1298 lines
38 KiB
C
1298 lines
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2018 Solarflare Communications Inc.
|
|
* Copyright 2019-2020 Xilinx Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include "ef100_nic.h"
|
|
#include "efx_common.h"
|
|
#include "efx_channels.h"
|
|
#include "io.h"
|
|
#include "selftest.h"
|
|
#include "ef100_regs.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "mcdi_port_common.h"
|
|
#include "mcdi_functions.h"
|
|
#include "mcdi_filters.h"
|
|
#include "ef100_rx.h"
|
|
#include "ef100_tx.h"
|
|
#include "ef100_netdev.h"
|
|
#include "rx_common.h"
|
|
|
|
#define EF100_MAX_VIS 4096
|
|
#define EF100_NUM_MCDI_BUFFERS 1
|
|
#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
|
|
|
|
#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
|
|
|
|
/* MCDI
|
|
*/
|
|
static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (dma_addr)
|
|
*dma_addr = nic_data->mcdi_buf.dma_addr +
|
|
bufid * ALIGN(MCDI_BUF_LEN, 256);
|
|
return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
|
|
}
|
|
|
|
static int ef100_get_warm_boot_count(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
|
|
|
|
if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
|
|
netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
|
|
efx->state = STATE_DISABLED;
|
|
return -ENETDOWN;
|
|
} else {
|
|
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
|
|
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
|
|
}
|
|
}
|
|
|
|
static void ef100_mcdi_request(struct efx_nic *efx,
|
|
const efx_dword_t *hdr, size_t hdr_len,
|
|
const efx_dword_t *sdu, size_t sdu_len)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
|
|
|
|
memcpy(pdu, hdr, hdr_len);
|
|
memcpy(pdu + hdr_len, sdu, sdu_len);
|
|
wmb();
|
|
|
|
/* The hardware provides 'low' and 'high' (doorbell) registers
|
|
* for passing the 64-bit address of an MCDI request to
|
|
* firmware. However the dwords are swapped by firmware. The
|
|
* least significant bits of the doorbell are then 0 for all
|
|
* MCDI requests due to alignment.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
|
|
_efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
|
|
}
|
|
|
|
static bool ef100_mcdi_poll_response(struct efx_nic *efx)
|
|
{
|
|
const efx_dword_t hdr =
|
|
*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
|
|
|
|
rmb();
|
|
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
|
|
}
|
|
|
|
static void ef100_mcdi_read_response(struct efx_nic *efx,
|
|
efx_dword_t *outbuf, size_t offset,
|
|
size_t outlen)
|
|
{
|
|
const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
|
|
|
|
memcpy(outbuf, pdu + offset, outlen);
|
|
}
|
|
|
|
static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
rc = ef100_get_warm_boot_count(efx);
|
|
if (rc < 0) {
|
|
/* The firmware is presumably in the process of
|
|
* rebooting. However, we are supposed to report each
|
|
* reboot just once, so we must only do that once we
|
|
* can read and store the updated warm boot count.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (rc == nic_data->warm_boot_count)
|
|
return 0;
|
|
|
|
nic_data->warm_boot_count = rc;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
|
|
{
|
|
}
|
|
|
|
/* MCDI calls
|
|
*/
|
|
static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
|
|
return -EIO;
|
|
|
|
ether_addr_copy(mac_address,
|
|
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
u8 vi_window_mode;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"unable to read datapath firmware capabilities\n");
|
|
return -EIO;
|
|
}
|
|
|
|
nic_data->datapath_caps = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_OUT_FLAGS1);
|
|
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_V2_OUT_FLAGS2);
|
|
if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
|
|
nic_data->datapath_caps3 = 0;
|
|
else
|
|
nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_V7_OUT_FLAGS3);
|
|
|
|
vi_window_mode = MCDI_BYTE(outbuf,
|
|
GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
|
|
rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
|
|
struct net_device *net_dev = efx->net_dev;
|
|
netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
|
|
NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
|
|
NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
|
|
|
|
net_dev->features |= tso;
|
|
net_dev->hw_features |= tso;
|
|
net_dev->hw_enc_features |= tso;
|
|
/* EF100 HW can only offload outer checksums if they are UDP,
|
|
* so for GRE_CSUM we have to use GSO_PARTIAL.
|
|
*/
|
|
net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
|
|
}
|
|
efx->num_mac_stats = MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"firmware reports num_mac_stats = %u\n",
|
|
efx->num_mac_stats);
|
|
return 0;
|
|
}
|
|
|
|
/* Event handling
|
|
*/
|
|
static int ef100_ev_probe(struct efx_channel *channel)
|
|
{
|
|
/* Allocate an extra descriptor for the QMDA status completion entry */
|
|
return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
|
|
(channel->eventq_mask + 2) *
|
|
sizeof(efx_qword_t),
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static int ef100_ev_init(struct efx_channel *channel)
|
|
{
|
|
struct ef100_nic_data *nic_data = channel->efx->nic_data;
|
|
|
|
/* initial phase is 0 */
|
|
clear_bit(channel->channel, nic_data->evq_phases);
|
|
|
|
return efx_mcdi_ev_init(channel, false, false);
|
|
}
|
|
|
|
static void ef100_ev_read_ack(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t evq_prime;
|
|
|
|
EFX_POPULATE_DWORD_2(evq_prime,
|
|
ERF_GZ_EVQ_ID, channel->channel,
|
|
ERF_GZ_IDX, channel->eventq_read_ptr &
|
|
channel->eventq_mask);
|
|
|
|
efx_writed(channel->efx, &evq_prime,
|
|
efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
|
|
}
|
|
|
|
static int ef100_ev_process(struct efx_channel *channel, int quota)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct ef100_nic_data *nic_data;
|
|
bool evq_phase, old_evq_phase;
|
|
unsigned int read_ptr;
|
|
efx_qword_t *p_event;
|
|
int spent = 0;
|
|
bool ev_phase;
|
|
int ev_type;
|
|
|
|
if (unlikely(!channel->enabled))
|
|
return 0;
|
|
|
|
nic_data = efx->nic_data;
|
|
evq_phase = test_bit(channel->channel, nic_data->evq_phases);
|
|
old_evq_phase = evq_phase;
|
|
read_ptr = channel->eventq_read_ptr;
|
|
BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
|
|
|
|
while (spent < quota) {
|
|
p_event = efx_event(channel, read_ptr);
|
|
|
|
ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
|
|
if (ev_phase != evq_phase)
|
|
break;
|
|
|
|
netif_vdbg(efx, drv, efx->net_dev,
|
|
"processing event on %d " EFX_QWORD_FMT "\n",
|
|
channel->channel, EFX_QWORD_VAL(*p_event));
|
|
|
|
ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
|
|
|
|
switch (ev_type) {
|
|
case ESE_GZ_EF100_EV_RX_PKTS:
|
|
efx_ef100_ev_rx(channel, p_event);
|
|
++spent;
|
|
break;
|
|
case ESE_GZ_EF100_EV_MCDI:
|
|
efx_mcdi_process_event(channel, p_event);
|
|
break;
|
|
case ESE_GZ_EF100_EV_TX_COMPLETION:
|
|
ef100_ev_tx(channel, p_event);
|
|
break;
|
|
case ESE_GZ_EF100_EV_DRIVER:
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Driver initiated event " EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*p_event));
|
|
break;
|
|
default:
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Unhandled event " EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*p_event));
|
|
}
|
|
|
|
++read_ptr;
|
|
if ((read_ptr & channel->eventq_mask) == 0)
|
|
evq_phase = !evq_phase;
|
|
}
|
|
|
|
channel->eventq_read_ptr = read_ptr;
|
|
if (evq_phase != old_evq_phase)
|
|
change_bit(channel->channel, nic_data->evq_phases);
|
|
|
|
return spent;
|
|
}
|
|
|
|
static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_msi_context *context = dev_id;
|
|
struct efx_nic *efx = context->efx;
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
|
|
|
|
if (likely(READ_ONCE(efx->irq_soft_enabled))) {
|
|
/* Note test interrupts */
|
|
if (context->index == efx->irq_level)
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
|
|
/* Schedule processing of the channel */
|
|
efx_schedule_channel_irq(efx->channel[context->index]);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ef100_phy_probe(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_phy_data *phy_data;
|
|
int rc;
|
|
|
|
/* Probe for the PHY */
|
|
efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
|
|
if (!efx->phy_data)
|
|
return -ENOMEM;
|
|
|
|
rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Populate driver and ethtool settings */
|
|
phy_data = efx->phy_data;
|
|
mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
|
|
efx->link_advertising);
|
|
efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
|
|
false);
|
|
|
|
/* Default to Autonegotiated flow control if the PHY supports it */
|
|
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
|
|
if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
|
|
efx->wanted_fc |= EFX_FC_AUTO;
|
|
efx_link_set_wanted_fc(efx, efx->wanted_fc);
|
|
|
|
/* Push settings to the PHY. Failure is not fatal, the user can try to
|
|
* fix it using ethtool.
|
|
*/
|
|
rc = efx_mcdi_port_reconfigure(efx);
|
|
if (rc && rc != -EPERM)
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"could not initialise PHY settings\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ef100_filter_table_probe(struct efx_nic *efx)
|
|
{
|
|
return efx_mcdi_filter_table_probe(efx, true);
|
|
}
|
|
|
|
static int ef100_filter_table_up(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
|
|
if (rc) {
|
|
efx_mcdi_filter_table_down(efx);
|
|
return rc;
|
|
}
|
|
|
|
rc = efx_mcdi_filter_add_vlan(efx, 0);
|
|
if (rc) {
|
|
efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
|
|
efx_mcdi_filter_table_down(efx);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void ef100_filter_table_down(struct efx_nic *efx)
|
|
{
|
|
efx_mcdi_filter_del_vlan(efx, 0);
|
|
efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
|
|
efx_mcdi_filter_table_down(efx);
|
|
}
|
|
|
|
/* Other
|
|
*/
|
|
static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
efx_mcdi_filter_sync_rx_mode(efx);
|
|
|
|
if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
|
|
return efx_mcdi_set_mtu(efx);
|
|
return efx_mcdi_set_mac(efx);
|
|
}
|
|
|
|
static enum reset_type ef100_map_reset_reason(enum reset_type reason)
|
|
{
|
|
if (reason == RESET_TYPE_TX_WATCHDOG)
|
|
return reason;
|
|
return RESET_TYPE_DISABLE;
|
|
}
|
|
|
|
static int ef100_map_reset_flags(u32 *flags)
|
|
{
|
|
/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
|
|
if ((*flags & EF100_RESET_PORT)) {
|
|
*flags &= ~EF100_RESET_PORT;
|
|
return RESET_TYPE_ALL;
|
|
}
|
|
if (*flags & ETH_RESET_MGMT) {
|
|
*flags &= ~ETH_RESET_MGMT;
|
|
return RESET_TYPE_DISABLE;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
|
|
{
|
|
int rc;
|
|
|
|
dev_close(efx->net_dev);
|
|
|
|
if (reset_type == RESET_TYPE_TX_WATCHDOG) {
|
|
netif_device_attach(efx->net_dev);
|
|
__clear_bit(reset_type, &efx->reset_pending);
|
|
rc = dev_open(efx->net_dev, NULL);
|
|
} else if (reset_type == RESET_TYPE_ALL) {
|
|
rc = efx_mcdi_reset(efx, reset_type);
|
|
if (rc)
|
|
return rc;
|
|
|
|
netif_device_attach(efx->net_dev);
|
|
|
|
rc = dev_open(efx->net_dev, NULL);
|
|
} else {
|
|
rc = 1; /* Leave the device closed */
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void ef100_common_stat_mask(unsigned long *mask)
|
|
{
|
|
__set_bit(EF100_STAT_port_rx_packets, mask);
|
|
__set_bit(EF100_STAT_port_tx_packets, mask);
|
|
__set_bit(EF100_STAT_port_rx_bytes, mask);
|
|
__set_bit(EF100_STAT_port_tx_bytes, mask);
|
|
__set_bit(EF100_STAT_port_rx_multicast, mask);
|
|
__set_bit(EF100_STAT_port_rx_bad, mask);
|
|
__set_bit(EF100_STAT_port_rx_align_error, mask);
|
|
__set_bit(EF100_STAT_port_rx_overflow, mask);
|
|
}
|
|
|
|
static void ef100_ethtool_stat_mask(unsigned long *mask)
|
|
{
|
|
__set_bit(EF100_STAT_port_tx_pause, mask);
|
|
__set_bit(EF100_STAT_port_tx_unicast, mask);
|
|
__set_bit(EF100_STAT_port_tx_multicast, mask);
|
|
__set_bit(EF100_STAT_port_tx_broadcast, mask);
|
|
__set_bit(EF100_STAT_port_tx_lt64, mask);
|
|
__set_bit(EF100_STAT_port_tx_64, mask);
|
|
__set_bit(EF100_STAT_port_tx_65_to_127, mask);
|
|
__set_bit(EF100_STAT_port_tx_128_to_255, mask);
|
|
__set_bit(EF100_STAT_port_tx_256_to_511, mask);
|
|
__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
|
|
__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
|
|
__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
|
|
__set_bit(EF100_STAT_port_rx_good, mask);
|
|
__set_bit(EF100_STAT_port_rx_pause, mask);
|
|
__set_bit(EF100_STAT_port_rx_unicast, mask);
|
|
__set_bit(EF100_STAT_port_rx_broadcast, mask);
|
|
__set_bit(EF100_STAT_port_rx_lt64, mask);
|
|
__set_bit(EF100_STAT_port_rx_64, mask);
|
|
__set_bit(EF100_STAT_port_rx_65_to_127, mask);
|
|
__set_bit(EF100_STAT_port_rx_128_to_255, mask);
|
|
__set_bit(EF100_STAT_port_rx_256_to_511, mask);
|
|
__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
|
|
__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
|
|
__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
|
|
__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
|
|
__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
|
|
__set_bit(EF100_STAT_port_rx_length_error, mask);
|
|
__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
|
|
__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
|
|
__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
|
|
}
|
|
|
|
#define EF100_DMA_STAT(ext_name, mcdi_name) \
|
|
[EF100_STAT_ ## ext_name] = \
|
|
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
|
|
|
|
static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
|
|
EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
|
|
EF100_DMA_STAT(port_tx_packets, TX_PKTS),
|
|
EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
|
|
EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
|
|
EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
|
|
EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
|
|
EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
|
|
EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
|
|
EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
|
|
EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
|
|
EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
|
|
EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
|
|
EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
|
|
EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
|
|
EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
|
|
EF100_DMA_STAT(port_rx_packets, RX_PKTS),
|
|
EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
|
|
EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
|
|
EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
|
|
EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
|
|
EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
|
|
EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
|
|
EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
|
|
EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
|
|
EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
|
|
EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
|
|
EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
|
|
EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
|
|
EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
|
|
EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
|
|
EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
|
|
EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
|
|
EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
|
|
EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
|
|
EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
|
|
EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
|
|
EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
|
|
EFX_GENERIC_SW_STAT(rx_noskb_drops),
|
|
};
|
|
|
|
static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
|
|
{
|
|
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
|
|
|
|
ef100_ethtool_stat_mask(mask);
|
|
return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
|
|
mask, names);
|
|
}
|
|
|
|
static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
|
|
struct rtnl_link_stats64 *core_stats)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
|
|
size_t stats_count = 0, index;
|
|
u64 *stats = nic_data->stats;
|
|
|
|
ef100_ethtool_stat_mask(mask);
|
|
|
|
if (full_stats) {
|
|
for_each_set_bit(index, mask, EF100_STAT_COUNT) {
|
|
if (ef100_stat_desc[index].name) {
|
|
*full_stats++ = stats[index];
|
|
++stats_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!core_stats)
|
|
return stats_count;
|
|
|
|
core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
|
|
core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
|
|
core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
|
|
core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
|
|
core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
|
|
stats[GENERIC_STAT_rx_nodesc_trunc] +
|
|
stats[GENERIC_STAT_rx_noskb_drops];
|
|
core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
|
|
core_stats->rx_length_errors =
|
|
stats[EF100_STAT_port_rx_gtjumbo] +
|
|
stats[EF100_STAT_port_rx_length_error];
|
|
core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
|
|
core_stats->rx_frame_errors =
|
|
stats[EF100_STAT_port_rx_align_error];
|
|
core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
|
|
core_stats->rx_errors = (core_stats->rx_length_errors +
|
|
core_stats->rx_crc_errors +
|
|
core_stats->rx_frame_errors);
|
|
|
|
return stats_count;
|
|
}
|
|
|
|
static size_t ef100_update_stats(struct efx_nic *efx,
|
|
u64 *full_stats,
|
|
struct rtnl_link_stats64 *core_stats)
|
|
{
|
|
__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
|
|
u64 *stats = nic_data->stats;
|
|
|
|
ef100_common_stat_mask(mask);
|
|
ef100_ethtool_stat_mask(mask);
|
|
|
|
if (!mc_stats)
|
|
return 0;
|
|
|
|
efx_nic_copy_stats(efx, mc_stats);
|
|
efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
|
|
stats, mc_stats, false);
|
|
|
|
kfree(mc_stats);
|
|
|
|
return ef100_update_stats_common(efx, full_stats, core_stats);
|
|
}
|
|
|
|
static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
|
|
struct netdev_phys_item_id *ppid)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!is_valid_ether_addr(nic_data->port_id))
|
|
return -EOPNOTSUPP;
|
|
|
|
ppid->id_len = ETH_ALEN;
|
|
memcpy(ppid->id, nic_data->port_id, ppid->id_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef100_irq_test_generate(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
|
|
|
|
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
|
|
|
|
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
|
|
return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
|
|
inbuf, sizeof(inbuf), NULL, 0, NULL);
|
|
}
|
|
|
|
#define EFX_EF100_TEST 1
|
|
|
|
static void efx_ef100_ev_test_generate(struct efx_channel *channel)
|
|
{
|
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_qword_t event;
|
|
int rc;
|
|
|
|
EFX_POPULATE_QWORD_2(event,
|
|
ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
|
|
ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
|
|
|
|
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
|
|
|
|
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
|
|
* already swapped the data to little-endian order.
|
|
*/
|
|
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
|
|
sizeof(efx_qword_t));
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
|
|
NULL, 0, NULL);
|
|
if (rc && (rc != -ENETDOWN))
|
|
goto fail;
|
|
|
|
return;
|
|
|
|
fail:
|
|
WARN_ON(true);
|
|
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
|
|
}
|
|
|
|
static unsigned int ef100_check_caps(const struct efx_nic *efx,
|
|
u8 flag, u32 offset)
|
|
{
|
|
const struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
switch (offset) {
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
|
|
return nic_data->datapath_caps & BIT_ULL(flag);
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
|
|
return nic_data->datapath_caps2 & BIT_ULL(flag);
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
|
|
return nic_data->datapath_caps3 & BIT_ULL(flag);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
|
|
{
|
|
/* Maximum link speed for Riverhead is 100G */
|
|
return 10 * EFX_RECYCLE_RING_SIZE_10G;
|
|
}
|
|
|
|
/* NIC level access functions
|
|
*/
|
|
#define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \
|
|
NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
|
|
NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
|
|
NETIF_F_HW_VLAN_CTAG_TX)
|
|
|
|
const struct efx_nic_type ef100_pf_nic_type = {
|
|
.revision = EFX_REV_EF100,
|
|
.is_vf = false,
|
|
.probe = ef100_probe_pf,
|
|
.offload_features = EF100_OFFLOAD_FEATURES,
|
|
.mcdi_max_ver = 2,
|
|
.mcdi_request = ef100_mcdi_request,
|
|
.mcdi_poll_response = ef100_mcdi_poll_response,
|
|
.mcdi_read_response = ef100_mcdi_read_response,
|
|
.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
|
|
.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
|
|
.irq_enable_master = efx_port_dummy_op_void,
|
|
.irq_test_generate = efx_ef100_irq_test_generate,
|
|
.irq_disable_non_ev = efx_port_dummy_op_void,
|
|
.push_irq_moderation = efx_channel_dummy_op_void,
|
|
.min_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.map_reset_reason = ef100_map_reset_reason,
|
|
.map_reset_flags = ef100_map_reset_flags,
|
|
.reset = ef100_reset,
|
|
|
|
.check_caps = ef100_check_caps,
|
|
|
|
.ev_probe = ef100_ev_probe,
|
|
.ev_init = ef100_ev_init,
|
|
.ev_fini = efx_mcdi_ev_fini,
|
|
.ev_remove = efx_mcdi_ev_remove,
|
|
.irq_handle_msi = ef100_msi_interrupt,
|
|
.ev_process = ef100_ev_process,
|
|
.ev_read_ack = ef100_ev_read_ack,
|
|
.ev_test_generate = efx_ef100_ev_test_generate,
|
|
.tx_probe = ef100_tx_probe,
|
|
.tx_init = ef100_tx_init,
|
|
.tx_write = ef100_tx_write,
|
|
.tx_enqueue = ef100_enqueue_skb,
|
|
.rx_probe = efx_mcdi_rx_probe,
|
|
.rx_init = efx_mcdi_rx_init,
|
|
.rx_remove = efx_mcdi_rx_remove,
|
|
.rx_write = ef100_rx_write,
|
|
.rx_packet = __ef100_rx_packet,
|
|
.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
|
|
.fini_dmaq = efx_fini_dmaq,
|
|
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
|
|
.filter_table_probe = ef100_filter_table_up,
|
|
.filter_table_restore = efx_mcdi_filter_table_restore,
|
|
.filter_table_remove = ef100_filter_table_down,
|
|
.filter_insert = efx_mcdi_filter_insert,
|
|
.filter_remove_safe = efx_mcdi_filter_remove_safe,
|
|
.filter_get_safe = efx_mcdi_filter_get_safe,
|
|
.filter_clear_rx = efx_mcdi_filter_clear_rx,
|
|
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
|
|
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
|
|
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
|
|
#endif
|
|
|
|
.get_phys_port_id = efx_ef100_get_phys_port_id,
|
|
|
|
.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
|
|
.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
|
|
.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
|
|
.rx_hash_key_size = 40,
|
|
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
|
|
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
|
|
.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
|
|
.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
|
|
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
|
|
.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
|
|
|
|
.reconfigure_mac = ef100_reconfigure_mac,
|
|
.reconfigure_port = efx_mcdi_port_reconfigure,
|
|
.test_nvram = efx_new_mcdi_nvram_test_all,
|
|
.describe_stats = ef100_describe_stats,
|
|
.start_stats = efx_mcdi_mac_start_stats,
|
|
.update_stats = ef100_update_stats,
|
|
.pull_stats = efx_mcdi_mac_pull_stats,
|
|
.stop_stats = efx_mcdi_mac_stop_stats,
|
|
|
|
/* Per-type bar/size configuration not used on ef100. Location of
|
|
* registers is defined by extended capabilities.
|
|
*/
|
|
.mem_bar = NULL,
|
|
.mem_map_size = NULL,
|
|
|
|
};
|
|
|
|
const struct efx_nic_type ef100_vf_nic_type = {
|
|
.revision = EFX_REV_EF100,
|
|
.is_vf = true,
|
|
.probe = ef100_probe_vf,
|
|
.offload_features = EF100_OFFLOAD_FEATURES,
|
|
.mcdi_max_ver = 2,
|
|
.mcdi_request = ef100_mcdi_request,
|
|
.mcdi_poll_response = ef100_mcdi_poll_response,
|
|
.mcdi_read_response = ef100_mcdi_read_response,
|
|
.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
|
|
.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
|
|
.irq_enable_master = efx_port_dummy_op_void,
|
|
.irq_test_generate = efx_ef100_irq_test_generate,
|
|
.irq_disable_non_ev = efx_port_dummy_op_void,
|
|
.push_irq_moderation = efx_channel_dummy_op_void,
|
|
.min_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.map_reset_reason = ef100_map_reset_reason,
|
|
.map_reset_flags = ef100_map_reset_flags,
|
|
.reset = ef100_reset,
|
|
.check_caps = ef100_check_caps,
|
|
.ev_probe = ef100_ev_probe,
|
|
.ev_init = ef100_ev_init,
|
|
.ev_fini = efx_mcdi_ev_fini,
|
|
.ev_remove = efx_mcdi_ev_remove,
|
|
.irq_handle_msi = ef100_msi_interrupt,
|
|
.ev_process = ef100_ev_process,
|
|
.ev_read_ack = ef100_ev_read_ack,
|
|
.ev_test_generate = efx_ef100_ev_test_generate,
|
|
.tx_probe = ef100_tx_probe,
|
|
.tx_init = ef100_tx_init,
|
|
.tx_write = ef100_tx_write,
|
|
.tx_enqueue = ef100_enqueue_skb,
|
|
.rx_probe = efx_mcdi_rx_probe,
|
|
.rx_init = efx_mcdi_rx_init,
|
|
.rx_remove = efx_mcdi_rx_remove,
|
|
.rx_write = ef100_rx_write,
|
|
.rx_packet = __ef100_rx_packet,
|
|
.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
|
|
.fini_dmaq = efx_fini_dmaq,
|
|
.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
|
|
.filter_table_probe = ef100_filter_table_up,
|
|
.filter_table_restore = efx_mcdi_filter_table_restore,
|
|
.filter_table_remove = ef100_filter_table_down,
|
|
.filter_insert = efx_mcdi_filter_insert,
|
|
.filter_remove_safe = efx_mcdi_filter_remove_safe,
|
|
.filter_get_safe = efx_mcdi_filter_get_safe,
|
|
.filter_clear_rx = efx_mcdi_filter_clear_rx,
|
|
.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
|
|
.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
|
|
.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
|
|
#ifdef CONFIG_RFS_ACCEL
|
|
.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
|
|
#endif
|
|
|
|
.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
|
|
.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
|
|
.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
|
|
.rx_hash_key_size = 40,
|
|
.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
|
|
.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
|
|
.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
|
|
.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
|
|
|
|
.reconfigure_mac = ef100_reconfigure_mac,
|
|
.test_nvram = efx_new_mcdi_nvram_test_all,
|
|
.describe_stats = ef100_describe_stats,
|
|
.start_stats = efx_mcdi_mac_start_stats,
|
|
.update_stats = ef100_update_stats,
|
|
.pull_stats = efx_mcdi_mac_pull_stats,
|
|
.stop_stats = efx_mcdi_mac_stop_stats,
|
|
|
|
.mem_bar = NULL,
|
|
.mem_map_size = NULL,
|
|
|
|
};
|
|
|
|
static int compare_versions(const char *a, const char *b)
|
|
{
|
|
int a_major, a_minor, a_point, a_patch;
|
|
int b_major, b_minor, b_point, b_patch;
|
|
int a_matched, b_matched;
|
|
|
|
a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
|
|
b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
|
|
|
|
if (a_matched == 4 && b_matched != 4)
|
|
return +1;
|
|
|
|
if (a_matched != 4 && b_matched == 4)
|
|
return -1;
|
|
|
|
if (a_matched != 4 && b_matched != 4)
|
|
return 0;
|
|
|
|
if (a_major != b_major)
|
|
return a_major - b_major;
|
|
|
|
if (a_minor != b_minor)
|
|
return a_minor - b_minor;
|
|
|
|
if (a_point != b_point)
|
|
return a_point - b_point;
|
|
|
|
return a_patch - b_patch;
|
|
}
|
|
|
|
enum ef100_tlv_state_machine {
|
|
EF100_TLV_TYPE,
|
|
EF100_TLV_TYPE_CONT,
|
|
EF100_TLV_LENGTH,
|
|
EF100_TLV_VALUE
|
|
};
|
|
|
|
struct ef100_tlv_state {
|
|
enum ef100_tlv_state_machine state;
|
|
u64 value;
|
|
u32 value_offset;
|
|
u16 type;
|
|
u8 len;
|
|
};
|
|
|
|
static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
|
|
{
|
|
switch (state->state) {
|
|
case EF100_TLV_TYPE:
|
|
state->type = byte & 0x7f;
|
|
state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
|
|
: EF100_TLV_LENGTH;
|
|
/* Clear ready to read in a new entry */
|
|
state->value = 0;
|
|
state->value_offset = 0;
|
|
return 0;
|
|
case EF100_TLV_TYPE_CONT:
|
|
state->type |= byte << 7;
|
|
state->state = EF100_TLV_LENGTH;
|
|
return 0;
|
|
case EF100_TLV_LENGTH:
|
|
state->len = byte;
|
|
/* We only handle TLVs that fit in a u64 */
|
|
if (state->len > sizeof(state->value))
|
|
return -EOPNOTSUPP;
|
|
/* len may be zero, implying a value of zero */
|
|
state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
|
|
return 0;
|
|
case EF100_TLV_VALUE:
|
|
state->value |= ((u64)byte) << (state->value_offset * 8);
|
|
state->value_offset++;
|
|
if (state->value_offset >= state->len)
|
|
state->state = EF100_TLV_TYPE;
|
|
return 0;
|
|
default: /* state machine error, can't happen */
|
|
WARN_ON_ONCE(1);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int ef100_process_design_param(struct efx_nic *efx,
|
|
const struct ef100_tlv_state *reader)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
switch (reader->type) {
|
|
case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
|
|
/* Driver doesn't support timestamping yet, so we don't care */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
|
|
/* Driver doesn't support unsolicited-event credits yet, so
|
|
* we don't care
|
|
*/
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
|
|
/* Driver doesn't manage the NMMU (so we don't care) */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
|
|
/* Driver uses CHECKSUM_COMPLETE, so we don't care about
|
|
* protocol checksum validation
|
|
*/
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
|
|
nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
|
|
/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
|
|
if (!reader->value) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"TSO_MAX_HDR_NUM_SEGS < 1\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
|
|
case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
|
|
/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
|
|
* EFX_MIN_DMAQ_SIZE, so we just need to check that
|
|
* EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
|
|
* This is very unlikely to fail.
|
|
*/
|
|
if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
|
|
EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"%s size granularity is %llu, can't guarantee safety\n",
|
|
reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
|
|
reader->value);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
|
|
nic_data->tso_max_payload_len = min_t(u64, reader->value, GSO_MAX_SIZE);
|
|
netif_set_gso_max_size(efx->net_dev, nic_data->tso_max_payload_len);
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
|
|
nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
|
|
netif_set_gso_max_segs(efx->net_dev, nic_data->tso_max_payload_num_segs);
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
|
|
nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_COMPAT:
|
|
if (reader->value) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
|
|
reader->value);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
|
|
/* Driver doesn't use mem2mem transfers */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
|
|
/* Driver doesn't currently use EVQ_TIMER */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
|
|
/* Driver doesn't manage the NMMU (so we don't care) */
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_VI_STRIDES:
|
|
/* We never try to set the VI stride, and we don't rely on
|
|
* being able to find VIs past VI 0 until after we've learned
|
|
* the current stride from MC_CMD_GET_CAPABILITIES.
|
|
* So the value of this shouldn't matter.
|
|
*/
|
|
if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"NIC has other than default VI_STRIDES (mask "
|
|
"%#llx), early probing might use wrong one\n",
|
|
reader->value);
|
|
return 0;
|
|
case ESE_EF100_DP_GZ_RX_MAX_RUNT:
|
|
/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
|
|
* care whether it indicates runt or overlength for any given
|
|
* packet, so we don't care about this parameter.
|
|
*/
|
|
return 0;
|
|
default:
|
|
/* Host interface says "Drivers should ignore design parameters
|
|
* that they do not recognise."
|
|
*/
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"Ignoring unrecognised design parameter %u\n",
|
|
reader->type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int ef100_check_design_params(struct efx_nic *efx)
|
|
{
|
|
struct ef100_tlv_state reader = {};
|
|
u32 total_len, offset = 0;
|
|
efx_dword_t reg;
|
|
int rc = 0, i;
|
|
u32 data;
|
|
|
|
efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN);
|
|
total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
|
|
netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
|
|
total_len);
|
|
while (offset < total_len) {
|
|
efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset);
|
|
data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
|
|
for (i = 0; i < sizeof(data); i++) {
|
|
rc = ef100_tlv_feed(&reader, data);
|
|
/* Got a complete value? */
|
|
if (!rc && reader.state == EF100_TLV_TYPE)
|
|
rc = ef100_process_design_param(efx, &reader);
|
|
if (rc)
|
|
goto out;
|
|
data >>= 8;
|
|
offset++;
|
|
}
|
|
}
|
|
/* Check we didn't end halfway through a TLV entry, which could either
|
|
* mean that the TLV stream is truncated or just that it's corrupted
|
|
* and our state machine is out of sync.
|
|
*/
|
|
if (reader.state != EF100_TLV_TYPE) {
|
|
if (reader.state == EF100_TLV_TYPE_CONT)
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"truncated design parameter (incomplete type %u)\n",
|
|
reader.type);
|
|
else
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"truncated design parameter %u\n",
|
|
reader.type);
|
|
rc = -EIO;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/* NIC probe and remove
|
|
*/
|
|
static int ef100_probe_main(struct efx_nic *efx)
|
|
{
|
|
unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct ef100_nic_data *nic_data;
|
|
char fw_version[32];
|
|
int i, rc;
|
|
|
|
if (WARN_ON(bar_size == 0))
|
|
return -EIO;
|
|
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
nic_data->efx = efx;
|
|
net_dev->features |= efx->type->offload_features;
|
|
net_dev->hw_features |= efx->type->offload_features;
|
|
net_dev->hw_enc_features |= efx->type->offload_features;
|
|
net_dev->vlan_features |= NETIF_F_HW_CSUM | NETIF_F_SG |
|
|
NETIF_F_HIGHDMA | NETIF_F_ALL_TSO;
|
|
|
|
/* Populate design-parameter defaults */
|
|
nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
|
|
nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
|
|
nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
|
|
nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
|
|
netif_set_gso_max_segs(net_dev, ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT);
|
|
/* Read design parameters */
|
|
rc = ef100_check_design_params(efx);
|
|
if (rc) {
|
|
netif_err(efx, probe, efx->net_dev,
|
|
"Unsupported design parameters\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* we assume later that we can copy from this buffer in dwords */
|
|
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
|
|
|
|
/* MCDI buffers must be 256 byte aligned. */
|
|
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* Get the MC's warm boot count. In case it's rebooting right
|
|
* now, be prepared to retry.
|
|
*/
|
|
i = 0;
|
|
for (;;) {
|
|
rc = ef100_get_warm_boot_count(efx);
|
|
if (rc >= 0)
|
|
break;
|
|
if (++i == 5)
|
|
goto fail;
|
|
ssleep(1);
|
|
}
|
|
nic_data->warm_boot_count = rc;
|
|
|
|
/* In case we're recovering from a crash (kexec), we want to
|
|
* cancel any outstanding request by the previous user of this
|
|
* function. We send a special message using the least
|
|
* significant bits of the 'high' (doorbell) register.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
|
|
|
|
/* Post-IO section. */
|
|
|
|
rc = efx_mcdi_init(efx);
|
|
if (!rc && efx->mcdi->fn_flags &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
|
|
netif_info(efx, probe, efx->net_dev,
|
|
"No network port on this PCI function");
|
|
rc = -ENODEV;
|
|
}
|
|
if (rc)
|
|
goto fail;
|
|
/* Reset (most) configuration for this function */
|
|
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
|
|
if (rc)
|
|
goto fail;
|
|
/* Enable event logging */
|
|
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = efx_get_pf_index(efx, &nic_data->pf_index);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = efx_ef100_init_datapath_caps(efx);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
efx->max_vis = EF100_MAX_VIS;
|
|
|
|
rc = efx_mcdi_port_get_number(efx);
|
|
if (rc < 0)
|
|
goto fail;
|
|
efx->port_num = rc;
|
|
|
|
efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
|
|
netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
|
|
|
|
if (compare_versions(fw_version, "1.1.0.1000") < 0) {
|
|
netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
|
|
netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
rc = ef100_phy_probe(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
down_write(&efx->filter_sem);
|
|
rc = ef100_filter_table_probe(efx);
|
|
up_write(&efx->filter_sem);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
netdev_rss_key_fill(efx->rss_context.rx_hash_key,
|
|
sizeof(efx->rss_context.rx_hash_key));
|
|
|
|
/* Don't fail init if RSS setup doesn't work. */
|
|
efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
|
|
|
|
rc = ef100_register_netdev(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
int ef100_probe_pf(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct ef100_nic_data *nic_data;
|
|
int rc = ef100_probe_main(efx);
|
|
|
|
if (rc)
|
|
goto fail;
|
|
|
|
nic_data = efx->nic_data;
|
|
rc = ef100_get_mac_address(efx, net_dev->perm_addr);
|
|
if (rc)
|
|
goto fail;
|
|
/* Assign MAC address */
|
|
eth_hw_addr_set(net_dev, net_dev->perm_addr);
|
|
memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
int ef100_probe_vf(struct efx_nic *efx)
|
|
{
|
|
return ef100_probe_main(efx);
|
|
}
|
|
|
|
void ef100_remove(struct efx_nic *efx)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
ef100_unregister_netdev(efx);
|
|
|
|
down_write(&efx->filter_sem);
|
|
efx_mcdi_filter_table_remove(efx);
|
|
up_write(&efx->filter_sem);
|
|
efx_fini_channels(efx);
|
|
kfree(efx->phy_data);
|
|
efx->phy_data = NULL;
|
|
efx_mcdi_detach(efx);
|
|
efx_mcdi_fini(efx);
|
|
if (nic_data)
|
|
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
|
|
kfree(nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|