done = false;
break;
}
if (!xsk_tx_peek_desc(pool, &xdp_desc))
break;
if (likely(priv->extend_desc))
tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_desc = &tx_q->dma_entx[entry].basic;
else
tx_desc = tx_q->dma_tx + entry;
dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
/* To return XDP buffer to XSK pool, we simple call
* xsk_tx_completed(), so we don't need to fill up
* 'buf' and 'xdpf'.
*/
tx_q->tx_skbuff_dma[entry].buf = 0;
tx_q->xdpf[entry] = NULL;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
tx_q->tx_skbuff_dma[entry].last_segment = true;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
stmmac_set_desc_addr(priv, tx_desc, dma_addr);
tx_q->tx_count_frames++;
if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
set_ic = true;
else
set_ic = false;
if (set_ic) {
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, tx_desc);
priv->xstats.tx_set_ic_bit++;
}
stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
true, priv->mode, true, true,
xdp_desc.len);
stmmac_enable_dma_transmission(priv, priv->ioaddr);
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
entry = tx_q->cur_tx;
}
if (tx_desc) {
stmmac_flush_tx_descriptors(priv, queue);
xsk_tx_release(pool);
}
/* Return true if all of the 3 conditions are met
* a) TX Budget is still available
* b) work_done = true when XSK TX desc peek is empty (no more
* pending XSK TX for transmission)
*/
return !!budget && work_done;
}
static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
{
if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
tc += 64;
if (priv->plat->force_thresh_dma_mode)
stmmac_set_dma_operation_mode(priv, tc, tc, chan);
else
stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
chan);
priv->xstats.threshold = tc;
}
}
/**
* stmmac_tx_clean - to manage the transmission completion
* @priv: driver private structure
* @budget: napi budget limiting this functions packet handling
* @queue: TX queue index
* Description: it reclaims the transmit resources after transmission completes.
*/
static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
unsigned int bytes_compl = 0, pkts_compl = 0;
unsigned int entry, xmits = 0, count = 0;
__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
priv->xstats.tx_clean++;
tx_q->xsk_frames_done = 0;
entry = tx_q->dirty_tx;
/* Try to clean all TX complete frame in 1 shot */
while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
struct xdp_frame *xdpf;
struct sk_buff *skb;
struct dma_desc *p;
int status;
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
xdpf = tx_q->xdpf[entry];
skb = NULL;
} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
xdpf = NULL;
skb = tx_q->tx_skbuff[entry];
} else {
xdpf = NULL;
skb = NULL;
}
if (priv->extend_desc)
p = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[entry].basic;
else
p = tx_q->dma_tx + entry;
status = stmmac_tx_status(priv, &priv->dev->stats,
&priv->xstats, p, priv->ioaddr);
/* Check if the descriptor is owned by the DMA */
if (unlikely(status & tx_dma_own))
break;
count++;
/* Make sure descriptor fields are read after reading
* the own bit.
*/
dma_rmb();
/* Just consider the last segment and ...*/
if (likely(!(status & tx_not_ls))) {
/* ... verify the status error condition */
if (unlikely(status & tx_err)) {
priv->dev->stats.tx_errors++;
if (unlikely(status & tx_err_bump_tc))
stmmac_bump_dma_threshold(priv, queue);
} else {
priv->dev->stats.tx_packets++;
priv->xstats.tx_pkt_n++;
priv->xstats.txq_stats[queue].tx_pkt_n++;
}
if (skb)
stmmac_get_tx_hwtstamp(priv, p, skb);
}
if (likely(tx_q->tx_skbuff_dma[entry].buf &&
tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
if (tx_q->tx_skbuff_dma[entry].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
tx_q->tx_skbuff_dma[entry].buf = 0;
tx_q->tx_skbuff_dma[entry].len = 0;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
}
stmmac_clean_desc3(priv, tx_q, p);
tx_q->tx_skbuff_dma[entry].last_segment = false;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
if (xdpf &&
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
xdp_return_frame_rx_napi(xdpf);
tx_q->xdpf[entry] = NULL;
}
if (xdpf &&
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
xdp_return_frame(xdpf);
tx_q->xdpf[entry] = NULL;
}
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
tx_q->xsk_frames_done++;
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
if (likely(skb)) {
pkts_compl++;
bytes_compl += skb->len;
dev_consume_skb_any(skb);
tx_q->tx_skbuff[entry] = NULL;
}
}
stmmac_release_tx_desc(priv, p, priv->mode);
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
}
tx_q->dirty_tx = entry;
netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
pkts_compl, bytes_compl);
if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
queue))) &&
stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
netif_dbg(priv, tx_done, priv->dev,
"%s: restart transmit\n", __func__);
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
}
if (tx_q->xsk_pool) {
bool work_done;
if (tx_q->xsk_frames_done)
xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
if (xsk_uses_need_wakeup(tx_q->xsk_pool))
xsk_set_tx_need_wakeup(tx_q->xsk_pool);
/* For XSK TX, we try to send as many as possible.
* If XSK work done (XSK TX desc empty and budget still
* available), return "budget - 1" to reenable TX IRQ.
* Else, return "budget" to make NAPI continue polling.
*/
work_done = stmmac_xdp_xmit_zc(priv, queue,
STMMAC_XSK_TX_BUDGET_MAX);
if (work_done)
xmits = budget - 1;
else
xmits = budget;
}
if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
priv->eee_sw_timer_en) {
if (stmmac_enable_eee_mode(priv))
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
}
/* We still have pending packets, let's call for a new scheduling */
if (tx_q->dirty_tx != tx_q->cur_tx)
hrtimer_start(&tx_q->txtimer,
STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
HRTIMER_MODE_REL);
__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
/* Combine decisions from TX clean and XSK TX */
return max(count, xmits);
}
/**
* stmmac_tx_err - to manage the tx error
* @priv: driver private structure
* @chan: channel index
* Description: it cleans the descriptors and restarts the transmission
* in case of transmission errors.
*/
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
stmmac_stop_tx_dma(priv, chan);
dma_free_tx_skbufs(priv, chan);
stmmac_clear_tx_descriptors(priv, chan);
tx_q->dirty_tx = 0;
tx_q->cur_tx = 0;
tx_q->mss = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
stmmac_start_tx_dma(priv, chan);
priv->dev->stats.tx_errors++;
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
}
/**
* stmmac_set_dma_operation_mode - Set DMA operation mode by channel
* @priv: driver private structure
* @txmode: TX operating mode
* @rxmode: RX operating mode
* @chan: channel index
* Description: it is used for configuring of the DMA operation mode in
* runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
* mode.
*/
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
u32 rxmode, u32 chan)
{
u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Adjust for real per queue fifo size */
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
}
static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
{
int ret;
ret = stmmac_safety_feat_irq_status(priv, priv->dev,
priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
if (ret && (ret != -EINVAL)) {
stmmac_global_err(priv);
return true;
}
return false;
}
static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
{
int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
&priv->xstats, chan, dir);
struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
struct stmmac_channel *ch = &priv->channel[chan];
struct napi_struct *rx_napi;
struct napi_struct *tx_napi;
unsigned long flags;
rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
if (napi_schedule_prep(rx_napi)) {
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(rx_napi);
}
}
if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
if (napi_schedule_prep(tx_napi)) {
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(tx_napi);
}
}
return status;
}
/**
* stmmac_dma_interrupt - DMA ISR
* @priv: driver private structure
* Description: this is the DMA ISR. It is called by the main ISR.
* It calls the dwmac dma routine and schedule poll method in case of some
* work can be done.
*/
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
u32 tx_channel_count = priv->plat->tx_queues_to_use;
u32 rx_channel_count = priv->plat->rx_queues_to_use;
u32 channels_to_check = tx_channel_count > rx_channel_count ?
tx_channel_count : rx_channel_count;
u32 chan;
int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
/* Make sure we never check beyond our status buffer. */
if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
channels_to_check = ARRAY_SIZE(status);
for (chan = 0; chan < channels_to_check; chan++)
status[chan] = stmmac_napi_check(priv, chan,
DMA_DIR_RXTX);
for (chan = 0; chan < tx_channel_count; chan++) {
if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
/* Try to bump up the dma threshold on this failure */
stmmac_bump_dma_threshold(priv, chan);
} else if (unlikely(status[chan] == tx_hard_error)) {
stmmac_tx_err(priv, chan);
}
}
}
/**
* stmmac_mmc_setup: setup the Mac Management Counters (MMC)
* @priv: driver private structure
* Description: this masks the MMC irq, in fact, the counters are managed in SW.
*/
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
if (priv->dma_cap.rmon) {
stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
} else
netdev_info(priv->dev, "No MAC Management Counters available\n");
}
/**
* stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
* @priv: driver private structure
* Description:
* new GMAC chip generations have a new register to indicate the
* presence of the optional feature/functions.
* This can be also used to override the value passed through the
* platform and necessary for old MAC10/100 and GMAC chips.
*/
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
}
/**
* stmmac_check_ether_addr - check if the MAC addr is valid
* @priv: driver private structure
* Description:
* it is to verify if the MAC address is valid, in case of failures it
* generates a random MAC address
*/
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
u8 addr[ETH_ALEN];
if (!is_valid_ether_addr(priv->dev->dev_addr)) {
stmmac_get_umac_addr(priv, priv->hw, addr, 0);
if (is_valid_ether_addr(addr))
eth_hw_addr_set(priv->dev, addr);
else
eth_hw_addr_random(priv->dev);
dev_info(priv->device, "device MAC address %pM\n",
priv->dev->dev_addr);
}
}
/**
* stmmac_init_dma_engine - DMA init.
* @priv: driver private structure
* Description:
* It inits the DMA invoking the specific MAC/GMAC callback.
* Some DMA parameters can be passed from the platform;
* in case of these are not passed a default is kept for the MAC or GMAC.
*/
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 chan = 0;
int atds = 0;
int ret = 0;
if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
dev_err(priv->device, "Invalid DMA configuration\n");
return -EINVAL;
}
if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
atds = 1;
ret = stmmac_reset(priv, priv->ioaddr);
if (ret) {
dev_err(priv->device, "Failed to reset the dma\n");
return ret;
}
/* DMA Configuration */
stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
if (priv->plat->axi)
stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
/* DMA CSR Channel configuration */
for (chan = 0; chan < dma_csr_ch; chan++) {
stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
}
/* DMA RX Channel Configuration */
for (chan = 0; chan < rx_channels_count; chan++) {
rx_q = &priv->rx_queue[chan];
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, chan);
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, chan);
}
/* DMA TX Channel Configuration */
for (chan = 0; chan < tx_channels_count; chan++) {
tx_q = &priv->tx_queue[chan];
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, chan);
}
return ret;
}
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
hrtimer_start(&tx_q->txtimer,
STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
HRTIMER_MODE_REL);
}
/**
* stmmac_tx_timer - mitigation sw timer for tx.
* @t: data pointer
* Description:
* This is the timer handler to directly invoke the stmmac_tx_clean.
*/
static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
{
struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
struct stmmac_priv *priv = tx_q->priv_data;
struct stmmac_channel *ch;
struct napi_struct *napi;
ch = &priv->channel[tx_q->queue_index];
napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
if (likely(napi_schedule_prep(napi))) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(napi);
}
return HRTIMER_NORESTART;
}
/**
* stmmac_init_coalesce - init mitigation options.
* @priv: driver private structure
* Description:
* This inits the coalesce parameters: i.e. timer rate,
* timer handler and default threshold used for enabling the
* interrupt on completion bit.
*/
static void stmmac_init_coalesce(struct stmmac_priv *priv)
{
u32 tx_channel_count = priv->plat->tx_queues_to_use;
u32 rx_channel_count = priv->plat->rx_queues_to_use;
u32 chan;
for (chan = 0; chan < tx_channel_count; chan++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx_q->txtimer.function = stmmac_tx_timer;
}
for (chan = 0; chan < rx_channel_count; chan++)
priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
}
static void stmmac_set_rings_length(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan;
/* set TX ring length */
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_set_tx_ring_len(priv, priv->ioaddr,
(priv->dma_tx_size - 1), chan);
/* set RX ring length */
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_set_rx_ring_len(priv, priv->ioaddr,
(priv->dma_rx_size - 1), chan);
}
/**
* stmmac_set_tx_queue_weight - Set TX queue weight
* @priv: driver private structure
* Description: It is used for setting TX queues weight
*/
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 weight;
u32 queue;
for (queue = 0; queue < tx_queues_count; queue++) {
weight = priv->plat->tx_queues_cfg[queue].weight;
stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
}
}
/**
* stmmac_configure_cbs - Configure CBS in TX queue
* @priv: driver private structure
* Description: It is used for configuring CBS in AVB TX queues
*/
static void stmmac_configure_cbs(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 mode_to_use;
u32 queue;
/* queue 0 is reserved for legacy traffic */
for (queue = 1; queue < tx_queues_count; queue++) {
mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
if (mode_to_use == MTL_QUEUE_DCB)
continue;
stmmac_config_cbs(priv, priv->hw,
priv->plat->tx_queues_cfg[queue].send_slope,
priv->plat->tx_queues_cfg[queue].idle_slope,
priv->plat->tx_queues_cfg[queue].high_credit,
priv->plat->tx_queues_cfg[queue].low_credit,
queue);
}
}
/**
* stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
* @priv: driver private structure
* Description: It is used for mapping RX queues to RX dma channels
*/
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 chan;
for (queue = 0; queue < rx_queues_count; queue++) {
chan = priv->plat->rx_queues_cfg[queue].chan;
stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
}
}
/**
* stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the RX Queue Priority
*/
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < rx_queues_count; queue++) {
if (!priv->plat->rx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->rx_queues_cfg[queue].prio;
stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the TX Queue Priority
*/
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < tx_queues_count; queue++) {
if (!priv->plat->tx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->tx_queues_cfg[queue].prio;
stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
* @priv: driver private structure
* Description: It is used for configuring the RX queue routing
*/
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u8 packet;
for (queue = 0; queue < rx_queues_count; queue++) {
/* no specific packet type routing specified for the queue */
if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
continue;
packet = priv->plat->rx_queues_cfg[queue].pkt_route;
stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
}
}
static void stmmac_mac_config_rss(struct stmmac_priv *priv)
{
if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
priv->rss.enable = false;
return;
}
if (priv->dev->features & NETIF_F_RXHASH)
priv->rss.enable = true;
else
priv->rss.enable = false;
stmmac_rss_configure(priv, priv->hw, &priv->rss,
priv->plat->rx_queues_to_use);
}
/**
* stmmac_mtl_configuration - Configure MTL
* @priv: driver private structure
* Description: It is used for configurring MTL
*/
static void stmmac_mtl_configuration(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 tx_queues_count = priv->plat->tx_queues_to_use;
if (tx_queues_count > 1)
stmmac_set_tx_queue_weight(priv);
/* Configure MTL RX algorithms */
if (rx_queues_count > 1)
stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
priv->plat->rx_sched_algorithm);
/* Configure MTL TX algorithms */
if (tx_queues_count > 1)
stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
priv->plat->tx_sched_algorithm);
/* Configure CBS in AVB TX queues */
if (tx_queues_count > 1)
stmmac_configure_cbs(priv);
/* Map RX MTL to DMA channels */
stmmac_rx_queue_dma_chan_map(priv);
/* Enable MAC RX Queues */
stmmac_mac_enable_rx_queues(priv);
/* Set RX priorities */
if (rx_queues_count > 1)
stmmac_mac_config_rx_queues_prio(priv);
/* Set TX priorities */
if (tx_queues_count > 1)
stmmac_mac_config_tx_queues_prio(priv);
/* Set RX routing */
if (rx_queues_count > 1)
stmmac_mac_config_rx_queues_routing(priv);
/* Receive Side Scaling */
if (rx_queues_count > 1)
stmmac_mac_config_rss(priv);
}
static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
{
if (priv->dma_cap.asp) {
netdev_info(priv->dev, "Enabling Safety Features\n");
stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
priv->plat->safety_feat_cfg);
} else {
netdev_info(priv->dev, "No Safety Features support found\n");
}
}
static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
{
char *name;
clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
name = priv->wq_name;
sprintf(name, "%s-fpe", priv->dev->name);
priv->fpe_wq = create_singlethread_workqueue(name);
if (!priv->fpe_wq) {
netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
return -ENOMEM;
}
netdev_info(priv->dev, "FPE workqueue start");
return 0;
}
/**
* stmmac_hw_setup - setup mac in a usable state.
* @dev : pointer to the device structure.
* @ptp_register: register PTP if set
* Description:
* this is the main function to setup the HW in a usable state because the
* dma engine is reset, the core registers are configured (e.g. AXI,
* Checksum features, timers). The DMA is ready to start receiving and
* transmitting.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
bool sph_en;
u32 chan;
int ret;
/* DMA initialization and SW reset */
ret = stmmac_init_dma_engine(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
__func__);
return ret;
}
/* Copy the MAC addr into the HW */
stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
/* PS and related bits will be programmed according to the speed */
if (priv->hw->pcs) {
int speed = priv->plat->mac_port_sel_speed;
if ((speed == SPEED_10) || (speed == SPEED_100) ||
(speed == SPEED_1000)) {
priv->hw->ps = speed;
} else {
dev_warn(priv->device, "invalid port speed\n");
priv->hw->ps = 0;
}
}
/* Initialize the MAC Core */
stmmac_core_init(priv, priv->hw, dev);
/* Initialize MTL*/
stmmac_mtl_configuration(priv);
/* Initialize Safety Features */
stmmac_safety_feat_configuration(priv);
ret = stmmac_rx_ipc(priv, priv->hw);
if (!ret) {
netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
priv->plat->rx_coe = STMMAC_RX_COE_NONE;
priv->hw->rx_csum = 0;
}
/* Enable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, true);
/* Set the HW DMA mode and the COE */
stmmac_dma_operation_mode(priv);
stmmac_mmc_setup(priv);
ret = stmmac_init_ptp(priv);
if (ret == -EOPNOTSUPP)
netdev_info(priv->dev, "PTP not supported by HW\n");
else if (ret)
netdev_warn(priv->dev, "PTP init failed\n");
else if (ptp_register)
stmmac_ptp_register(priv);
priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
/* Convert the timer from msec to usec */
if (!priv->tx_lpi_timer)
priv->tx_lpi_timer = eee_timer * 1000;
if (priv->use_riwt) {
u32 queue;
for (queue = 0; queue < rx_cnt; queue++) {
if (!priv->rx_riwt[queue])
priv->rx_riwt[queue] = DEF_DMA_RIWT;
stmmac_rx_watchdog(priv, priv->ioaddr,
priv->rx_riwt[queue], queue);
}
}
if (priv->hw->pcs)
stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
/* set TX and RX rings length */
stmmac_set_rings_length(priv);
/* Enable TSO */
if (priv->tso) {
for (chan = 0; chan < tx_cnt; chan++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
/* TSO and TBS cannot co-exist */
if (tx_q->tbs & STMMAC_TBS_AVAIL)
continue;
stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
}
}
/* Enable Split Header */
sph_en = (priv->hw->rx_csum > 0) && priv->sph;
for (chan = 0; chan < rx_cnt; chan++)
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
/* VLAN Tag Insertion */
if (priv->dma_cap.vlins)
stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
/* TBS */
for (chan = 0; chan < tx_cnt; chan++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
}
/* Configure real RX and TX queues */
netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
/* Start the ball rolling... */
stmmac_start_all_dma(priv);
if (priv->dma_cap.fpesel) {
stmmac_fpe_start_wq(priv);
if (priv->plat->fpe_cfg->enable)
stmmac_fpe_handshake(priv, true);
}
return 0;
}
static void stmmac_hw_teardown(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
clk_disable_unprepare(priv->plat->clk_ptp_ref);
}
static void stmmac_free_irq(struct net_device *dev,
enum request_irq_err irq_err, int irq_idx)
{
struct stmmac_priv *priv = netdev_priv(dev);
int j;
switch (irq_err) {
case REQ_IRQ_ERR_ALL:
irq_idx = priv->plat->tx_queues_to_use;
fallthrough;
case REQ_IRQ_ERR_TX:
for (j = irq_idx - 1; j >= 0; j--) {
if (priv->tx_irq[j] > 0) {
irq_set_affinity_hint(priv->tx_irq[j], NULL);
free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
}
}
irq_idx = priv->plat->rx_queues_to_use;
fallthrough;
case REQ_IRQ_ERR_RX:
for (j = irq_idx - 1; j >= 0; j--) {
if (priv->rx_irq[j] > 0) {
irq_set_affinity_hint(priv->rx_irq[j], NULL);
free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
}
}
if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
free_irq(priv->sfty_ue_irq, dev);
fallthrough;
case REQ_IRQ_ERR_SFTY_UE:
if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
free_irq(priv->sfty_ce_irq, dev);
fallthrough;
case REQ_IRQ_ERR_SFTY_CE:
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
free_irq(priv->lpi_irq, dev);
fallthrough;
case REQ_IRQ_ERR_LPI:
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
free_irq(priv->wol_irq, dev);
fallthrough;
case REQ_IRQ_ERR_WOL:
free_irq(dev->irq, dev);
fallthrough;
case REQ_IRQ_ERR_MAC:
case REQ_IRQ_ERR_NO:
/* If MAC IRQ request error, no more IRQ to free */
break;
}
}
static int stmmac_request_irq_multi_msi(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
enum request_irq_err irq_err;
cpumask_t cpu_mask;
int irq_idx = 0;
char *int_name;
int ret;
int i;
/* For common interrupt */
int_name = priv->int_name_mac;
sprintf(int_name, "%s:%s", dev->name, "mac");
ret = request_irq(dev->irq, stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc mac MSI %d (error: %d)\n",
__func__, dev->irq, ret);
irq_err = REQ_IRQ_ERR_MAC;
goto irq_error;
}
/* Request the Wake IRQ in case of another line
* is used for WoL
*/
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
int_name = priv->int_name_wol;
sprintf(int_name, "%s:%s", dev->name, "wol");
ret = request_irq(priv->wol_irq,
stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc wol MSI %d (error: %d)\n",
__func__, priv->wol_irq, ret);
irq_err = REQ_IRQ_ERR_WOL;
goto irq_error;
}
}
/* Request the LPI IRQ in case of another line
* is used for LPI
*/
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
int_name = priv->int_name_lpi;
sprintf(int_name, "%s:%s", dev->name, "lpi");
ret = request_irq(priv->lpi_irq,
stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc lpi MSI %d (error: %d)\n",
__func__, priv->lpi_irq, ret);
irq_err = REQ_IRQ_ERR_LPI;
goto irq_error;
}
}
/* Request the Safety Feature Correctible Error line in
* case of another line is used
*/
if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
int_name = priv->int_name_sfty_ce;
sprintf(int_name, "%s:%s", dev->name, "safety-ce");
ret = request_irq(priv->sfty_ce_irq,
stmmac_safety_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc sfty ce MSI %d (error: %d)\n",
__func__, priv->sfty_ce_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY_CE;
goto irq_error;
}
}
/* Request the Safety Feature Uncorrectible Error line in
* case of another line is used
*/
if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
int_name = priv->int_name_sfty_ue;
sprintf(int_name, "%s:%s", dev->name, "safety-ue");
ret = request_irq(priv->sfty_ue_irq,
stmmac_safety_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc sfty ue MSI %d (error: %d)\n",
__func__, priv->sfty_ue_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY_UE;
goto irq_error;
}
}
/* Request Rx MSI irq */
for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
if (i >= MTL_MAX_RX_QUEUES)
break;
if (priv->rx_irq[i] == 0)
continue;
int_name = priv->int_name_rx_irq[i];
sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
ret = request_irq(priv->rx_irq[i],
stmmac_msi_intr_rx,
0, int_name, &priv->rx_queue[i]);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc rx-%d MSI %d (error: %d)\n",
__func__, i, priv->rx_irq[i], ret);
irq_err = REQ_IRQ_ERR_RX;
irq_idx = i;
goto irq_error;
}
cpumask_clear(&cpu_mask);
cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
}
/* Request Tx MSI irq */
for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
if (i >= MTL_MAX_TX_QUEUES)
break;
if (priv->tx_irq[i] == 0)
continue;
int_name = priv->int_name_tx_irq[i];
sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
ret = request_irq(priv->tx_irq[i],
stmmac_msi_intr_tx,
0, int_name, &priv->tx_queue[i]);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc tx-%d MSI %d (error: %d)\n",
__func__, i, priv->tx_irq[i], ret);
irq_err = REQ_IRQ_ERR_TX;
irq_idx = i;
goto irq_error;
}
cpumask_clear(&cpu_mask);
cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
}
return 0;
irq_error:
stmmac_free_irq(dev, irq_err, irq_idx);
return ret;
}
static int stmmac_request_irq_single(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
enum request_irq_err irq_err;
int ret;
ret = request_irq(dev->irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the IRQ %d (error: %d)\n",
__func__, dev->irq, ret);
irq_err = REQ_IRQ_ERR_MAC;
goto irq_error;
}
/* Request the Wake IRQ in case of another line
* is used for WoL
*/
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
ret = request_irq(priv->wol_irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the WoL IRQ %d (%d)\n",
__func__, priv->wol_irq, ret);
irq_err = REQ_IRQ_ERR_WOL;
goto irq_error;
}
}
/* Request the IRQ lines */
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
ret = request_irq(priv->lpi_irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the LPI IRQ %d (%d)\n",
__func__, priv->lpi_irq, ret);
irq_err = REQ_IRQ_ERR_LPI;
goto irq_error;
}
}
return 0;
irq_error:
stmmac_free_irq(dev, irq_err, 0);
return ret;
}
static int stmmac_request_irq(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
/* Request the IRQ lines */
if (priv->plat->multi_msi_en)
ret = stmmac_request_irq_multi_msi(dev);
else
ret = stmmac_request_irq_single(dev);
return ret;
}
/**
* stmmac_open - open entry point of the driver
* @dev : pointer to the device structure.
* Description:
* This function is the open entry point of the driver.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_open(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
int mode = priv->plat->phy_interface;
int bfsize = 0;
u32 chan;
int ret;
ret = pm_runtime_get_sync(priv->device);
if (ret < 0) {
pm_runtime_put_noidle(priv->device);
return ret;
}
if (priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI &&
(!priv->hw->xpcs ||
xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
ret = stmmac_init_phy(dev);
if (ret) {
netdev_err(priv->dev,
"%s: Cannot attach to PHY (error: %d)\n",
__func__, ret);
goto init_phy_error;
}
}
/* Extra statistics */
memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
priv->xstats.threshold = tc;
bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
if (bfsize < 0)
bfsize = 0;
if (bfsize < BUF_SIZE_16KiB)
bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
priv->dma_buf_sz = bfsize;
buf_sz = bfsize;
priv->rx_copybreak = STMMAC_RX_COPYBREAK;
if (!priv->dma_tx_size)
priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
if (!priv->dma_rx_size)
priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
/* Earlier check for TBS */
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
/* Setup per-TXQ tbs flag before TX descriptor alloc */
tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
}
ret = alloc_dma_desc_resources(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto dma_desc_error;
}
ret = init_dma_desc_rings(dev, GFP_KERNEL);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
ret = stmmac_hw_setup(dev, true);
if (ret < 0) {
netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
goto init_error;
}
stmmac_init_coalesce(priv);
phylink_start(priv->phylink);
/* We may have called phylink_speed_down before */
phylink_speed_up(priv->phylink);
ret = stmmac_request_irq(dev);
if (ret)
goto irq_error;
stmmac_enable_all_queues(priv);
netif_tx_start_all_queues(priv->dev);
stmmac_enable_all_dma_irq(priv);
return 0;
irq_error:
phylink_stop(priv->phylink);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->tx_queue[chan].txtimer);
stmmac_hw_teardown(dev);
init_error:
free_dma_desc_resources(priv);
dma_desc_error:
phylink_disconnect_phy(priv->phylink);
init_phy_error:
pm_runtime_put(priv->device);
return ret;
}
static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
{
set_bit(__FPE_REMOVING, &priv->fpe_task_state);
if (priv->fpe_wq)
destroy_workqueue(priv->fpe_wq);
netdev_info(priv->dev, "FPE workqueue stop");
}
/**
* stmmac_release - close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver.
*/
static int stmmac_release(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 chan;
netif_tx_disable(dev);
if (device_may_wakeup(priv->device))
phylink_speed_down(priv->phylink, false);
/* Stop and disconnect the PHY */
phylink_stop(priv->phylink);
phylink_disconnect_phy(priv->phylink);
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->tx_queue[chan].txtimer);
/* Free the IRQ lines */
stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
if (priv->eee_enabled) {
priv->tx_path_in_lpi_mode = false;
del_timer_sync(&priv->eee_ctrl_timer);
}
/* Stop TX/RX DMA and clear the descriptors */
stmmac_stop_all_dma(priv);
/* Release and free the Rx/Tx resources */
free_dma_desc_resources(priv);
/* Disable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, false);
netif_carrier_off(dev);
stmmac_release_ptp(priv);
pm_runtime_put(priv->device);
if (priv->dma_cap.fpesel)
stmmac_fpe_stop_wq(priv);
return 0;
}
static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
struct stmmac_tx_queue *tx_q)
{
u16 tag = 0x0, inner_tag = 0x0;
u32 inner_type = 0x0;
struct dma_desc *p;
if (!priv->dma_cap.vlins)
return false;
if (!skb_vlan_tag_present(skb))
return false;
if (skb->vlan_proto == htons(ETH_P_8021AD)) {
inner_tag = skb_vlan_tag_get(skb);
inner_type = STMMAC_VLAN_INSERT;
}
tag = skb_vlan_tag_get(skb);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
p = &tx_q->dma_tx[tx_q->cur_tx];
if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
return false;
stmmac_set_tx_owner(priv, p);
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
return true;
}
/**
* stmmac_tso_allocator - close entry point of the driver
* @priv: driver private structure
* @des: buffer start address
* @total_len: total length to fill in descriptors
* @last_segment: condition for the last descriptor
* @queue: TX queue index
* Description:
* This function fills descriptor and request new descriptors according to
* buffer length to fill
*/
static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
int total_len, bool last_segment, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
struct dma_desc *desc;
u32 buff_size;
int tmp_len;
tmp_len = total_len;
while (tmp_len > 0) {
dma_addr_t curr_addr;
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
priv->dma_tx_size);
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
desc = &tx_q->dma_tx[tx_q->cur_tx];
curr_addr = des + (total_len - tmp_len);
if (priv->dma_cap.addr64 <= 32)
desc->des0 = cpu_to_le32(curr_addr);
else
stmmac_set_desc_addr(priv, desc, curr_addr);
buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
TSO_MAX_BUFF_SIZE : tmp_len;
stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
0, 1,
(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
0, 0);
tmp_len -= TSO_MAX_BUFF_SIZE;
}
}
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
int desc_size;
if (likely(priv->extend_desc))
desc_size = sizeof(struct dma_extended_desc);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc_size = sizeof(struct dma_edesc);
else
desc_size = sizeof(struct dma_desc);
/* The own bit must be the latest setting done when prepare the
* descriptor and then barrier is needed to make sure that
* all is coherent before granting the DMA engine.
*/
wmb();
tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
}
/**
* stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
* @skb : the socket buffer
* @dev : device pointer
* Description: this is the transmit function that is called on TSO frames
* (support available on GMAC4 and newer chips).
* Diagram below show the ring programming in case of TSO frames:
*
* First Descriptor
* --------
* | DES0 |---> buffer1 = L2/L3/L4 header
* | DES1 |---> TCP Payload (can continue on next descr...)
* | DES2 |---> buffer 1 and 2 len
* | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
* --------
* |
* ...
* |
* --------
* | DES0 | --| Split TCP Payload on Buffers 1 and 2
* | DES1 | --|
* | DES2 | --> buffer 1 and 2 len
* | DES3 |
* --------
*
* mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
*/
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dma_desc *desc, *first, *mss_desc = NULL;
struct stmmac_priv *priv = netdev_priv(dev);
int nfrags = skb_shinfo(skb)->nr_frags;
u32 queue = skb_get_queue_mapping(skb);
unsigned int first_entry, tx_packets;
int tmp_pay_len = 0, first_tx;
struct stmmac_tx_queue *tx_q;
bool has_vlan, set_ic;
u8 proto_hdr_len, hdr;
u32 pay_len, mss;
dma_addr_t des;
int i;
tx_q = &priv->tx_queue[queue];
first_tx = tx_q->cur_tx;
/* Compute header lengths */
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
hdr = sizeof(struct udphdr);
} else {
proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
hdr = tcp_hdrlen(skb);
}
/* Desc availability based on threshold should be enough safe */
if (unlikely(stmmac_tx_avail(priv, queue) <
(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
mss = skb_shinfo(skb)->gso_size;
/* set new MSS value if needed */
if (mss != tx_q->mss) {
if (tx_q->tbs & STMMAC_TBS_AVAIL)
mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
stmmac_set_mss(priv, mss_desc, mss);
tx_q->mss = mss;
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
priv->dma_tx_size);
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
}
if (netif_msg_tx_queued(priv)) {
pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
__func__, hdr, proto_hdr_len, pay_len, mss);
pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
skb->data_len);
}
/* Check if VLAN can be inserted by HW */
has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
first_entry = tx_q->cur_tx;
WARN_ON(tx_q->tx_skbuff[first_entry]);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[first_entry].basic;
else
desc = &tx_q->dma_tx[first_entry];
first = desc;
if (has_vlan)
stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
/* first descriptor: fill Headers on Buf1 */
des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
if (priv->dma_cap.addr64 <= 32) {
first->des0 = cpu_to_le32(des);
/* Fill start of payload in buff2 of first descriptor */
if (pay_len)
first->des1 = cpu_to_le32(des + proto_hdr_len);
/* If needed take extra descriptors to fill the remaining payload */
tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
} else {
stmmac_set_desc_addr(priv, first, des);
tmp_pay_len = pay_len;
des += proto_hdr_len;
pay_len = 0;
}
stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
/* Prepare fragments */
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
des = skb_frag_dma_map(priv->device, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
stmmac_tso_allocator(priv, des, skb_frag_size(frag),
(i == nfrags - 1), queue);
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
}
tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[tx_q->cur_tx] = skb;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
/* Manage tx mitigation */
tx_packets = (tx_q->cur_tx + 1) - first_tx;
tx_q->tx_count_frames += tx_packets;
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
set_ic = true;
else if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_packets > priv->tx_coal_frames[queue])
set_ic = true;
else if ((tx_q->tx_count_frames %
priv->tx_coal_frames[queue]) < tx_packets)
set_ic = true;
else
set_ic = false;
if (set_ic) {
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
desc = &tx_q->dma_tx[tx_q->cur_tx];
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, desc);
priv->xstats.tx_set_ic_bit++;
}
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
dev->stats.tx_bytes += skb->len;
priv->xstats.tx_tso_frames++;
priv->xstats.tx_tso_nfrags += nfrags;
if (priv->sarc_type)
stmmac_set_desc_sarc(priv, first, priv->sarc_type);
skb_tx_timestamp(skb);
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
stmmac_enable_tx_timestamp(priv, first);
}
/* Complete the first descriptor before granting the DMA */
stmmac_prepare_tso_tx_desc(priv, first, 1,
proto_hdr_len,
pay_len,
1, tx_q->tx_skbuff_dma[first_entry].last_segment,
hdr / 4, (skb->len - proto_hdr_len));
/* If context desc is used to change MSS */
if (mss_desc) {
/* Make sure that first descriptor has been completely
* written, including its own bit. This is because MSS is
* actually before first descriptor, so we need to make
* sure that MSS's own bit is the last thing written.
*/
dma_wmb();
stmmac_set_tx_owner(priv, mss_desc);
}
if (netif_msg_pktdata(priv)) {
pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
tx_q->cur_tx, first, nfrags);
pr_info(">>> frame to be transmitted: ");
print_pkt(skb->data, skb_headlen(skb));
}
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
return NETDEV_TX_OK;
dma_map_err:
dev_err(priv->device, "Tx dma map failed\n");
dev_kfree_skb(skb);
priv->dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
/**
* stmmac_xmit - Tx entry point of the driver
* @skb : the socket buffer
* @dev : device pointer
* Description : this is the tx entry point of the driver.
* It programs the chain or the ring and supports oversized frames
* and SG feature.
*/
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned int first_entry, tx_packets, enh_desc;
struct stmmac_priv *priv = netdev_priv(dev);
unsigned int nopaged_len = skb_headlen(skb);
int i, csum_insertion = 0, is_jumbo = 0;
u32 queue = skb_get_queue_mapping(skb);
int nfrags = skb_shinfo(skb)->nr_frags;
int gso = skb_shinfo(skb)->gso_type;
struct dma_edesc *tbs_desc = NULL;
struct dma_desc *desc, *first;
struct stmmac_tx_queue *tx_q;
bool has_vlan, set_ic;
int entry, first_tx;
dma_addr_t des;
tx_q = &priv->tx_queue[queue];
first_tx = tx_q->cur_tx;
if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
stmmac_disable_eee_mode(priv);
/* Manage oversized TCP frames for GMAC4 device */
if (skb_is_gso(skb) && priv->tso) {
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
return stmmac_tso_xmit(skb, dev);
if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
return stmmac_tso_xmit(skb, dev);
}
if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
/* Check if VLAN can be inserted by HW */
has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
entry = tx_q->cur_tx;
first_entry = entry;
WARN_ON(tx_q->tx_skbuff[first_entry]);
csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = tx_q->dma_tx + entry;
first = desc;
if (has_vlan)
stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
enh_desc = priv->plat->enh_desc;
/* To program the descriptors according to the size of the frame */
if (enh_desc)
is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
if (unlikely(is_jumbo)) {
entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
if (unlikely(entry < 0) && (entry != -EINVAL))
goto dma_map_err;
}
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
int len = skb_frag_size(frag);
bool last_segment = (i == (nfrags - 1));
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
WARN_ON(tx_q->tx_skbuff[entry]);
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = tx_q->dma_tx + entry;
des = skb_frag_dma_map(priv->device, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err; /* should reuse desc w/o issues */
tx_q->tx_skbuff_dma[entry].buf = des;
stmmac_set_desc_addr(priv, desc, des);
tx_q->tx_skbuff_dma[entry].map_as_page = true;
tx_q->tx_skbuff_dma[entry].len = len;
tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
/* Prepare the descriptor and set the own bit too */
stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
priv->mode, 1, last_segment, skb->len);
}
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[entry] = skb;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
/* According to the coalesce parameter the IC bit for the latest
* segment is reset and the timer re-started to clean the tx status.
* This approach takes care about the fragments: desc is the first
* element in case of no SG.
*/
tx_packets = (entry + 1) - first_tx;
tx_q->tx_count_frames += tx_packets;
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
set_ic = true;
else if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_packets > priv->tx_coal_frames[queue])
set_ic = true;
else if ((tx_q->tx_count_frames %
priv->tx_coal_frames[queue]) < tx_packets)
set_ic = true;
else
set_ic = false;
if (set_ic) {
if (likely(priv->extend_desc))
desc = &tx_q->dma_etx[entry].basic;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = &tx_q->dma_tx[entry];
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, desc);
priv->xstats.tx_set_ic_bit++;
}
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
tx_q->cur_tx = entry;
if (netif_msg_pktdata(priv)) {
netdev_dbg(priv->dev,
"%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
entry, first, nfrags);
netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
print_pkt(skb->data, skb->len);
}
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
dev->stats.tx_bytes += skb->len;
if (priv->sarc_type)
stmmac_set_desc_sarc(priv, first, priv->sarc_type);
skb_tx_timestamp(skb);
/* Ready to fill the first descriptor and set the OWN bit w/o any
* problems because all the descriptors are actually ready to be
* passed to the DMA engine.
*/
if (likely(!is_jumbo)) {
bool last_segment = (nfrags == 0);
des = dma_map_single(priv->device, skb->data,
nopaged_len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
stmmac_set_desc_addr(priv, first, des);
tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
stmmac_enable_tx_timestamp(priv, first);
}
/* Prepare the first descriptor setting the OWN bit too */
stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
csum_insertion, priv->mode, 0, last_segment,
skb->len);
}
if (tx_q->tbs & STMMAC_TBS_EN) {
struct timespec64 ts = ns_to_timespec64(skb->tstamp);
tbs_desc = &tx_q->dma_entx[first_entry];
stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
}
stmmac_set_tx_owner(priv, first);
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
stmmac_enable_dma_transmission(priv, priv->ioaddr);
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
return NETDEV_TX_OK;
dma_map_err:
netdev_err(priv->dev, "Tx DMA map failed\n");
dev_kfree_skb(skb);
priv->dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
struct vlan_ethhdr *veth;
__be16 vlan_proto;
u16 vlanid;
veth = (struct vlan_ethhdr *)skb->data;
vlan_proto = veth->h_vlan_proto;
if ((vlan_proto == htons(ETH_P_8021Q) &&
dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
(vlan_proto == htons(ETH_P_8021AD) &&
dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
/* pop the vlan tag */
vlanid = ntohs(veth->h_vlan_TCI);
memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
}
}
/**
* stmmac_rx_refill - refill used skb preallocated buffers
* @priv: driver private structure
* @queue: RX queue index
* Description : this is to reallocate the skb for the reception process
* that is based on zero-copy.
*/
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int entry = rx_q->dirty_rx;
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
if (priv->dma_cap.addr64 <= 32)
gfp |= GFP_DMA32;
while (dirty-- > 0) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
struct dma_desc *p;
bool use_rx_wd;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
if (!buf->page) {
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->page)
break;
}
if (priv->sph && !buf->sec_page) {
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->sec_page)
break;
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
}
buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
stmmac_set_desc_addr(priv, p, buf->addr);
if (priv->sph)
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
else
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
stmmac_refill_desc3(priv, rx_q, p);
rx_q->rx_count_frames++;
rx_q->rx_count_frames += priv->rx_coal_frames[queue];
if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
rx_q->rx_count_frames = 0;
use_rx_wd = !priv->rx_coal_frames[queue];
use_rx_wd |= rx_q->rx_count_frames > 0;
if (!priv->use_riwt)
use_rx_wd = false;
dma_wmb();
stmmac_set_rx_owner(priv, p, use_rx_wd);
entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
}
rx_q->dirty_rx = entry;
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->dirty_rx * sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
}
static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
struct dma_desc *p,
int status, unsigned int len)
{
unsigned int plen = 0, hlen = 0;
int coe = priv->hw->rx_csum;
/* Not first descriptor, buffer is always zero */
if (priv->sph && len)
return 0;
/* First descriptor, get split header length */
stmmac_get_rx_header_len(priv, p, &hlen);
if (priv->sph && hlen) {
priv->xstats.rx_split_hdr_pkt_n++;
return hlen;
}
/* First descriptor, not last descriptor and not split header */
if (status & rx_not_ls)
return priv->dma_buf_sz;
plen = stmmac_get_rx_frame_len(priv, p, coe);
/* First descriptor and last descriptor and not split header */
return min_t(unsigned int, priv->dma_buf_sz, plen);
}
static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
struct dma_desc *p,
int status, unsigned int len)
{
int coe = priv->hw->rx_csum;
unsigned int plen = 0;
/* Not split header, buffer is not available */
if (!priv->sph)
return 0;
/* Not last descriptor */
if (status & rx_not_ls)
return priv->dma_buf_sz;
plen = stmmac_get_rx_frame_len(priv, p, coe);
/* Last descriptor */
return plen - len;
}
static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
struct xdp_frame *xdpf, bool dma_map)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
unsigned int entry = tx_q->cur_tx;
struct dma_desc *tx_desc;
dma_addr_t dma_addr;
bool set_ic;
if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
return STMMAC_XDP_CONSUMED;
if (likely(priv->extend_desc))
tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_desc = &tx_q->dma_entx[entry].basic;
else
tx_desc = tx_q->dma_tx + entry;
if (dma_map) {
dma_addr = dma_map_single(priv->device, xdpf->data,
xdpf->len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, dma_addr))
return STMMAC_XDP_CONSUMED;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
} else {
struct page *page = virt_to_page(xdpf->data);
dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
xdpf->headroom;
dma_sync_single_for_device(priv->device, dma_addr,
xdpf->len, DMA_BIDIRECTIONAL);
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
}
tx_q->tx_skbuff_dma[entry].buf = dma_addr;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
tx_q->tx_skbuff_dma[entry].len = xdpf->len;
tx_q->tx_skbuff_dma[entry].last_segment = true;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
tx_q->xdpf[entry] = xdpf;
stmmac_set_desc_addr(priv, tx_desc, dma_addr);
stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
true, priv->mode, true, true,
xdpf->len);
tx_q->tx_count_frames++;
if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
set_ic = true;
else
set_ic = false;
if (set_ic) {
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, tx_desc);
priv->xstats.tx_set_ic_bit++;
}
stmmac_enable_dma_transmission(priv, priv->ioaddr);
entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
tx_q->cur_tx = entry;
return STMMAC_XDP_TX;
}
static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
int cpu)
{
int index = cpu;
if (unlikely(index < 0))
index = 0;
while (index >= priv->plat->tx_queues_to_use)
index -= priv->plat->tx_queues_to_use;
return index;
}
static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
struct xdp_buff *xdp)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
int cpu = smp_processor_id();
struct netdev_queue *nq;
int queue;
int res;
if (unlikely(!xdpf))
return STMMAC_XDP_CONSUMED;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
nq = netdev_get_tx_queue(priv->dev, queue);
__netif_tx_lock(nq, cpu);
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
if (res == STMMAC_XDP_TX)
stmmac_flush_tx_descriptors(priv, queue);
__netif_tx_unlock(nq);
return res;
}
static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
struct bpf_prog *prog,
struct xdp_buff *xdp)
{
u32 act;
int res;
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
res = STMMAC_XDP_PASS;
break;
case XDP_TX:
res = stmmac_xdp_xmit_back(priv, xdp);
break;
case XDP_REDIRECT:
if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
res = STMMAC_XDP_CONSUMED;
else
res = STMMAC_XDP_REDIRECT;
break;
default:
bpf_warn_invalid_xdp_action(priv->dev, prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(priv->dev, prog, act);
fallthrough;
case XDP_DROP:
res = STMMAC_XDP_CONSUMED;
break;
}
return res;
}
static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
struct xdp_buff *xdp)
{
struct bpf_prog *prog;
int res;
prog = READ_ONCE(priv->xdp_prog);
if (!prog) {
res = STMMAC_XDP_PASS;
goto out;
}
res = __stmmac_xdp_run_prog(priv, prog, xdp);
out:
return ERR_PTR(-res);
}
static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
int xdp_status)
{
int cpu = smp_processor_id();
int queue;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
if (xdp_status & STMMAC_XDP_TX)
stmmac_tx_timer_arm(priv, queue);
if (xdp_status & STMMAC_XDP_REDIRECT)
xdp_do_flush();
}
static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
struct sk_buff *skb;
skb = __napi_alloc_skb(&ch->rxtx_napi,
xdp->data_end - xdp->data_hard_start,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
return skb;
}
static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
struct dma_desc *p, struct dma_desc *np,
struct xdp_buff *xdp)
{
struct stmmac_channel *ch = &priv->channel[queue];
unsigned int len = xdp->data_end - xdp->data;
enum pkt_hash_types hash_type;
int coe = priv->hw->rx_csum;
struct sk_buff *skb;
u32 hash;
skb = stmmac_construct_skb_zc(ch, xdp);
if (!skb) {
priv->dev->stats.rx_dropped++;
return;
}
stmmac_get_rx_hwtstamp(priv, p, np, skb);
stmmac_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
if (unlikely(!coe))
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
skb_set_hash(skb, hash, hash_type);
skb_record_rx_queue(skb, queue);
napi_gro_receive(&ch->rxtx_napi, skb);
priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += len;
}
static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
unsigned int entry = rx_q->dirty_rx;
struct dma_desc *rx_desc = NULL;
bool ret = true;
budget = min(budget, stmmac_rx_dirty(priv, queue));
while (budget-- > 0 && entry != rx_q->cur_rx) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
dma_addr_t dma_addr;
bool use_rx_wd;
if (!buf->xdp) {
buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
if (!buf->xdp) {
ret = false;
break;
}
}
if (priv->extend_desc)
rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
else
rx_desc = rx_q->dma_rx + entry;
dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
stmmac_set_desc_addr(priv, rx_desc, dma_addr);
stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
stmmac_refill_desc3(priv, rx_q, rx_desc);
rx_q->rx_count_frames++;
rx_q->rx_count_frames += priv->rx_coal_frames[queue];
if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
rx_q->rx_count_frames = 0;
use_rx_wd = !priv->rx_coal_frames[queue];
use_rx_wd |= rx_q->rx_count_frames > 0;
if (!priv->use_riwt)
use_rx_wd = false;
dma_wmb();
stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
}
if (rx_desc) {
rx_q->dirty_rx = entry;
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->dirty_rx * sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
}
return ret;
}
static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
unsigned int count = 0, error = 0, len = 0;
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int next_entry = rx_q->cur_rx;
unsigned int desc_size;
struct bpf_prog *prog;
bool failure = false;
int xdp_status = 0;
int status = 0;
if (netif_msg_rx_status(priv)) {
void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc) {
rx_head = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
rx_head = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
while (count < limit) {
struct stmmac_rx_buffer *buf;
unsigned int buf1_len = 0;
struct dma_desc *np, *p;
int entry;
int res;
if (!count && rx_q->state_saved) {
error = rx_q->state.error;
len = rx_q->state.len;
} else {
rx_q->state_saved = false;
error = 0;
len = 0;
}
if (count >= limit)
break;
read_again:
buf1_len = 0;
entry = next_entry;
buf = &rx_q->buf_pool[entry];
if (dirty >= STMMAC_RX_FILL_BATCH) {
failure = failure ||
!stmmac_rx_refill_zc(priv, queue, dirty);
dirty = 0;
}
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */
status = stmmac_rx_status(priv, &priv->dev->stats,
&priv->xstats, p);
/* check if managed by the DMA otherwise go ahead */
if (unlikely(status & dma_own))
break;
/* Prefetch the next RX descriptor */
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
priv->dma_rx_size);
next_entry = rx_q->cur_rx;
if (priv->extend_desc)
np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else
np = rx_q->dma_rx + next_entry;
prefetch(np);
/* Ensure a valid XSK buffer before proceed */
if (!buf->xdp)
break;
if (priv->extend_desc)
stmmac_rx_extended_status(priv, &priv->dev->stats,
&priv->xstats,
rx_q->dma_erx + entry);
if (unlikely(status == discard_frame)) {
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
dirty++;
error = 1;
if (!priv->hwts_rx_en)
priv->dev->stats.rx_errors++;
}
if (unlikely(error && (status & rx_not_ls)))
goto read_again;
if (unlikely(error)) {
count++;
continue;
}
/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
if (likely(status & rx_not_ls)) {
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
dirty++;
count++;
goto read_again;
}
/* XDP ZC Frame only support primary buffers for now */
buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
len += buf1_len;
/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
* Type frames (LLC/LLC-SNAP)
*
* llc_snap is never checked in GMAC >= 4, so this ACS
* feature is always disabled and packets need to be
* stripped manually.
*/
if (likely(!(status & rx_not_ls)) &&
(likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
unlikely(status != llc_snap))) {
buf1_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
}
/* RX buffer is good and fit into a XSK pool buffer */
buf->xdp->data_end = buf->xdp->data + buf1_len;
xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
prog = READ_ONCE(priv->xdp_prog);
res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
switch (res) {
case STMMAC_XDP_PASS:
stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
xsk_buff_free(buf->xdp);
break;
case STMMAC_XDP_CONSUMED:
xsk_buff_free(buf->xdp);
priv->dev->stats.rx_dropped++;
break;
case STMMAC_XDP_TX:
case STMMAC_XDP_REDIRECT:
xdp_status |= res;
break;
}
buf->xdp = NULL;
dirty++;
count++;
}
if (status & rx_not_ls) {
rx_q->state_saved = true;
rx_q->state.error = error;
rx_q->state.len = len;
}
stmmac_finalize_xdp_rx(priv, xdp_status);
priv->xstats.rx_pkt_n += count;
priv->xstats.rxq_stats[queue].rx_pkt_n += count;
if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
if (failure || stmmac_rx_dirty(priv, queue) > 0)
xsk_set_rx_need_wakeup(rx_q->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
return (int)count;
}
return failure ? limit : (int)count;
}
/**
* stmmac_rx - manage the receive process
* @priv: driver private structure
* @limit: napi bugget
* @queue: RX queue index.
* Description : this the function called by the napi poll method.
* It gets all the frames inside the ring.
*/
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned int count = 0, error = 0, len = 0;
int status = 0, coe = priv->hw->rx_csum;
unsigned int next_entry = rx_q->cur_rx;
enum dma_data_direction dma_dir;
unsigned int desc_size;
struct sk_buff *skb = NULL;
struct xdp_buff xdp;
int xdp_status = 0;
int buf_sz;
dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
if (netif_msg_rx_status(priv)) {
void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc) {
rx_head = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
rx_head = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
while (count < limit) {
unsigned int buf1_len = 0, buf2_len = 0;
enum pkt_hash_types hash_type;
struct stmmac_rx_buffer *buf;
struct dma_desc *np, *p;
int entry;
u32 hash;
if (!count && rx_q->state_saved) {
skb = rx_q->state.skb;
error = rx_q->state.error;
len = rx_q->state.len;
} else {
rx_q->state_saved = false;
skb = NULL;
error = 0;
len = 0;
}
if (count >= limit)
break;
read_again:
buf1_len = 0;
buf2_len = 0;
entry = next_entry;
buf = &rx_q->buf_pool[entry];
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */
status = stmmac_rx_status(priv, &priv->dev->stats,
&priv->xstats, p);
/* check if managed by the DMA otherwise go ahead */
if (unlikely(status & dma_own))
break;
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
priv->dma_rx_size);
next_entry = rx_q->cur_rx;
if (priv->extend_desc)
np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else
np = rx_q->dma_rx + next_entry;
prefetch(np);
if (priv->extend_desc)
stmmac_rx_extended_status(priv, &priv->dev->stats,
&priv->xstats, rx_q->dma_erx + entry);
if (unlikely(status == discard_frame)) {
page_pool_recycle_direct(rx_q->page_pool, buf->page);
buf->page = NULL;
error = 1;
if (!priv->hwts_rx_en)
priv->dev->stats.rx_errors++;
}
if (unlikely(error && (status & rx_not_ls)))
goto read_again;
if (unlikely(error)) {
dev_kfree_skb(skb);
skb = NULL;
count++;
continue;
}
/* Buffer is good. Go on. */
prefetch(page_address(buf->page) + buf->page_offset);
if (buf->sec_page)
prefetch(page_address(buf->sec_page));
buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
len += buf1_len;
buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
len += buf2_len;
/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
* Type frames (LLC/LLC-SNAP)
*
* llc_snap is never checked in GMAC >= 4, so this ACS
* feature is always disabled and packets need to be
* stripped manually.
*/
if (likely(!(status & rx_not_ls)) &&
(likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
unlikely(status != llc_snap))) {
if (buf2_len) {
buf2_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
} else if (buf1_len) {
buf1_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
}
}
if (!skb) {
unsigned int pre_len, sync_len;
dma_sync_single_for_cpu(priv->device, buf->addr,
buf1_len, dma_dir);
xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
xdp_prepare_buff(&xdp, page_address(buf->page),
buf->page_offset, buf1_len, false);
pre_len = xdp.data_end - xdp.data_hard_start -
buf->page_offset;
skb = stmmac_xdp_run_prog(priv, &xdp);
/* Due xdp_adjust_tail: DMA sync for_device
* cover max len CPU touch
*/
sync_len = xdp.data_end - xdp.data_hard_start -
buf->page_offset;
sync_len = max(sync_len, pre_len);
/* For Not XDP_PASS verdict */
if (IS_ERR(skb)) {
unsigned int xdp_res = -PTR_ERR(skb);
if (xdp_res & STMMAC_XDP_CONSUMED) {
page_pool_put_page(rx_q->page_pool,
virt_to_head_page(xdp.data),
sync_len, true);
buf->page = NULL;
priv->dev->stats.rx_dropped++;
/* Clear skb as it was set as
* status by XDP program.
*/
skb = NULL;
if (unlikely((status & rx_not_ls)))
goto read_again;
count++;
continue;
} else if (xdp_res & (STMMAC_XDP_TX |
STMMAC_XDP_REDIRECT)) {
xdp_status |= xdp_res;
buf->page = NULL;
skb = NULL;
count++;
continue;
}
}
}
if (!skb) {
/* XDP program may expand or reduce tail */
buf1_len = xdp.data_end - xdp.data;
skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
if (!skb) {
priv->dev->stats.rx_dropped++;
count++;
goto drain_data;
}
/* XDP program may adjust header */
skb_copy_to_linear_data(skb, xdp.data, buf1_len);
skb_put(skb, buf1_len);
/* Data payload copied into SKB, page ready for recycle */
page_pool_recycle_direct(rx_q->page_pool, buf->page);
buf->page = NULL;
} else if (buf1_len) {
dma_sync_single_for_cpu(priv->device, buf->addr,
buf1_len, dma_dir);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
buf->page, buf->page_offset, buf1_len,
priv->dma_buf_sz);
/* Data payload appended into SKB */
page_pool_release_page(rx_q->page_pool, buf->page);
buf->page = NULL;
}
if (buf2_len) {
dma_sync_single_for_cpu(priv->device, buf->sec_addr,
buf2_len, dma_dir);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
buf->sec_page, 0, buf2_len,
priv->dma_buf_sz);
/* Data payload appended into SKB */
page_pool_release_page(rx_q->page_pool, buf->sec_page);
buf->sec_page = NULL;
}
drain_data:
if (likely(status & rx_not_ls))
goto read_again;
if (!skb)
continue;
/* Got entire packet into SKB. Finish it. */
stmmac_get_rx_hwtstamp(priv, p, np, skb);
stmmac_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
if (unlikely(!coe))
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
skb_set_hash(skb, hash, hash_type);
skb_record_rx_queue(skb, queue);
napi_gro_receive(&ch->rx_napi, skb);
skb = NULL;
priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += len;
count++;
}
if (status & rx_not_ls || skb) {
rx_q->state_saved = true;
rx_q->state.skb = skb;
rx_q->state.error = error;
rx_q->state.len = len;
}
stmmac_finalize_xdp_rx(priv, xdp_status);
stmmac_rx_refill(priv, queue);
priv->xstats.rx_pkt_n += count;
priv->xstats.rxq_stats[queue].rx_pkt_n += count;
return count;
}
static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, rx_napi);
struct stmmac_priv *priv = ch->priv_data;
u32 chan = ch->index;
int work_done;
priv->xstats.napi_poll++;
work_done = stmmac_rx(priv, budget, chan);
if (work_done < budget && napi_complete_done(napi, work_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
}
return work_done;
}
static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, tx_napi);
struct stmmac_priv *priv = ch->priv_data;
u32 chan = ch->index;
int work_done;
priv->xstats.napi_poll++;
work_done = stmmac_tx_clean(priv, budget, chan);
work_done = min(work_done, budget);
if (work_done < budget && napi_complete_done(napi, work_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
return work_done;
}
static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, rxtx_napi);
struct stmmac_priv *priv = ch->priv_data;
int rx_done, tx_done, rxtx_done;
u32 chan = ch->index;
priv->xstats.napi_poll++;
tx_done = stmmac_tx_clean(priv, budget, chan);
tx_done = min(tx_done, budget);
rx_done = stmmac_rx_zc(priv, budget, chan);
rxtx_done = max(tx_done, rx_done);
/* If either TX or RX work is not complete, return budget
* and keep pooling
*/
if (rxtx_done >= budget)
return budget;
/* all work done, exit the polling mode */
if (napi_complete_done(napi, rxtx_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
/* Both RX and TX work done are compelte,
* so enable both RX & TX IRQs.
*/
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
return min(rxtx_done, budget - 1);
}
/**
* stmmac_tx_timeout
* @dev : Pointer to net device structure
* @txqueue: the index of the hanging transmit queue
* Description: this function is called when a packet transmission fails to
* complete within a reasonable time. The driver will mark the error in the
* netdev structure and arrange for the device to be reset to a sane state
* in order to transmit a new packet.
*/
static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct stmmac_priv *priv = netdev_priv(dev);
stmmac_global_err(priv);
}
/**
* stmmac_set_rx_mode - entry point for multicast addressing
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled.
* Return value:
* void.
*/
static void stmmac_set_rx_mode(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
stmmac_set_filter(priv, priv->hw, dev);
}
/**
* stmmac_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: the Maximum Transfer Unit (MTU) is used by the network layer
* to drive packet transmission. Ethernet has an MTU of 1500 octets
* (ETH_DATA_LEN). This value can be changed with ifconfig.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
struct stmmac_priv *priv = netdev_priv(dev);
int txfifosz = priv->plat->tx_fifo_size;
const int mtu = new_mtu;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
txfifosz /= priv->plat->tx_queues_to_use;
if (netif_running(dev)) {
netdev_err(priv->dev, "must be stopped to change its MTU\n");
return -EBUSY;
}
if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
return -EINVAL;
}
new_mtu = STMMAC_ALIGN(new_mtu);
/* If condition true, FIFO is too small or MTU too large */
if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
return -EINVAL;
dev->mtu = mtu;
netdev_update_features(dev);
return 0;
}
static netdev_features_t stmmac_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(dev);
if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
features &= ~NETIF_F_RXCSUM;
if (!priv->plat->tx_coe)
features &= ~NETIF_F_CSUM_MASK;
/* Some GMAC devices have a bugged Jumbo frame support that
* needs to have the Tx COE disabled for oversized frames
* (due to limited buffer sizes). In this case we disable
* the TX csum insertion in the TDES and not use SF.
*/
if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
features &= ~NETIF_F_CSUM_MASK;
/* Disable tso if asked by ethtool */
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
if (features & NETIF_F_TSO)
priv->tso = true;
else
priv->tso = false;
}
return features;
}
static int stmmac_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(netdev);
/* Keep the COE Type in case of csum is supporting */
if (features & NETIF_F_RXCSUM)
priv->hw->rx_csum = priv->plat->rx_coe;
else
priv->hw->rx_csum = 0;
/* No check needed because rx_coe has been set before and it will be
* fixed in case of issue.
*/
stmmac_rx_ipc(priv, priv->hw);
if (priv->sph_cap) {
bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
u32 chan;
for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
}
return 0;
}
static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
{
struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
bool *hs_enable = &fpe_cfg->hs_enable;
if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
return;
/* If LP has sent verify mPacket, LP is FPE capable */
if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
if (*lp_state < FPE_STATE_CAPABLE)
*lp_state = FPE_STATE_CAPABLE;
/* If user has requested FPE enable, quickly response */
if (*hs_enable)
stmmac_fpe_send_mpacket(priv, priv->ioaddr,
MPACKET_RESPONSE);
}
/* If Local has sent verify mPacket, Local is FPE capable */
if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
if (*lo_state < FPE_STATE_CAPABLE)
*lo_state = FPE_STATE_CAPABLE;
}
/* If LP has sent response mPacket, LP is entering FPE ON */
if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
*lp_state = FPE_STATE_ENTERING_ON;
/* If Local has sent response mPacket, Local is entering FPE ON */
if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
*lo_state = FPE_STATE_ENTERING_ON;
if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
!test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
priv->fpe_wq) {
queue_work(priv->fpe_wq, &priv->fpe_task);
}
}
static void stmmac_common_interrupt(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queues_count;
u32 queue;
bool xmac;
xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
if (priv->irq_wake)
pm_wakeup_event(priv->device, 0);
if (priv->dma_cap.estsel)
stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
&priv->xstats, tx_cnt);
if (priv->dma_cap.fpesel) {
int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
priv->dev);
stmmac_fpe_event_status(priv, status);
}
/* To handle GMAC own interrupts */
if ((priv->plat->has_gmac) || xmac) {
int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
if (unlikely(status)) {
/* For LPI we need to save the tx status */
if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
priv->tx_path_in_lpi_mode = true;
if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
priv->tx_path_in_lpi_mode = false;
}
for (queue = 0; queue < queues_count; queue++) {
status = stmmac_host_mtl_irq_status(priv, priv->hw,
queue);
}
/* PCS link status */
if (priv->hw->pcs) {
if (priv->xstats.pcs_link)
netif_carrier_on(priv->dev);
else
netif_carrier_off(priv->dev);
}
stmmac_timestamp_interrupt(priv, priv);
}
}
/**
* stmmac_interrupt - main ISR
* @irq: interrupt number.
* @dev_id: to pass the net device pointer.
* Description: this is the main driver interrupt service routine.
* It can call:
* o DMA service routine (to manage incoming frame reception and transmission
* status)
* o Core interrupts to manage: remote wake-up, management counter, LPI
* interrupts.
*/
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* Check if a fatal error happened */
if (stmmac_safety_feat_interrupt(priv))
return IRQ_HANDLED;
/* To handle Common interrupts */
stmmac_common_interrupt(priv);
/* To handle DMA interrupts */
stmmac_dma_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
if (unlikely(!dev)) {
netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* To handle Common interrupts */
stmmac_common_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
if (unlikely(!dev)) {
netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* Check if a fatal error happened */
stmmac_safety_feat_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
{
struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
int chan = tx_q->queue_index;
struct stmmac_priv *priv;
int status;
priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
if (unlikely(!data)) {
netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
if (unlikely(status & tx_hard_error_bump_tc)) {
/* Try to bump up the dma threshold on this failure */
stmmac_bump_dma_threshold(priv, chan);
} else if (unlikely(status == tx_hard_error)) {
stmmac_tx_err(priv, chan);
}
return IRQ_HANDLED;
}
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
{
struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
int chan = rx_q->queue_index;
struct stmmac_priv *priv;
priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
if (unlikely(!data)) {
netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
return IRQ_NONE;
}
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
stmmac_napi_check(priv, chan, DMA_DIR_RX);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
* to allow network I/O with interrupts disabled.
*/
static void stmmac_poll_controller(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
int i;
/* If adapter is down, do nothing */
if (test_bit(STMMAC_DOWN, &priv->state))
return;
if (priv->plat->multi_msi_en) {
for (i = 0; i < priv->plat->rx_queues_to_use; i++)
stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
for (i = 0; i < priv->plat->tx_queues_to_use; i++)
stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
} else {
disable_irq(dev->irq);
stmmac_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
}
#endif
/**
* stmmac_ioctl - Entry point for the Ioctl
* @dev: Device pointer.
* @rq: An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd: IOCTL command
* Description:
* Currently it supports the phy_mii_ioctl(...) and HW time stamping.
*/
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct stmmac_priv *priv = netdev_priv (dev);
int ret = -EOPNOTSUPP;
if (!netif_running(dev))
return -EINVAL;
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
break;
case SIOCSHWTSTAMP:
ret = stmmac_hwtstamp_set(dev, rq);
break;
case SIOCGHWTSTAMP:
ret = stmmac_hwtstamp_get(dev, rq);
break;
default:
break;
}
return ret;
}
static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct stmmac_priv *priv = cb_priv;
int ret = -EOPNOTSUPP;
if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
return ret;
__stmmac_disable_all_queues(priv);
switch (type) {
case TC_SETUP_CLSU32:
ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
break;
case TC_SETUP_CLSFLOWER:
ret = stmmac_tc_setup_cls(priv, priv, type_data);
break;
default:
break;
}
stmmac_enable_all_queues(priv);
return ret;
}
static LIST_HEAD(stmmac_block_cb_list);
static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
struct stmmac_priv *priv = netdev_priv(ndev);
switch (type) {
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&stmmac_block_cb_list,
stmmac_setup_tc_block_cb,
priv, priv, true);
case TC_SETUP_QDISC_CBS:
return stmmac_tc_setup_cbs(priv, priv, type_data);
case TC_SETUP_QDISC_TAPRIO:
return stmmac_tc_setup_taprio(priv, priv, type_data);
case TC_SETUP_QDISC_ETF:
return stmmac_tc_setup_etf(priv, priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
int gso = skb_shinfo(skb)->gso_type;
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
/*
* There is no way to determine the number of TSO/USO
* capable Queues. Let's use always the Queue 0
* because if TSO/USO is supported then at least this
* one will be capable.
*/
return 0;
}
return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
}
static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
{
struct stmmac_priv *priv = netdev_priv(ndev);
int ret = 0;
ret = pm_runtime_get_sync(priv->device);
if (ret < 0) {
pm_runtime_put_noidle(priv->device);
return ret;
}
ret = eth_mac_addr(ndev, addr);
if (ret)
goto set_mac_error;
stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
set_mac_error:
pm_runtime_put(priv->device);
return ret;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static void sysfs_display_ring(void *head, int size, int extend_desc,
struct seq_file *seq, dma_addr_t dma_phy_addr)
{
int i;
struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
struct dma_desc *p = (struct dma_desc *)head;
dma_addr_t dma_addr;
for (i = 0; i < size; i++) {
if (extend_desc) {
dma_addr = dma_phy_addr + i * sizeof(*ep);
seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
i, &dma_addr,
le32_to_cpu(ep->basic.des0),
le32_to_cpu(ep->basic.des1),
le32_to_cpu(ep->basic.des2),
le32_to_cpu(ep->basic.des3));
ep++;
} else {
dma_addr = dma_phy_addr + i * sizeof(*p);
seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
i, &dma_addr,
le32_to_cpu(p->des0), le32_to_cpu(p->des1),
le32_to_cpu(p->des2), le32_to_cpu(p->des3));
p++;
}
seq_printf(seq, "\n");
}
}
static int stmmac_rings_status_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
if ((dev->flags & IFF_UP) == 0)
return 0;
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
seq_printf(seq, "RX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_erx,
priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
} else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_rx,
priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
}
}
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
seq_printf(seq, "TX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_etx,
priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_tx,
priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
}
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
if (!priv->hw_cap_support) {
seq_printf(seq, "DMA HW features not supported\n");
return 0;
}
seq_printf(seq, "==============================\n");
seq_printf(seq, "\tDMA HW features\n");
seq_printf(seq, "==============================\n");
seq_printf(seq, "\t10/100 Mbps: %s\n",
(priv->dma_cap.mbps_10_100) ? "Y" : "N");
seq_printf(seq, "\t1000 Mbps: %s\n",
(priv->dma_cap.mbps_1000) ? "Y" : "N");
seq_printf(seq, "\tHalf duplex: %s\n",
(priv->dma_cap.half_duplex) ? "Y" : "N");
seq_printf(seq, "\tHash Filter: %s\n",
(priv->dma_cap.hash_filter) ? "Y" : "N");
seq_printf(seq, "\tMultiple MAC address registers: %s\n",
(priv->dma_cap.multi_addr) ? "Y" : "N");
seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
(priv->dma_cap.pcs) ? "Y" : "N");
seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
(priv->dma_cap.sma_mdio) ? "Y" : "N");
seq_printf(seq, "\tPMT Remote wake up: %s\n",
(priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
seq_printf(seq, "\tPMT Magic Frame: %s\n",
(priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
seq_printf(seq, "\tRMON module: %s\n",
(priv->dma_cap.rmon) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
(priv->dma_cap.time_stamp) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
(priv->dma_cap.atime_stamp) ? "Y" : "N");
seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
(priv->dma_cap.eee) ? "Y" : "N");
seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
seq_printf(seq, "\tChecksum Offload in TX: %s\n",
(priv->dma_cap.tx_coe) ? "Y" : "N");
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
(priv->dma_cap.rx_coe) ? "Y" : "N");
} else {
seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
(priv->dma_cap.rx_coe_type1) ? "Y" : "N");
seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
(priv->dma_cap.rx_coe_type2) ? "Y" : "N");
}
seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
(priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
priv->dma_cap.number_rx_channel);
seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
priv->dma_cap.number_tx_channel);
seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
priv->dma_cap.number_rx_queues);
seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
priv->dma_cap.number_tx_queues);
seq_printf(seq, "\tEnhanced descriptors: %s\n",
(priv->dma_cap.enh_desc) ? "Y" : "N");
seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
priv->dma_cap.pps_out_num);
seq_printf(seq, "\tSafety Features: %s\n",
priv->dma_cap.asp ? "Y" : "N");
seq_printf(seq, "\tFlexible RX Parser: %s\n",
priv->dma_cap.frpsel ? "Y" : "N");
seq_printf(seq, "\tEnhanced Addressing: %d\n",
priv->dma_cap.addr64);
seq_printf(seq, "\tReceive Side Scaling: %s\n",
priv->dma_cap.rssen ? "Y" : "N");
seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
priv->dma_cap.vlhash ? "Y" : "N");
seq_printf(seq, "\tSplit Header: %s\n",
priv->dma_cap.sphen ? "Y" : "N");
seq_printf(seq, "\tVLAN TX Insertion: %s\n",
priv->dma_cap.vlins ? "Y" : "N");
seq_printf(seq, "\tDouble VLAN: %s\n",
priv->dma_cap.dvlan ? "Y" : "N");
seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
priv->dma_cap.l3l4fnum);
seq_printf(seq, "\tARP Offloading: %s\n",
priv->dma_cap.arpoffsel ? "Y" : "N");
seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
priv->dma_cap.estsel ? "Y" : "N");
seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
priv->dma_cap.fpesel ? "Y" : "N");
seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
priv->dma_cap.tbssel ? "Y" : "N");
return 0;
}
DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
/* Use network device events to rename debugfs file entries.
*/
static int stmmac_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct stmmac_priv *priv = netdev_priv(dev);
if (dev->netdev_ops != &stmmac_netdev_ops)
goto done;
switch (event) {
case NETDEV_CHANGENAME:
if (priv->dbgfs_dir)
priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
priv->dbgfs_dir,
stmmac_fs_dir,
dev->name);
break;
}
done:
return NOTIFY_DONE;
}
static struct notifier_block stmmac_notifier = {
.notifier_call = stmmac_device_event,
};
static void stmmac_init_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
rtnl_lock();
/* Create per netdev entries */
priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
/* Entry to report DMA RX/TX rings */
debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
&stmmac_rings_status_fops);
/* Entry to report the DMA HW features */
debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
&stmmac_dma_cap_fops);
rtnl_unlock();
}
static void stmmac_exit_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
debugfs_remove_recursive(priv->dbgfs_dir);
}
#endif /* CONFIG_DEBUG_FS */
static u32 stmmac_vid_crc32_le(__le16 vid_le)
{
unsigned char *data = (unsigned char *)&vid_le;
unsigned char data_byte = 0;
u32 crc = ~0x0;
u32 temp = 0;
int i, bits;
bits = get_bitmask_order(VLAN_VID_MASK);
for (i = 0; i < bits; i++) {
if ((i % 8) == 0)
data_byte = data[i / 8];
temp = ((crc & 1) ^ data_byte) & 1;
crc >>= 1;
data_byte >>= 1;
if (temp)
crc ^= 0xedb88320;
}
return crc;
}
static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
{
u32 crc, hash = 0;
__le16 pmatch = 0;
int count = 0;
u16 vid = 0;
for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
__le16 vid_le = cpu_to_le16(vid);
crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
hash |= (1 << crc);
count++;
}
if (!priv->dma_cap.vlhash) {
if (count > 2) /* VID = 0 always passes filter */
return -EOPNOTSUPP;
pmatch = cpu_to_le16(vid);
hash = 0;
}
return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
}
static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct stmmac_priv *priv = netdev_priv(ndev);
bool is_double = false;
int ret;
if (be16_to_cpu(proto) == ETH_P_8021AD)
is_double = true;
set_bit(vid, priv->active_vlans);
ret = stmmac_vlan_update(priv, is_double);
if (ret) {
clear_bit(vid, priv->active_vlans);
return ret;
}
if (priv->hw->num_vlan) {
ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
if (ret)
return ret;
}
return 0;
}
static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct stmmac_priv *priv = netdev_priv(ndev);
bool is_double = false;
int ret;
ret = pm_runtime_get_sync(priv->device);
if (ret < 0) {
pm_runtime_put_noidle(priv->device);
return ret;
}
if (be16_to_cpu(proto) == ETH_P_8021AD)
is_double = true;
clear_bit(vid, priv->active_vlans);
if (priv->hw->num_vlan) {
ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
if (ret)
goto del_vlan_error;
}
ret = stmmac_vlan_update(priv, is_double);
del_vlan_error:
pm_runtime_put(priv->device);
return ret;
}
static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
struct stmmac_priv *priv = netdev_priv(dev);
switch (bpf->command) {
case XDP_SETUP_PROG:
return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
case XDP_SETUP_XSK_POOL:
return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
bpf->xsk.queue_id);
default:
return -EOPNOTSUPP;
}
}
static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
struct xdp_frame **frames, u32 flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int cpu = smp_processor_id();
struct netdev_queue *nq;
int i, nxmit = 0;
int queue;
if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
nq = netdev_get_tx_queue(priv->dev, queue);
__netif_tx_lock(nq, cpu);
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
for (i = 0; i < num_frames; i++) {
int res;
res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
if (res == STMMAC_XDP_CONSUMED)
break;
nxmit++;
}
if (flags & XDP_XMIT_FLUSH) {
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
}
__netif_tx_unlock(nq);
return nxmit;
}
void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
stmmac_stop_rx_dma(priv, queue);
__free_dma_rx_desc_resources(priv, queue);
}
void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
u32 buf_size;
int ret;
ret = __alloc_dma_rx_desc_resources(priv, queue);
if (ret) {
netdev_err(priv->dev, "Failed to alloc RX desc.\n");
return;
}
ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
if (ret) {
__free_dma_rx_desc_resources(priv, queue);
netdev_err(priv->dev, "Failed to init RX desc.\n");
return;
}
stmmac_clear_rx_descriptors(priv, queue);
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, rx_q->queue_index);
rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, rx_q->queue_index);
if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
rx_q->queue_index);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_buf_sz,
rx_q->queue_index);
}
stmmac_start_rx_dma(priv, queue);
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
}
void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
stmmac_stop_tx_dma(priv, queue);
__free_dma_tx_desc_resources(priv, queue);
}
void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
int ret;
ret = __alloc_dma_tx_desc_resources(priv, queue);
if (ret) {
netdev_err(priv->dev, "Failed to alloc TX desc.\n");
return;
}
ret = __init_dma_tx_desc_rings(priv, queue);
if (ret) {
__free_dma_tx_desc_resources(priv, queue);
netdev_err(priv->dev, "Failed to init TX desc.\n");
return;
}
stmmac_clear_tx_descriptors(priv, queue);
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, tx_q->queue_index);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, tx_q->queue_index);
stmmac_start_tx_dma(priv, queue);
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
void stmmac_xdp_release(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 chan;
/* Disable NAPI process */
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->tx_queue[chan].txtimer);
/* Free the IRQ lines */
stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
/* Stop TX/RX DMA channels */
stmmac_stop_all_dma(priv);
/* Release and free the Rx/Tx resources */
free_dma_desc_resources(priv);
/* Disable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, false);
/* set trans_start so we don't get spurious
* watchdogs during reset
*/
netif_trans_update(dev);
netif_carrier_off(dev);
}
int stmmac_xdp_open(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_cnt, tx_cnt);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 buf_size;
bool sph_en;
u32 chan;
int ret;
ret = alloc_dma_desc_resources(priv);
if (ret < 0) {
netdev_err(dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto dma_desc_error;
}
ret = init_dma_desc_rings(dev, GFP_KERNEL);
if (ret < 0) {
netdev_err(dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
/* DMA CSR Channel configuration */
for (chan = 0; chan < dma_csr_ch; chan++) {
stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
}
/* Adjust Split header */
sph_en = (priv->hw->rx_csum > 0) && priv->sph;
/* DMA RX Channel Configuration */
for (chan = 0; chan < rx_cnt; chan++) {
rx_q = &priv->rx_queue[chan];
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, chan);
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, chan);
if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
rx_q->queue_index);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_buf_sz,
rx_q->queue_index);
}
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
}
/* DMA TX Channel Configuration */
for (chan = 0; chan < tx_cnt; chan++) {
tx_q = &priv->tx_queue[chan];
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, chan);
hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx_q->txtimer.function = stmmac_tx_timer;
}
/* Enable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, true);
/* Start Rx & Tx DMA Channels */
stmmac_start_all_dma(priv);
ret = stmmac_request_irq(dev);
if (ret)
goto irq_error;
/* Enable NAPI process*/
stmmac_enable_all_queues(priv);
netif_carrier_on(dev);
netif_tx_start_all_queues(dev);
stmmac_enable_all_dma_irq(priv);
return 0;
irq_error:
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->tx_queue[chan].txtimer);
stmmac_hw_teardown(dev);
init_error:
free_dma_desc_resources(priv);
dma_desc_error:
return ret;
}
int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
struct stmmac_channel *ch;
if (test_bit(STMMAC_DOWN, &priv->state) ||
!netif_carrier_ok(priv->dev))
return -ENETDOWN;
if (!stmmac_xdp_is_enabled(priv))
return -ENXIO;
if (queue >= priv->plat->rx_queues_to_use ||
queue >= priv->plat->tx_queues_to_use)
return -EINVAL;
rx_q = &priv->rx_queue[queue];
tx_q = &priv->tx_queue[queue];
ch = &priv->channel[queue];
if (!rx_q->xsk_pool && !tx_q->xsk_pool)
return -ENXIO;
if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
/* EQoS does not have per-DMA channel SW interrupt,
* so we schedule RX Napi straight-away.
*/
if (likely(napi_schedule_prep(&ch->rxtx_napi)))
__napi_schedule(&ch->rxtx_napi);
}
return 0;
}
static const struct net_device_ops stmmac_netdev_ops = {
.ndo_open = stmmac_open,
.ndo_start_xmit = stmmac_xmit,
.ndo_stop = stmmac_release,
.ndo_change_mtu = stmmac_change_mtu,
.ndo_fix_features = stmmac_fix_features,
.ndo_set_features = stmmac_set_features,
.ndo_set_rx_mode = stmmac_set_rx_mode,
.ndo_tx_timeout = stmmac_tx_timeout,
.ndo_eth_ioctl = stmmac_ioctl,
.ndo_setup_tc = stmmac_setup_tc,
.ndo_select_queue = stmmac_select_queue,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = stmmac_poll_controller,
#endif
.ndo_set_mac_address = stmmac_set_mac_address,
.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
.ndo_bpf = stmmac_bpf,
.ndo_xdp_xmit = stmmac_xdp_xmit,
.ndo_xsk_wakeup = stmmac_xsk_wakeup,
};
static void stmmac_reset_subtask(struct stmmac_priv *priv)
{
if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
return;
if (test_bit(STMMAC_DOWN, &priv->state))
return;
netdev_err(priv->dev, "Reset adapter.\n");
rtnl_lock();
netif_trans_update(priv->dev);
while (test_and_set_bit(STMMAC_RESETING, &priv->state))
usleep_range(1000, 2000);
set_bit(STMMAC_DOWN, &priv->state);
dev_close(priv->dev);
dev_open(priv->dev, NULL);
clear_bit(STMMAC_DOWN, &priv->state);
clear_bit(STMMAC_RESETING, &priv->state);
rtnl_unlock();
}
static void stmmac_service_task(struct work_struct *work)
{
struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
service_task);
stmmac_reset_subtask(priv);
clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
}
/**
* stmmac_hw_init - Init the MAC device
* @priv: driver private structure
* Description: this function is to configure the MAC device according to
* some platform parameters or the HW capability register. It prepares the
* driver to use either ring or chain modes and to setup either enhanced or
* normal descriptors.
*/
static int stmmac_hw_init(struct stmmac_priv *priv)
{
int ret;
/* dwmac-sun8i only work in chain mode */
if (priv->plat->has_sun8i)
chain_mode = 1;
priv->chain_mode = chain_mode;
/* Initialize HW Interface */
ret = stmmac_hwif_init(priv);
if (ret)
return ret;
/* Get the HW capability (new GMAC newer than 3.50a) */
priv->hw_cap_support = stmmac_get_hw_features(priv);
if (priv->hw_cap_support) {
dev_info(priv->device, "DMA HW capability register supported\n");
/* We can override some gmac/dma configuration fields: e.g.
* enh_desc, tx_coe (e.g. that are passed through the
* platform) with the values from the HW capability
* register (if supported).
*/
priv->plat->enh_desc = priv->dma_cap.enh_desc;
priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
!priv->plat->use_phy_wol;
priv->hw->pmt = priv->plat->pmt;
if (priv->dma_cap.hash_tb_sz) {
priv->hw->multicast_filter_bins =
(BIT(priv->dma_cap.hash_tb_sz) << 5);
priv->hw->mcast_bits_log2 =
ilog2(priv->hw->multicast_filter_bins);
}
/* TXCOE doesn't work in thresh DMA mode */
if (priv->plat->force_thresh_dma_mode)
priv->plat->tx_coe = 0;
else
priv->plat->tx_coe = priv->dma_cap.tx_coe;
/* In case of GMAC4 rx_coe is from HW cap register. */
priv->plat->rx_coe = priv->dma_cap.rx_coe;
if (priv->dma_cap.rx_coe_type2)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
else if (priv->dma_cap.rx_coe_type1)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
} else {
dev_info(priv->device, "No HW DMA feature register supported\n");
}
if (priv->plat->rx_coe) {
priv->hw->rx_csum = priv->plat->rx_coe;
dev_info(priv->device, "RX Checksum Offload Engine supported\n");
if (priv->synopsys_id < DWMAC_CORE_4_00)
dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
}
if (priv->plat->tx_coe)
dev_info(priv->device, "TX Checksum insertion supported\n");
if (priv->plat->pmt) {
dev_info(priv->device, "Wake-Up On Lan supported\n");
device_set_wakeup_capable(priv->device, 1);
}
if (priv->dma_cap.tsoen)
dev_info(priv->device, "TSO supported\n");
priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
/* Run HW quirks, if any */
if (priv->hwif_quirks) {
ret = priv->hwif_quirks(priv);
if (ret)
return ret;
}
/* Rx Watchdog is available in the COREs newer than the 3.40.
* In some case, for example on bugged HW this feature
* has to be disable and this can be done by passing the
* riwt_off field from the platform.
*/
if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
(priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
priv->use_riwt = 1;
dev_info(priv->device,
"Enable RX Mitigation via HW Watchdog Timer\n");
}
return 0;
}
static void stmmac_napi_add(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 queue, maxq;
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
ch->priv_data = priv;
ch->index = queue;
spin_lock_init(&ch->lock);
if (queue < priv->plat->rx_queues_to_use) {
netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
NAPI_POLL_WEIGHT);
}
if (queue < priv->plat->tx_queues_to_use) {
netif_tx_napi_add(dev, &ch->tx_napi,
stmmac_napi_poll_tx,
NAPI_POLL_WEIGHT);
}
if (queue < priv->plat->rx_queues_to_use &&
queue < priv->plat->tx_queues_to_use) {
netif_napi_add(dev, &ch->rxtx_napi,
stmmac_napi_poll_rxtx,
NAPI_POLL_WEIGHT);
}
}
}
static void stmmac_napi_del(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 queue, maxq;
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (queue < priv->plat->rx_queues_to_use)
netif_napi_del(&ch->rx_napi);
if (queue < priv->plat->tx_queues_to_use)
netif_napi_del(&ch->tx_napi);
if (queue < priv->plat->rx_queues_to_use &&
queue < priv->plat->tx_queues_to_use) {
netif_napi_del(&ch->rxtx_napi);
}
}
}
int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret = 0;
if (netif_running(dev))
stmmac_release(dev);
stmmac_napi_del(dev);
priv->plat->rx_queues_to_use = rx_cnt;
priv->plat->tx_queues_to_use = tx_cnt;
stmmac_napi_add(dev);
if (netif_running(dev))
ret = stmmac_open(dev);
return ret;
}
int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret = 0;
if (netif_running(dev))
stmmac_release(dev);
priv->dma_rx_size = rx_size;
priv->dma_tx_size = tx_size;
if (netif_running(dev))
ret = stmmac_open(dev);
return ret;
}
#define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
static void stmmac_fpe_lp_task(struct work_struct *work)
{
struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
fpe_task);
struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
bool *hs_enable = &fpe_cfg->hs_enable;
bool *enable = &fpe_cfg->enable;
int retries = 20;
while (retries-- > 0) {
/* Bail out immediately if FPE handshake is OFF */
if (*lo_state == FPE_STATE_OFF || !*hs_enable)
break;
if (*lo_state == FPE_STATE_ENTERING_ON &&
*lp_state == FPE_STATE_ENTERING_ON) {
stmmac_fpe_configure(priv, priv->ioaddr,
priv->plat->tx_queues_to_use,
priv->plat->rx_queues_to_use,
*enable);
netdev_info(priv->dev, "configured FPE\n");
*lo_state = FPE_STATE_ON;
*lp_state = FPE_STATE_ON;
netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
break;
}
if ((*lo_state == FPE_STATE_CAPABLE ||
*lo_state == FPE_STATE_ENTERING_ON) &&
*lp_state != FPE_STATE_ON) {
netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
*lo_state, *lp_state);
stmmac_fpe_send_mpacket(priv, priv->ioaddr,
MPACKET_VERIFY);
}
/* Sleep then retry */
msleep(500);
}
clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
}
void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
{
if (priv->plat->fpe_cfg->hs_enable != enable) {
if (enable) {
stmmac_fpe_send_mpacket(priv, priv->ioaddr,
MPACKET_VERIFY);
} else {
priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
}
priv->plat->fpe_cfg->hs_enable = enable;
}
}
/**
* stmmac_dvr_probe
* @device: device pointer
* @plat_dat: platform data pointer
* @res: stmmac resource pointer
* Description: this is the main probe function used to
* call the alloc_etherdev, allocate the priv structure.
* Return:
* returns 0 on success, otherwise errno.
*/
int stmmac_dvr_probe(struct device *device,
struct plat_stmmacenet_data *plat_dat,
struct stmmac_resources *res)
{
struct net_device *ndev = NULL;
struct stmmac_priv *priv;
u32 rxq;
int i, ret = 0;
ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, device);
priv = netdev_priv(ndev);
priv->device = device;
priv->dev = ndev;
stmmac_set_ethtool_ops(ndev);
priv->pause = pause;
priv->plat = plat_dat;
priv->ioaddr = res->addr;
priv->dev->base_addr = (unsigned long)res->addr;
priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
priv->dev->irq = res->irq;
priv->wol_irq = res->wol_irq;
priv->lpi_irq = res->lpi_irq;
priv->sfty_ce_irq = res->sfty_ce_irq;
priv->sfty_ue_irq = res->sfty_ue_irq;
for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
priv->rx_irq[i] = res->rx_irq[i];
for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
priv->tx_irq[i] = res->tx_irq[i];
if (!is_zero_ether_addr(res->mac))
eth_hw_addr_set(priv->dev, res->mac);
dev_set_drvdata(device, priv->dev);
/* Verify driver arguments */
stmmac_verify_args();
priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
if (!priv->af_xdp_zc_qps)
return -ENOMEM;
/* Allocate workqueue */
priv->wq = create_singlethread_workqueue("stmmac_wq");
if (!priv->wq) {
dev_err(priv->device, "failed to create workqueue\n");
return -ENOMEM;
}
INIT_WORK(&priv->service_task, stmmac_service_task);
/* Initialize Link Partner FPE workqueue */
INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
/* Override with kernel parameters if supplied XXX CRS XXX
* this needs to have multiple instances
*/
if ((phyaddr >= 0) && (phyaddr <= 31))
priv->plat->phy_addr = phyaddr;
if (priv->plat->stmmac_rst) {
ret = reset_control_assert(priv->plat->stmmac_rst);
reset_control_deassert(priv->plat->stmmac_rst);
/* Some reset controllers have only reset callback instead of
* assert + deassert callbacks pair.
*/
if (ret == -ENOTSUPP)
reset_control_reset(priv->plat->stmmac_rst);
}
ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
if (ret == -ENOTSUPP)
dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
ERR_PTR(ret));
/* Init MAC and get the capabilities */
ret = stmmac_hw_init(priv);
if (ret)
goto error_hw_init;
/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
*/
if (priv->synopsys_id < DWMAC_CORE_5_20)
priv->plat->dma_cfg->dche = false;
stmmac_check_ether_addr(priv);
ndev->netdev_ops = &stmmac_netdev_ops;
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
ret = stmmac_tc_init(priv, priv);
if (!ret) {
ndev->hw_features |= NETIF_F_HW_TC;
}
if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
if (priv->plat->has_gmac4)
ndev->hw_features |= NETIF_F_GSO_UDP_L4;
priv->tso = true;
dev_info(priv->device, "TSO feature enabled\n");
}
if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
ndev->hw_features |= NETIF_F_GRO;
priv->sph_cap = true;
priv->sph = priv->sph_cap;
dev_info(priv->device, "SPH feature enabled\n");
}
/* The current IP register MAC_HW_Feature1[ADDR64] only define
* 32/40/64 bit width, but some SOC support others like i.MX8MP
* support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
* So overwrite dma_cap.addr64 according to HW real design.
*/
if (priv->plat->addr64)
priv->dma_cap.addr64 = priv->plat->addr64;
if (priv->dma_cap.addr64) {
ret = dma_set_mask_and_coherent(device,
DMA_BIT_MASK(priv->dma_cap.addr64));
if (!ret) {
dev_info(priv->device, "Using %d bits DMA width\n",
priv->dma_cap.addr64);
/*
* If more than 32 bits can be addressed, make sure to
* enable enhanced addressing mode.
*/
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
priv->plat->dma_cfg->eame = true;
} else {
ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
if (ret) {
dev_err(priv->device, "Failed to set DMA Mask\n");
goto error_hw_init;
}
priv->dma_cap.addr64 = 32;
}
}
ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
/* Both mac100 and gmac support receive VLAN tag detection */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
if (priv->dma_cap.vlhash) {
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
}
if (priv->dma_cap.vlins) {
ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
if (priv->dma_cap.dvlan)
ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
}
#endif
priv->msg_enable = netif_msg_init(debug, default_msg_level);
/* Initialize RSS */
rxq = priv->plat->rx_queues_to_use;
netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
if (priv->dma_cap.rssen && priv->plat->rss_en)
ndev->features |= NETIF_F_RXHASH;
/* MTU range: 46 - hw-specific max */
ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
if (priv->plat->has_xgmac)
ndev->max_mtu = XGMAC_JUMBO_LEN;
else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
ndev->max_mtu = JUMBO_LEN;
else
ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
* as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
*/
if ((priv->plat->maxmtu < ndev->max_mtu) &&
(priv->plat->maxmtu >= ndev->min_mtu))
ndev->max_mtu = priv->plat->maxmtu;
else if (priv->plat->maxmtu < ndev->min_mtu)
dev_warn(priv->device,
"%s: warning: maxmtu having invalid value (%d)\n",
__func__, priv->plat->maxmtu);
if (flow_ctrl)
priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
/* Setup channels NAPI */
stmmac_napi_add(ndev);
mutex_init(&priv->lock);
/* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed. Viceversa the driver'll try to
* set the MDC clock dynamically according to the csr actual
* clock input.
*/
if (priv->plat->clk_csr >= 0)
priv->clk_csr = priv->plat->clk_csr;
else
stmmac_clk_csr_set(priv);
stmmac_check_pcs_mode(priv);
pm_runtime_get_noresume(device);
pm_runtime_set_active(device);
if (!pm_runtime_enabled(device))
pm_runtime_enable(device);
if (priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI) {
/* MDIO bus Registration */
ret = stmmac_mdio_register(ndev);
if (ret < 0) {
dev_err(priv->device,
"%s: MDIO bus (id: %d) registration failed",
__func__, priv->plat->bus_id);
goto error_mdio_register;
}
}
if (priv->plat->speed_mode_2500)
priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
ret = stmmac_xpcs_setup(priv->mii);
if (ret)
goto error_xpcs_setup;
}
ret = stmmac_phy_setup(priv);
if (ret) {
netdev_err(ndev, "failed to setup phy (%d)\n", ret);
goto error_phy_setup;
}
ret = register_netdev(ndev);
if (ret) {
dev_err(priv->device, "%s: ERROR %i registering the device\n",
__func__, ret);
goto error_netdev_register;
}
if (priv->plat->serdes_powerup) {
ret = priv->plat->serdes_powerup(ndev,
priv->plat->bsp_priv);
if (ret < 0)
goto error_serdes_powerup;
}
#ifdef CONFIG_DEBUG_FS
stmmac_init_fs(ndev);
#endif
if (priv->plat->dump_debug_regs)
priv->plat->dump_debug_regs(priv->plat->bsp_priv);
/* Let pm_runtime_put() disable the clocks.
* If CONFIG_PM is not enabled, the clocks will stay powered.
*/
pm_runtime_put(device);
return ret;
error_serdes_powerup:
unregister_netdev(ndev);
error_netdev_register:
phylink_destroy(priv->phylink);
error_xpcs_setup:
error_phy_setup:
if (priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI)
stmmac_mdio_unregister(ndev);
error_mdio_register:
stmmac_napi_del(ndev);
error_hw_init:
destroy_workqueue(priv->wq);
bitmap_free(priv->af_xdp_zc_qps);
return ret;
}
EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
/**
* stmmac_dvr_remove
* @dev: device pointer
* Description: this function resets the TX/RX processes, disables the MAC RX/TX
* changes the link status, releases the DMA descriptor rings.
*/
int stmmac_dvr_remove(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
netdev_info(priv->dev, "%s: removing driver", __func__);
pm_runtime_get_sync(dev);
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
stmmac_stop_all_dma(priv);
stmmac_mac_set(priv, priv->ioaddr, false);
netif_carrier_off(ndev);
unregister_netdev(ndev);
/* Serdes power down needs to happen after VLAN filter
* is deleted that is triggered by unregister_netdev().
*/
if (priv->plat->serdes_powerdown)
priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
#ifdef CONFIG_DEBUG_FS
stmmac_exit_fs(ndev);
#endif
phylink_destroy(priv->phylink);
if (priv->plat->stmmac_rst)
reset_control_assert(priv->plat->stmmac_rst);
reset_control_assert(priv->plat->stmmac_ahb_rst);
if (priv->hw->pcs != STMMAC_PCS_TBI &&
priv->hw->pcs != STMMAC_PCS_RTBI)
stmmac_mdio_unregister(ndev);
destroy_workqueue(priv->wq);
mutex_destroy(&priv->lock);
bitmap_free(priv->af_xdp_zc_qps);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
/**
* stmmac_suspend - suspend callback
* @dev: device pointer
* Description: this is the function to suspend the device and it is called
* by the platform driver to stop the network queue, release the resources,
* program the PMT register (for WoL), clean and release driver resources.
*/
int stmmac_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
u32 chan;
if (!ndev || !netif_running(ndev))
return 0;
mutex_lock(&priv->lock);
netif_device_detach(ndev);
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->tx_queue[chan].txtimer);
if (priv->eee_enabled) {
priv->tx_path_in_lpi_mode = false;
del_timer_sync(&priv->eee_ctrl_timer);
}
/* Stop TX/RX DMA */
stmmac_stop_all_dma(priv);
if (priv->plat->serdes_powerdown)
priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
/* Enable Power down mode by programming the PMT regs */
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
stmmac_pmt(priv, priv->hw, priv->wolopts);
priv->irq_wake = 1;
} else {
stmmac_mac_set(priv, priv->ioaddr, false);
pinctrl_pm_select_sleep_state(priv->device);
}
mutex_unlock(&priv->lock);
rtnl_lock();
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
phylink_suspend(priv->phylink, true);
} else {
if (device_may_wakeup(priv->device))
phylink_speed_down(priv->phylink, false);
phylink_suspend(priv->phylink, false);
}
rtnl_unlock();
if (priv->dma_cap.fpesel) {
/* Disable FPE */
stmmac_fpe_configure(priv, priv->ioaddr,
priv->plat->tx_queues_to_use,
priv->plat->rx_queues_to_use, false);
stmmac_fpe_handshake(priv, false);
stmmac_fpe_stop_wq(priv);
}
priv->speed = SPEED_UNKNOWN;
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_suspend);
/**
* stmmac_reset_queues_param - reset queue parameters
* @priv: device pointer
*/
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
rx_q->cur_rx = 0;
rx_q->dirty_rx = 0;
}
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
tx_q->cur_tx = 0;
tx_q->dirty_tx = 0;
tx_q->mss = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
}
}
/**
* stmmac_resume - resume callback
* @dev: device pointer
* Description: when resume this function is invoked to setup the DMA and CORE
* in a usable state.
*/
int stmmac_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
int ret;
if (!netif_running(ndev))
return 0;
/* Power Down bit, into the PM register, is cleared
* automatically as soon as a magic packet or a Wake-up frame
* is received. Anyway, it's better to manually clear
* this bit because it can generate problems while resuming
* from another devices (e.g. serial console).
*/
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
mutex_lock(&priv->lock);
stmmac_pmt(priv, priv->hw, 0);
mutex_unlock(&priv->lock);
priv->irq_wake = 0;
} else {
pinctrl_pm_select_default_state(priv->device);
/* reset the phy so that it's ready */
if (priv->mii)
stmmac_mdio_reset(priv->mii);
}
if (priv->plat->serdes_powerup) {
ret = priv->plat->serdes_powerup(ndev,
priv->plat->bsp_priv);
if (ret < 0)
return ret;
}
rtnl_lock();
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
phylink_resume(priv->phylink);
} else {
phylink_resume(priv->phylink);
if (device_may_wakeup(priv->device))
phylink_speed_up(priv->phylink);
}
rtnl_unlock();
rtnl_lock();
mutex_lock(&priv->lock);
stmmac_reset_queues_param(priv);
stmmac_free_tx_skbufs(priv);
stmmac_clear_descriptors(priv);
stmmac_hw_setup(ndev, false);
stmmac_init_coalesce(priv);
stmmac_set_rx_mode(ndev);
stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
stmmac_enable_all_queues(priv);
stmmac_enable_all_dma_irq(priv);
mutex_unlock(&priv->lock);
rtnl_unlock();
netif_device_attach(ndev);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_resume);
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
char *opt;
if (!str || !*str)
return 1;
while ((opt = strsep(&str, ",")) != NULL) {
if (!strncmp(opt, "debug:", 6)) {
if (kstrtoint(opt + 6, 0, &debug))
goto err;
} else if (!strncmp(opt, "phyaddr:", 8)) {
if (kstrtoint(opt + 8, 0, &phyaddr))
goto err;
} else if (!strncmp(opt, "buf_sz:", 7)) {
if (kstrtoint(opt + 7, 0, &buf_sz))
goto err;
} else if (!strncmp(opt, "tc:", 3)) {
if (kstrtoint(opt + 3, 0, &tc))
goto err;
} else if (!strncmp(opt, "watchdog:", 9)) {
if (kstrtoint(opt + 9, 0, &watchdog))
goto err;
} else if (!strncmp(opt, "flow_ctrl:", 10)) {
if (kstrtoint(opt + 10, 0, &flow_ctrl))
goto err;
} else if (!strncmp(opt, "pause:", 6)) {
if (kstrtoint(opt + 6, 0, &pause))
goto err;
} else if (!strncmp(opt, "eee_timer:", 10)) {
if (kstrtoint(opt + 10, 0, &eee_timer))
goto err;
} else if (!strncmp(opt, "chain_mode:", 11)) {
if (kstrtoint(opt + 11, 0, &chain_mode))
goto err;
}
}
return 1;
err:
pr_err("%s: ERROR broken module parameter conversion", __func__);
return 1;
}
__setup("stmmaceth=", stmmac_cmdline_opt);
#endif /* MODULE */
static int __init stmmac_init(void)
{
#ifdef CONFIG_DEBUG_FS
/* Create debugfs main directory if it doesn't exist yet */
if (!stmmac_fs_dir)
stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
register_netdevice_notifier(&stmmac_notifier);
#endif
return 0;
}
static void __exit stmmac_exit(void)
{
#ifdef CONFIG_DEBUG_FS
unregister_netdevice_notifier(&stmmac_notifier);
debugfs_remove_recursive(stmmac_fs_dir);
#endif
}
module_init(stmmac_init)
module_exit(stmmac_exit)
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");