1368 lines
35 KiB
C
1368 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2018 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include "net_driver.h"
|
|
#include <linux/module.h>
|
|
#include <linux/filter.h>
|
|
#include "efx_channels.h"
|
|
#include "efx.h"
|
|
#include "efx_common.h"
|
|
#include "tx_common.h"
|
|
#include "rx_common.h"
|
|
#include "nic.h"
|
|
#include "sriov.h"
|
|
#include "workarounds.h"
|
|
|
|
/* This is the first interrupt mode to try out of:
|
|
* 0 => MSI-X
|
|
* 1 => MSI
|
|
* 2 => legacy
|
|
*/
|
|
unsigned int efx_interrupt_mode = EFX_INT_MODE_MSIX;
|
|
|
|
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
|
|
* i.e. the number of CPUs among which we may distribute simultaneous
|
|
* interrupt handling.
|
|
*
|
|
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
|
|
* The default (0) means to assign an interrupt to each core.
|
|
*/
|
|
unsigned int rss_cpus;
|
|
|
|
static unsigned int irq_adapt_low_thresh = 8000;
|
|
module_param(irq_adapt_low_thresh, uint, 0644);
|
|
MODULE_PARM_DESC(irq_adapt_low_thresh,
|
|
"Threshold score for reducing IRQ moderation");
|
|
|
|
static unsigned int irq_adapt_high_thresh = 16000;
|
|
module_param(irq_adapt_high_thresh, uint, 0644);
|
|
MODULE_PARM_DESC(irq_adapt_high_thresh,
|
|
"Threshold score for increasing IRQ moderation");
|
|
|
|
/* This is the weight assigned to each of the (per-channel) virtual
|
|
* NAPI devices.
|
|
*/
|
|
static int napi_weight = 64;
|
|
|
|
/***************
|
|
* Housekeeping
|
|
***************/
|
|
|
|
int efx_channel_dummy_op_int(struct efx_channel *channel)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void efx_channel_dummy_op_void(struct efx_channel *channel)
|
|
{
|
|
}
|
|
|
|
static const struct efx_channel_type efx_default_channel_type = {
|
|
.pre_probe = efx_channel_dummy_op_int,
|
|
.post_remove = efx_channel_dummy_op_void,
|
|
.get_name = efx_get_channel_name,
|
|
.copy = efx_copy_channel,
|
|
.want_txqs = efx_default_channel_want_txqs,
|
|
.keep_eventq = false,
|
|
.want_pio = true,
|
|
};
|
|
|
|
/*************
|
|
* INTERRUPTS
|
|
*************/
|
|
|
|
static unsigned int count_online_cores(struct efx_nic *efx, bool local_node)
|
|
{
|
|
cpumask_var_t filter_mask;
|
|
unsigned int count;
|
|
int cpu;
|
|
|
|
if (unlikely(!zalloc_cpumask_var(&filter_mask, GFP_KERNEL))) {
|
|
netif_warn(efx, probe, efx->net_dev,
|
|
"RSS disabled due to allocation failure\n");
|
|
return 1;
|
|
}
|
|
|
|
cpumask_copy(filter_mask, cpu_online_mask);
|
|
if (local_node)
|
|
cpumask_and(filter_mask, filter_mask,
|
|
cpumask_of_pcibus(efx->pci_dev->bus));
|
|
|
|
count = 0;
|
|
for_each_cpu(cpu, filter_mask) {
|
|
++count;
|
|
cpumask_andnot(filter_mask, filter_mask, topology_sibling_cpumask(cpu));
|
|
}
|
|
|
|
free_cpumask_var(filter_mask);
|
|
|
|
return count;
|
|
}
|
|
|
|
static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
|
|
{
|
|
unsigned int count;
|
|
|
|
if (rss_cpus) {
|
|
count = rss_cpus;
|
|
} else {
|
|
count = count_online_cores(efx, true);
|
|
|
|
/* If no online CPUs in local node, fallback to any online CPUs */
|
|
if (count == 0)
|
|
count = count_online_cores(efx, false);
|
|
}
|
|
|
|
if (count > EFX_MAX_RX_QUEUES) {
|
|
netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
|
|
"Reducing number of rx queues from %u to %u.\n",
|
|
count, EFX_MAX_RX_QUEUES);
|
|
count = EFX_MAX_RX_QUEUES;
|
|
}
|
|
|
|
/* If RSS is requested for the PF *and* VFs then we can't write RSS
|
|
* table entries that are inaccessible to VFs
|
|
*/
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
if (efx->type->sriov_wanted) {
|
|
if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
|
|
count > efx_vf_size(efx)) {
|
|
netif_warn(efx, probe, efx->net_dev,
|
|
"Reducing number of RSS channels from %u to %u for "
|
|
"VF support. Increase vf-msix-limit to use more "
|
|
"channels on the PF.\n",
|
|
count, efx_vf_size(efx));
|
|
count = efx_vf_size(efx);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return count;
|
|
}
|
|
|
|
static int efx_allocate_msix_channels(struct efx_nic *efx,
|
|
unsigned int max_channels,
|
|
unsigned int extra_channels,
|
|
unsigned int parallelism)
|
|
{
|
|
unsigned int n_channels = parallelism;
|
|
int vec_count;
|
|
int tx_per_ev;
|
|
int n_xdp_tx;
|
|
int n_xdp_ev;
|
|
|
|
if (efx_separate_tx_channels)
|
|
n_channels *= 2;
|
|
n_channels += extra_channels;
|
|
|
|
/* To allow XDP transmit to happen from arbitrary NAPI contexts
|
|
* we allocate a TX queue per CPU. We share event queues across
|
|
* multiple tx queues, assuming tx and ev queues are both
|
|
* maximum size.
|
|
*/
|
|
tx_per_ev = EFX_MAX_EVQ_SIZE / EFX_TXQ_MAX_ENT(efx);
|
|
tx_per_ev = min(tx_per_ev, EFX_MAX_TXQ_PER_CHANNEL);
|
|
n_xdp_tx = num_possible_cpus();
|
|
n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, tx_per_ev);
|
|
|
|
vec_count = pci_msix_vec_count(efx->pci_dev);
|
|
if (vec_count < 0)
|
|
return vec_count;
|
|
|
|
max_channels = min_t(unsigned int, vec_count, max_channels);
|
|
|
|
/* Check resources.
|
|
* We need a channel per event queue, plus a VI per tx queue.
|
|
* This may be more pessimistic than it needs to be.
|
|
*/
|
|
if (n_channels >= max_channels) {
|
|
efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
|
|
n_xdp_ev, n_channels, max_channels);
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"XDP_TX and XDP_REDIRECT might decrease device's performance\n");
|
|
} else if (n_channels + n_xdp_tx > efx->max_vis) {
|
|
efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_BORROWED;
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Insufficient resources for %d XDP TX queues (%d other channels, max VIs %d)\n",
|
|
n_xdp_tx, n_channels, efx->max_vis);
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"XDP_TX and XDP_REDIRECT might decrease device's performance\n");
|
|
} else if (n_channels + n_xdp_ev > max_channels) {
|
|
efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_SHARED;
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"Insufficient resources for %d XDP event queues (%d other channels, max %d)\n",
|
|
n_xdp_ev, n_channels, max_channels);
|
|
|
|
n_xdp_ev = max_channels - n_channels;
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"XDP_TX and XDP_REDIRECT will work with reduced performance (%d cpus/tx_queue)\n",
|
|
DIV_ROUND_UP(n_xdp_tx, tx_per_ev * n_xdp_ev));
|
|
} else {
|
|
efx->xdp_txq_queues_mode = EFX_XDP_TX_QUEUES_DEDICATED;
|
|
}
|
|
|
|
if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_BORROWED) {
|
|
efx->n_xdp_channels = n_xdp_ev;
|
|
efx->xdp_tx_per_channel = tx_per_ev;
|
|
efx->xdp_tx_queue_count = n_xdp_tx;
|
|
n_channels += n_xdp_ev;
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Allocating %d TX and %d event queues for XDP\n",
|
|
n_xdp_ev * tx_per_ev, n_xdp_ev);
|
|
} else {
|
|
efx->n_xdp_channels = 0;
|
|
efx->xdp_tx_per_channel = 0;
|
|
efx->xdp_tx_queue_count = n_xdp_tx;
|
|
}
|
|
|
|
if (vec_count < n_channels) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Insufficient MSI-X vectors available (%d < %u).\n",
|
|
vec_count, n_channels);
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Performance may be reduced.\n");
|
|
n_channels = vec_count;
|
|
}
|
|
|
|
n_channels = min(n_channels, max_channels);
|
|
|
|
efx->n_channels = n_channels;
|
|
|
|
/* Ignore XDP tx channels when creating rx channels. */
|
|
n_channels -= efx->n_xdp_channels;
|
|
|
|
if (efx_separate_tx_channels) {
|
|
efx->n_tx_channels =
|
|
min(max(n_channels / 2, 1U),
|
|
efx->max_tx_channels);
|
|
efx->tx_channel_offset =
|
|
n_channels - efx->n_tx_channels;
|
|
efx->n_rx_channels =
|
|
max(n_channels -
|
|
efx->n_tx_channels, 1U);
|
|
} else {
|
|
efx->n_tx_channels = min(n_channels, efx->max_tx_channels);
|
|
efx->tx_channel_offset = 0;
|
|
efx->n_rx_channels = n_channels;
|
|
}
|
|
|
|
efx->n_rx_channels = min(efx->n_rx_channels, parallelism);
|
|
efx->n_tx_channels = min(efx->n_tx_channels, parallelism);
|
|
|
|
efx->xdp_channel_offset = n_channels;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Allocating %u RX channels\n",
|
|
efx->n_rx_channels);
|
|
|
|
return efx->n_channels;
|
|
}
|
|
|
|
/* Probe the number and type of interrupts we are able to obtain, and
|
|
* the resulting numbers of channels and RX queues.
|
|
*/
|
|
int efx_probe_interrupts(struct efx_nic *efx)
|
|
{
|
|
unsigned int extra_channels = 0;
|
|
unsigned int rss_spread;
|
|
unsigned int i, j;
|
|
int rc;
|
|
|
|
for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
|
|
if (efx->extra_channel_type[i])
|
|
++extra_channels;
|
|
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
|
|
unsigned int parallelism = efx_wanted_parallelism(efx);
|
|
struct msix_entry xentries[EFX_MAX_CHANNELS];
|
|
unsigned int n_channels;
|
|
|
|
rc = efx_allocate_msix_channels(efx, efx->max_channels,
|
|
extra_channels, parallelism);
|
|
if (rc >= 0) {
|
|
n_channels = rc;
|
|
for (i = 0; i < n_channels; i++)
|
|
xentries[i].entry = i;
|
|
rc = pci_enable_msix_range(efx->pci_dev, xentries, 1,
|
|
n_channels);
|
|
}
|
|
if (rc < 0) {
|
|
/* Fall back to single channel MSI */
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"could not enable MSI-X\n");
|
|
if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
|
|
efx->interrupt_mode = EFX_INT_MODE_MSI;
|
|
else
|
|
return rc;
|
|
} else if (rc < n_channels) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Insufficient MSI-X vectors"
|
|
" available (%d < %u).\n", rc, n_channels);
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"WARNING: Performance may be reduced.\n");
|
|
n_channels = rc;
|
|
}
|
|
|
|
if (rc > 0) {
|
|
for (i = 0; i < efx->n_channels; i++)
|
|
efx_get_channel(efx, i)->irq =
|
|
xentries[i].vector;
|
|
}
|
|
}
|
|
|
|
/* Try single interrupt MSI */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
|
|
efx->n_channels = 1;
|
|
efx->n_rx_channels = 1;
|
|
efx->n_tx_channels = 1;
|
|
efx->tx_channel_offset = 0;
|
|
efx->n_xdp_channels = 0;
|
|
efx->xdp_channel_offset = efx->n_channels;
|
|
rc = pci_enable_msi(efx->pci_dev);
|
|
if (rc == 0) {
|
|
efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
|
|
} else {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"could not enable MSI\n");
|
|
if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
|
|
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
|
|
else
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Assume legacy interrupts */
|
|
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
|
|
efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
|
|
efx->n_rx_channels = 1;
|
|
efx->n_tx_channels = 1;
|
|
efx->tx_channel_offset = 1;
|
|
efx->n_xdp_channels = 0;
|
|
efx->xdp_channel_offset = efx->n_channels;
|
|
efx->legacy_irq = efx->pci_dev->irq;
|
|
}
|
|
|
|
/* Assign extra channels if possible, before XDP channels */
|
|
efx->n_extra_tx_channels = 0;
|
|
j = efx->xdp_channel_offset;
|
|
for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
|
|
if (!efx->extra_channel_type[i])
|
|
continue;
|
|
if (j <= efx->tx_channel_offset + efx->n_tx_channels) {
|
|
efx->extra_channel_type[i]->handle_no_channel(efx);
|
|
} else {
|
|
--j;
|
|
efx_get_channel(efx, j)->type =
|
|
efx->extra_channel_type[i];
|
|
if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
|
|
efx->n_extra_tx_channels++;
|
|
}
|
|
}
|
|
|
|
rss_spread = efx->n_rx_channels;
|
|
/* RSS might be usable on VFs even if it is disabled on the PF */
|
|
#ifdef CONFIG_SFC_SRIOV
|
|
if (efx->type->sriov_wanted) {
|
|
efx->rss_spread = ((rss_spread > 1 ||
|
|
!efx->type->sriov_wanted(efx)) ?
|
|
rss_spread : efx_vf_size(efx));
|
|
return 0;
|
|
}
|
|
#endif
|
|
efx->rss_spread = rss_spread;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_SMP)
|
|
void efx_set_interrupt_affinity(struct efx_nic *efx)
|
|
{
|
|
const struct cpumask *numa_mask = cpumask_of_pcibus(efx->pci_dev->bus);
|
|
struct efx_channel *channel;
|
|
unsigned int cpu;
|
|
|
|
/* If no online CPUs in local node, fallback to any online CPU */
|
|
if (cpumask_first_and(cpu_online_mask, numa_mask) >= nr_cpu_ids)
|
|
numa_mask = cpu_online_mask;
|
|
|
|
cpu = -1;
|
|
efx_for_each_channel(channel, efx) {
|
|
cpu = cpumask_next_and(cpu, cpu_online_mask, numa_mask);
|
|
if (cpu >= nr_cpu_ids)
|
|
cpu = cpumask_first_and(cpu_online_mask, numa_mask);
|
|
irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
|
|
}
|
|
}
|
|
|
|
void efx_clear_interrupt_affinity(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
irq_set_affinity_hint(channel->irq, NULL);
|
|
}
|
|
#else
|
|
void
|
|
efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
|
|
{
|
|
}
|
|
|
|
void
|
|
efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
|
|
{
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
void efx_remove_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
/* Remove MSI/MSI-X interrupts */
|
|
efx_for_each_channel(channel, efx)
|
|
channel->irq = 0;
|
|
pci_disable_msi(efx->pci_dev);
|
|
pci_disable_msix(efx->pci_dev);
|
|
|
|
/* Remove legacy interrupt */
|
|
efx->legacy_irq = 0;
|
|
}
|
|
|
|
/***************
|
|
* EVENT QUEUES
|
|
***************/
|
|
|
|
/* Create event queue
|
|
* Event queue memory allocations are done only once. If the channel
|
|
* is reset, the memory buffer will be reused; this guards against
|
|
* errors during channel reset and also simplifies interrupt handling.
|
|
*/
|
|
int efx_probe_eventq(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned long entries;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"chan %d create event queue\n", channel->channel);
|
|
|
|
/* Build an event queue with room for one event per tx and rx buffer,
|
|
* plus some extra for link state events and MCDI completions.
|
|
*/
|
|
entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
|
|
EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
|
|
channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
|
|
|
|
return efx_nic_probe_eventq(channel);
|
|
}
|
|
|
|
/* Prepare channel's event queue */
|
|
int efx_init_eventq(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
int rc;
|
|
|
|
EFX_WARN_ON_PARANOID(channel->eventq_init);
|
|
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"chan %d init event queue\n", channel->channel);
|
|
|
|
rc = efx_nic_init_eventq(channel);
|
|
if (rc == 0) {
|
|
efx->type->push_irq_moderation(channel);
|
|
channel->eventq_read_ptr = 0;
|
|
channel->eventq_init = true;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Enable event queue processing and NAPI */
|
|
void efx_start_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, ifup, channel->efx->net_dev,
|
|
"chan %d start event queue\n", channel->channel);
|
|
|
|
/* Make sure the NAPI handler sees the enabled flag set */
|
|
channel->enabled = true;
|
|
smp_wmb();
|
|
|
|
napi_enable(&channel->napi_str);
|
|
efx_nic_eventq_read_ack(channel);
|
|
}
|
|
|
|
/* Disable event queue processing and NAPI */
|
|
void efx_stop_eventq(struct efx_channel *channel)
|
|
{
|
|
if (!channel->enabled)
|
|
return;
|
|
|
|
napi_disable(&channel->napi_str);
|
|
channel->enabled = false;
|
|
}
|
|
|
|
void efx_fini_eventq(struct efx_channel *channel)
|
|
{
|
|
if (!channel->eventq_init)
|
|
return;
|
|
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"chan %d fini event queue\n", channel->channel);
|
|
|
|
efx_nic_fini_eventq(channel);
|
|
channel->eventq_init = false;
|
|
}
|
|
|
|
void efx_remove_eventq(struct efx_channel *channel)
|
|
{
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"chan %d remove event queue\n", channel->channel);
|
|
|
|
efx_nic_remove_eventq(channel);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Channel handling
|
|
*
|
|
*************************************************************************/
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
static void efx_filter_rfs_expire(struct work_struct *data)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(data);
|
|
struct efx_channel *channel;
|
|
unsigned int time, quota;
|
|
|
|
channel = container_of(dwork, struct efx_channel, filter_work);
|
|
time = jiffies - channel->rfs_last_expiry;
|
|
quota = channel->rfs_filter_count * time / (30 * HZ);
|
|
if (quota >= 20 && __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, quota)))
|
|
channel->rfs_last_expiry += time;
|
|
/* Ensure we do more work eventually even if NAPI poll is not happening */
|
|
schedule_delayed_work(dwork, 30 * HZ);
|
|
}
|
|
#endif
|
|
|
|
/* Allocate and initialise a channel structure. */
|
|
static struct efx_channel *efx_alloc_channel(struct efx_nic *efx, int i)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_channel *channel;
|
|
int j;
|
|
|
|
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
|
|
if (!channel)
|
|
return NULL;
|
|
|
|
channel->efx = efx;
|
|
channel->channel = i;
|
|
channel->type = &efx_default_channel_type;
|
|
|
|
for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
|
|
tx_queue = &channel->tx_queue[j];
|
|
tx_queue->efx = efx;
|
|
tx_queue->queue = -1;
|
|
tx_queue->label = j;
|
|
tx_queue->channel = channel;
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
|
|
#endif
|
|
|
|
rx_queue = &channel->rx_queue;
|
|
rx_queue->efx = efx;
|
|
timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
|
|
|
|
return channel;
|
|
}
|
|
|
|
int efx_init_channels(struct efx_nic *efx)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
|
|
efx->channel[i] = efx_alloc_channel(efx, i);
|
|
if (!efx->channel[i])
|
|
return -ENOMEM;
|
|
efx->msi_context[i].efx = efx;
|
|
efx->msi_context[i].index = i;
|
|
}
|
|
|
|
/* Higher numbered interrupt modes are less capable! */
|
|
efx->interrupt_mode = min(efx->type->min_interrupt_mode,
|
|
efx_interrupt_mode);
|
|
|
|
efx->max_channels = EFX_MAX_CHANNELS;
|
|
efx->max_tx_channels = EFX_MAX_CHANNELS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void efx_fini_channels(struct efx_nic *efx)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < EFX_MAX_CHANNELS; i++)
|
|
if (efx->channel[i]) {
|
|
kfree(efx->channel[i]);
|
|
efx->channel[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Allocate and initialise a channel structure, copying parameters
|
|
* (but not resources) from an old channel structure.
|
|
*/
|
|
struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_channel *channel;
|
|
int j;
|
|
|
|
channel = kmalloc(sizeof(*channel), GFP_KERNEL);
|
|
if (!channel)
|
|
return NULL;
|
|
|
|
*channel = *old_channel;
|
|
|
|
channel->napi_dev = NULL;
|
|
INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
|
|
channel->napi_str.napi_id = 0;
|
|
channel->napi_str.state = 0;
|
|
memset(&channel->eventq, 0, sizeof(channel->eventq));
|
|
|
|
for (j = 0; j < EFX_MAX_TXQ_PER_CHANNEL; j++) {
|
|
tx_queue = &channel->tx_queue[j];
|
|
if (tx_queue->channel)
|
|
tx_queue->channel = channel;
|
|
tx_queue->buffer = NULL;
|
|
tx_queue->cb_page = NULL;
|
|
memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
|
|
}
|
|
|
|
rx_queue = &channel->rx_queue;
|
|
rx_queue->buffer = NULL;
|
|
memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
|
|
timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire);
|
|
#endif
|
|
|
|
return channel;
|
|
}
|
|
|
|
static int efx_probe_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
int rc;
|
|
|
|
netif_dbg(channel->efx, probe, channel->efx->net_dev,
|
|
"creating channel %d\n", channel->channel);
|
|
|
|
rc = channel->type->pre_probe(channel);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = efx_probe_eventq(channel);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
rc = efx_probe_tx_queue(tx_queue);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
rc = efx_probe_rx_queue(rx_queue);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
|
|
channel->rx_list = NULL;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx_remove_channel(channel);
|
|
return rc;
|
|
}
|
|
|
|
void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
const char *type;
|
|
int number;
|
|
|
|
number = channel->channel;
|
|
|
|
if (number >= efx->xdp_channel_offset &&
|
|
!WARN_ON_ONCE(!efx->n_xdp_channels)) {
|
|
type = "-xdp";
|
|
number -= efx->xdp_channel_offset;
|
|
} else if (efx->tx_channel_offset == 0) {
|
|
type = "";
|
|
} else if (number < efx->tx_channel_offset) {
|
|
type = "-rx";
|
|
} else {
|
|
type = "-tx";
|
|
number -= efx->tx_channel_offset;
|
|
}
|
|
snprintf(buf, len, "%s%s-%d", efx->name, type, number);
|
|
}
|
|
|
|
void efx_set_channel_names(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
channel->type->get_name(channel,
|
|
efx->msi_context[channel->channel].name,
|
|
sizeof(efx->msi_context[0].name));
|
|
}
|
|
|
|
int efx_probe_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
/* Restart special buffer allocation */
|
|
efx->next_buffer_table = 0;
|
|
|
|
/* Probe channels in reverse, so that any 'extra' channels
|
|
* use the start of the buffer table. This allows the traffic
|
|
* channels to be resized without moving them or wasting the
|
|
* entries before them.
|
|
*/
|
|
efx_for_each_channel_rev(channel, efx) {
|
|
rc = efx_probe_channel(channel);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"failed to create channel %d\n",
|
|
channel->channel);
|
|
goto fail;
|
|
}
|
|
}
|
|
efx_set_channel_names(efx);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
efx_remove_channels(efx);
|
|
return rc;
|
|
}
|
|
|
|
void efx_remove_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
|
|
netif_dbg(channel->efx, drv, channel->efx->net_dev,
|
|
"destroy chan %d\n", channel->channel);
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_remove_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_remove_tx_queue(tx_queue);
|
|
efx_remove_eventq(channel);
|
|
channel->type->post_remove(channel);
|
|
}
|
|
|
|
void efx_remove_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_remove_channel(channel);
|
|
|
|
kfree(efx->xdp_tx_queues);
|
|
}
|
|
|
|
static int efx_set_xdp_tx_queue(struct efx_nic *efx, int xdp_queue_number,
|
|
struct efx_tx_queue *tx_queue)
|
|
{
|
|
if (xdp_queue_number >= efx->xdp_tx_queue_count)
|
|
return -EINVAL;
|
|
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Channel %u TXQ %u is XDP %u, HW %u\n",
|
|
tx_queue->channel->channel, tx_queue->label,
|
|
xdp_queue_number, tx_queue->queue);
|
|
efx->xdp_tx_queues[xdp_queue_number] = tx_queue;
|
|
return 0;
|
|
}
|
|
|
|
static void efx_set_xdp_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_channel *channel;
|
|
unsigned int next_queue = 0;
|
|
int xdp_queue_number = 0;
|
|
int rc;
|
|
|
|
/* We need to mark which channels really have RX and TX
|
|
* queues, and adjust the TX queue numbers if we have separate
|
|
* RX-only and TX-only channels.
|
|
*/
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->channel < efx->tx_channel_offset)
|
|
continue;
|
|
|
|
if (efx_channel_is_xdp_tx(channel)) {
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
tx_queue->queue = next_queue++;
|
|
rc = efx_set_xdp_tx_queue(efx, xdp_queue_number,
|
|
tx_queue);
|
|
if (rc == 0)
|
|
xdp_queue_number++;
|
|
}
|
|
} else {
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
tx_queue->queue = next_queue++;
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"Channel %u TXQ %u is HW %u\n",
|
|
channel->channel, tx_queue->label,
|
|
tx_queue->queue);
|
|
}
|
|
|
|
/* If XDP is borrowing queues from net stack, it must
|
|
* use the queue with no csum offload, which is the
|
|
* first one of the channel
|
|
* (note: tx_queue_by_type is not initialized yet)
|
|
*/
|
|
if (efx->xdp_txq_queues_mode ==
|
|
EFX_XDP_TX_QUEUES_BORROWED) {
|
|
tx_queue = &channel->tx_queue[0];
|
|
rc = efx_set_xdp_tx_queue(efx, xdp_queue_number,
|
|
tx_queue);
|
|
if (rc == 0)
|
|
xdp_queue_number++;
|
|
}
|
|
}
|
|
}
|
|
WARN_ON(efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_DEDICATED &&
|
|
xdp_queue_number != efx->xdp_tx_queue_count);
|
|
WARN_ON(efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED &&
|
|
xdp_queue_number > efx->xdp_tx_queue_count);
|
|
|
|
/* If we have more CPUs than assigned XDP TX queues, assign the already
|
|
* existing queues to the exceeding CPUs
|
|
*/
|
|
next_queue = 0;
|
|
while (xdp_queue_number < efx->xdp_tx_queue_count) {
|
|
tx_queue = efx->xdp_tx_queues[next_queue++];
|
|
rc = efx_set_xdp_tx_queue(efx, xdp_queue_number, tx_queue);
|
|
if (rc == 0)
|
|
xdp_queue_number++;
|
|
}
|
|
}
|
|
|
|
int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
|
|
{
|
|
struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel,
|
|
*ptp_channel = efx_ptp_channel(efx);
|
|
struct efx_ptp_data *ptp_data = efx->ptp_data;
|
|
unsigned int i, next_buffer_table = 0;
|
|
u32 old_rxq_entries, old_txq_entries;
|
|
int rc, rc2;
|
|
|
|
rc = efx_check_disabled(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Not all channels should be reallocated. We must avoid
|
|
* reallocating their buffer table entries.
|
|
*/
|
|
efx_for_each_channel(channel, efx) {
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_tx_queue *tx_queue;
|
|
|
|
if (channel->type->copy)
|
|
continue;
|
|
next_buffer_table = max(next_buffer_table,
|
|
channel->eventq.index +
|
|
channel->eventq.entries);
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
next_buffer_table = max(next_buffer_table,
|
|
rx_queue->rxd.index +
|
|
rx_queue->rxd.entries);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
next_buffer_table = max(next_buffer_table,
|
|
tx_queue->txd.index +
|
|
tx_queue->txd.entries);
|
|
}
|
|
|
|
efx_device_detach_sync(efx);
|
|
efx_stop_all(efx);
|
|
efx_soft_disable_interrupts(efx);
|
|
|
|
/* Clone channels (where possible) */
|
|
memset(other_channel, 0, sizeof(other_channel));
|
|
for (i = 0; i < efx->n_channels; i++) {
|
|
channel = efx->channel[i];
|
|
if (channel->type->copy)
|
|
channel = channel->type->copy(channel);
|
|
if (!channel) {
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
other_channel[i] = channel;
|
|
}
|
|
|
|
/* Swap entry counts and channel pointers */
|
|
old_rxq_entries = efx->rxq_entries;
|
|
old_txq_entries = efx->txq_entries;
|
|
efx->rxq_entries = rxq_entries;
|
|
efx->txq_entries = txq_entries;
|
|
for (i = 0; i < efx->n_channels; i++)
|
|
swap(efx->channel[i], other_channel[i]);
|
|
|
|
/* Restart buffer table allocation */
|
|
efx->next_buffer_table = next_buffer_table;
|
|
|
|
for (i = 0; i < efx->n_channels; i++) {
|
|
channel = efx->channel[i];
|
|
if (!channel->type->copy)
|
|
continue;
|
|
rc = efx_probe_channel(channel);
|
|
if (rc)
|
|
goto rollback;
|
|
efx_init_napi_channel(efx->channel[i]);
|
|
}
|
|
|
|
efx_set_xdp_channels(efx);
|
|
out:
|
|
efx->ptp_data = NULL;
|
|
/* Destroy unused channel structures */
|
|
for (i = 0; i < efx->n_channels; i++) {
|
|
channel = other_channel[i];
|
|
if (channel && channel->type->copy) {
|
|
efx_fini_napi_channel(channel);
|
|
efx_remove_channel(channel);
|
|
kfree(channel);
|
|
}
|
|
}
|
|
|
|
efx->ptp_data = ptp_data;
|
|
rc2 = efx_soft_enable_interrupts(efx);
|
|
if (rc2) {
|
|
rc = rc ? rc : rc2;
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"unable to restart interrupts on channel reallocation\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
} else {
|
|
efx_start_all(efx);
|
|
efx_device_attach_if_not_resetting(efx);
|
|
}
|
|
return rc;
|
|
|
|
rollback:
|
|
/* Swap back */
|
|
efx->rxq_entries = old_rxq_entries;
|
|
efx->txq_entries = old_txq_entries;
|
|
for (i = 0; i < efx->n_channels; i++)
|
|
swap(efx->channel[i], other_channel[i]);
|
|
efx_ptp_update_channel(efx, ptp_channel);
|
|
goto out;
|
|
}
|
|
|
|
int efx_set_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
if (efx->xdp_tx_queue_count) {
|
|
EFX_WARN_ON_PARANOID(efx->xdp_tx_queues);
|
|
|
|
/* Allocate array for XDP TX queue lookup. */
|
|
efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count,
|
|
sizeof(*efx->xdp_tx_queues),
|
|
GFP_KERNEL);
|
|
if (!efx->xdp_tx_queues)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->channel < efx->n_rx_channels)
|
|
channel->rx_queue.core_index = channel->channel;
|
|
else
|
|
channel->rx_queue.core_index = -1;
|
|
}
|
|
|
|
efx_set_xdp_channels(efx);
|
|
|
|
rc = netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
|
|
if (rc)
|
|
return rc;
|
|
return netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
|
|
}
|
|
|
|
bool efx_default_channel_want_txqs(struct efx_channel *channel)
|
|
{
|
|
return channel->channel - channel->efx->tx_channel_offset <
|
|
channel->efx->n_tx_channels;
|
|
}
|
|
|
|
/*************
|
|
* START/STOP
|
|
*************/
|
|
|
|
int efx_soft_enable_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel, *end_channel;
|
|
int rc;
|
|
|
|
BUG_ON(efx->state == STATE_DISABLED);
|
|
|
|
efx->irq_soft_enabled = true;
|
|
smp_wmb();
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (!channel->type->keep_eventq) {
|
|
rc = efx_init_eventq(channel);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
efx_start_eventq(channel);
|
|
}
|
|
|
|
efx_mcdi_mode_event(efx);
|
|
|
|
return 0;
|
|
fail:
|
|
end_channel = channel;
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel == end_channel)
|
|
break;
|
|
efx_stop_eventq(channel);
|
|
if (!channel->type->keep_eventq)
|
|
efx_fini_eventq(channel);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void efx_soft_disable_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
if (efx->state == STATE_DISABLED)
|
|
return;
|
|
|
|
efx_mcdi_mode_poll(efx);
|
|
|
|
efx->irq_soft_enabled = false;
|
|
smp_wmb();
|
|
|
|
if (efx->legacy_irq)
|
|
synchronize_irq(efx->legacy_irq);
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->irq)
|
|
synchronize_irq(channel->irq);
|
|
|
|
efx_stop_eventq(channel);
|
|
if (!channel->type->keep_eventq)
|
|
efx_fini_eventq(channel);
|
|
}
|
|
|
|
/* Flush the asynchronous MCDI request queue */
|
|
efx_mcdi_flush_async(efx);
|
|
}
|
|
|
|
int efx_enable_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel, *end_channel;
|
|
int rc;
|
|
|
|
/* TODO: Is this really a bug? */
|
|
BUG_ON(efx->state == STATE_DISABLED);
|
|
|
|
if (efx->eeh_disabled_legacy_irq) {
|
|
enable_irq(efx->legacy_irq);
|
|
efx->eeh_disabled_legacy_irq = false;
|
|
}
|
|
|
|
efx->type->irq_enable_master(efx);
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->type->keep_eventq) {
|
|
rc = efx_init_eventq(channel);
|
|
if (rc)
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
rc = efx_soft_enable_interrupts(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
end_channel = channel;
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel == end_channel)
|
|
break;
|
|
if (channel->type->keep_eventq)
|
|
efx_fini_eventq(channel);
|
|
}
|
|
|
|
efx->type->irq_disable_non_ev(efx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void efx_disable_interrupts(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_soft_disable_interrupts(efx);
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->type->keep_eventq)
|
|
efx_fini_eventq(channel);
|
|
}
|
|
|
|
efx->type->irq_disable_non_ev(efx);
|
|
}
|
|
|
|
void efx_start_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel_rev(channel, efx) {
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
efx_init_tx_queue(tx_queue);
|
|
atomic_inc(&efx->active_queues);
|
|
}
|
|
|
|
efx_for_each_channel_rx_queue(rx_queue, channel) {
|
|
efx_init_rx_queue(rx_queue);
|
|
atomic_inc(&efx->active_queues);
|
|
efx_stop_eventq(channel);
|
|
efx_fast_push_rx_descriptors(rx_queue, false);
|
|
efx_start_eventq(channel);
|
|
}
|
|
|
|
WARN_ON(channel->rx_pkt_n_frags);
|
|
}
|
|
}
|
|
|
|
void efx_stop_channels(struct efx_nic *efx)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_channel *channel;
|
|
int rc = 0;
|
|
|
|
/* Stop RX refill */
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
rx_queue->refill_enabled = false;
|
|
}
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
/* RX packet processing is pipelined, so wait for the
|
|
* NAPI handler to complete. At least event queue 0
|
|
* might be kept active by non-data events, so don't
|
|
* use napi_synchronize() but actually disable NAPI
|
|
* temporarily.
|
|
*/
|
|
if (efx_channel_has_rx_queue(channel)) {
|
|
efx_stop_eventq(channel);
|
|
efx_start_eventq(channel);
|
|
}
|
|
}
|
|
|
|
if (efx->type->fini_dmaq)
|
|
rc = efx->type->fini_dmaq(efx);
|
|
|
|
if (rc) {
|
|
netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
|
|
} else {
|
|
netif_dbg(efx, drv, efx->net_dev,
|
|
"successfully flushed all queues\n");
|
|
}
|
|
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_channel_rx_queue(rx_queue, channel)
|
|
efx_fini_rx_queue(rx_queue);
|
|
efx_for_each_channel_tx_queue(tx_queue, channel)
|
|
efx_fini_tx_queue(tx_queue);
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* NAPI interface
|
|
*
|
|
*************************************************************************/
|
|
|
|
/* Process channel's event queue
|
|
*
|
|
* This function is responsible for processing the event queue of a
|
|
* single channel. The caller must guarantee that this function will
|
|
* never be concurrently called more than once on the same channel,
|
|
* though different channels may be being processed concurrently.
|
|
*/
|
|
static int efx_process_channel(struct efx_channel *channel, int budget)
|
|
{
|
|
struct efx_tx_queue *tx_queue;
|
|
struct list_head rx_list;
|
|
int spent;
|
|
|
|
if (unlikely(!channel->enabled))
|
|
return 0;
|
|
|
|
/* Prepare the batch receive list */
|
|
EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
|
|
INIT_LIST_HEAD(&rx_list);
|
|
channel->rx_list = &rx_list;
|
|
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
tx_queue->pkts_compl = 0;
|
|
tx_queue->bytes_compl = 0;
|
|
}
|
|
|
|
spent = efx_nic_process_eventq(channel, budget);
|
|
if (spent && efx_channel_has_rx_queue(channel)) {
|
|
struct efx_rx_queue *rx_queue =
|
|
efx_channel_get_rx_queue(channel);
|
|
|
|
efx_rx_flush_packet(channel);
|
|
efx_fast_push_rx_descriptors(rx_queue, true);
|
|
}
|
|
|
|
/* Update BQL */
|
|
efx_for_each_channel_tx_queue(tx_queue, channel) {
|
|
if (tx_queue->bytes_compl) {
|
|
netdev_tx_completed_queue(tx_queue->core_txq,
|
|
tx_queue->pkts_compl,
|
|
tx_queue->bytes_compl);
|
|
}
|
|
}
|
|
|
|
/* Receive any packets we queued up */
|
|
netif_receive_skb_list(channel->rx_list);
|
|
channel->rx_list = NULL;
|
|
|
|
return spent;
|
|
}
|
|
|
|
static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
|
|
{
|
|
int step = efx->irq_mod_step_us;
|
|
|
|
if (channel->irq_mod_score < irq_adapt_low_thresh) {
|
|
if (channel->irq_moderation_us > step) {
|
|
channel->irq_moderation_us -= step;
|
|
efx->type->push_irq_moderation(channel);
|
|
}
|
|
} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
|
|
if (channel->irq_moderation_us <
|
|
efx->irq_rx_moderation_us) {
|
|
channel->irq_moderation_us += step;
|
|
efx->type->push_irq_moderation(channel);
|
|
}
|
|
}
|
|
|
|
channel->irq_count = 0;
|
|
channel->irq_mod_score = 0;
|
|
}
|
|
|
|
/* NAPI poll handler
|
|
*
|
|
* NAPI guarantees serialisation of polls of the same device, which
|
|
* provides the guarantee required by efx_process_channel().
|
|
*/
|
|
static int efx_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct efx_channel *channel =
|
|
container_of(napi, struct efx_channel, napi_str);
|
|
struct efx_nic *efx = channel->efx;
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
unsigned int time;
|
|
#endif
|
|
int spent;
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"channel %d NAPI poll executing on CPU %d\n",
|
|
channel->channel, raw_smp_processor_id());
|
|
|
|
spent = efx_process_channel(channel, budget);
|
|
|
|
xdp_do_flush_map();
|
|
|
|
if (spent < budget) {
|
|
if (efx_channel_has_rx_queue(channel) &&
|
|
efx->irq_rx_adaptive &&
|
|
unlikely(++channel->irq_count == 1000)) {
|
|
efx_update_irq_mod(efx, channel);
|
|
}
|
|
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
/* Perhaps expire some ARFS filters */
|
|
time = jiffies - channel->rfs_last_expiry;
|
|
/* Would our quota be >= 20? */
|
|
if (channel->rfs_filter_count * time >= 600 * HZ)
|
|
mod_delayed_work(system_wq, &channel->filter_work, 0);
|
|
#endif
|
|
|
|
/* There is no race here; although napi_disable() will
|
|
* only wait for napi_complete(), this isn't a problem
|
|
* since efx_nic_eventq_read_ack() will have no effect if
|
|
* interrupts have already been disabled.
|
|
*/
|
|
if (napi_complete_done(napi, spent))
|
|
efx_nic_eventq_read_ack(channel);
|
|
}
|
|
|
|
return spent;
|
|
}
|
|
|
|
void efx_init_napi_channel(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
channel->napi_dev = efx->net_dev;
|
|
netif_napi_add(channel->napi_dev, &channel->napi_str,
|
|
efx_poll, napi_weight);
|
|
}
|
|
|
|
void efx_init_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_init_napi_channel(channel);
|
|
}
|
|
|
|
void efx_fini_napi_channel(struct efx_channel *channel)
|
|
{
|
|
if (channel->napi_dev)
|
|
netif_napi_del(&channel->napi_str);
|
|
|
|
channel->napi_dev = NULL;
|
|
}
|
|
|
|
void efx_fini_napi(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
|
|
efx_for_each_channel(channel, efx)
|
|
efx_fini_napi_channel(channel);
|
|
}
|