3404 lines
89 KiB
C
3404 lines
89 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
|
/*
|
|
* Microsemi Ocelot Switch driver
|
|
*
|
|
* Copyright (c) 2017 Microsemi Corporation
|
|
*/
|
|
#include <linux/dsa/ocelot.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/ptp_classify.h>
|
|
#include <soc/mscc/ocelot_vcap.h>
|
|
#include "ocelot.h"
|
|
#include "ocelot_vcap.h"
|
|
|
|
#define TABLE_UPDATE_SLEEP_US 10
|
|
#define TABLE_UPDATE_TIMEOUT_US 100000
|
|
#define OCELOT_RSV_VLAN_RANGE_START 4000
|
|
|
|
struct ocelot_mact_entry {
|
|
u8 mac[ETH_ALEN];
|
|
u16 vid;
|
|
enum macaccess_entry_type type;
|
|
};
|
|
|
|
/* Caller must hold &ocelot->mact_lock */
|
|
static inline u32 ocelot_mact_read_macaccess(struct ocelot *ocelot)
|
|
{
|
|
return ocelot_read(ocelot, ANA_TABLES_MACACCESS);
|
|
}
|
|
|
|
/* Caller must hold &ocelot->mact_lock */
|
|
static inline int ocelot_mact_wait_for_completion(struct ocelot *ocelot)
|
|
{
|
|
u32 val;
|
|
|
|
return readx_poll_timeout(ocelot_mact_read_macaccess,
|
|
ocelot, val,
|
|
(val & ANA_TABLES_MACACCESS_MAC_TABLE_CMD_M) ==
|
|
MACACCESS_CMD_IDLE,
|
|
TABLE_UPDATE_SLEEP_US, TABLE_UPDATE_TIMEOUT_US);
|
|
}
|
|
|
|
/* Caller must hold &ocelot->mact_lock */
|
|
static void ocelot_mact_select(struct ocelot *ocelot,
|
|
const unsigned char mac[ETH_ALEN],
|
|
unsigned int vid)
|
|
{
|
|
u32 macl = 0, mach = 0;
|
|
|
|
/* Set the MAC address to handle and the vlan associated in a format
|
|
* understood by the hardware.
|
|
*/
|
|
mach |= vid << 16;
|
|
mach |= mac[0] << 8;
|
|
mach |= mac[1] << 0;
|
|
macl |= mac[2] << 24;
|
|
macl |= mac[3] << 16;
|
|
macl |= mac[4] << 8;
|
|
macl |= mac[5] << 0;
|
|
|
|
ocelot_write(ocelot, macl, ANA_TABLES_MACLDATA);
|
|
ocelot_write(ocelot, mach, ANA_TABLES_MACHDATA);
|
|
|
|
}
|
|
|
|
static int __ocelot_mact_learn(struct ocelot *ocelot, int port,
|
|
const unsigned char mac[ETH_ALEN],
|
|
unsigned int vid, enum macaccess_entry_type type)
|
|
{
|
|
u32 cmd = ANA_TABLES_MACACCESS_VALID |
|
|
ANA_TABLES_MACACCESS_DEST_IDX(port) |
|
|
ANA_TABLES_MACACCESS_ENTRYTYPE(type) |
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_LEARN);
|
|
unsigned int mc_ports;
|
|
int err;
|
|
|
|
/* Set MAC_CPU_COPY if the CPU port is used by a multicast entry */
|
|
if (type == ENTRYTYPE_MACv4)
|
|
mc_ports = (mac[1] << 8) | mac[2];
|
|
else if (type == ENTRYTYPE_MACv6)
|
|
mc_ports = (mac[0] << 8) | mac[1];
|
|
else
|
|
mc_ports = 0;
|
|
|
|
if (mc_ports & BIT(ocelot->num_phys_ports))
|
|
cmd |= ANA_TABLES_MACACCESS_MAC_CPU_COPY;
|
|
|
|
ocelot_mact_select(ocelot, mac, vid);
|
|
|
|
/* Issue a write command */
|
|
ocelot_write(ocelot, cmd, ANA_TABLES_MACACCESS);
|
|
|
|
err = ocelot_mact_wait_for_completion(ocelot);
|
|
|
|
return err;
|
|
}
|
|
|
|
int ocelot_mact_learn(struct ocelot *ocelot, int port,
|
|
const unsigned char mac[ETH_ALEN],
|
|
unsigned int vid, enum macaccess_entry_type type)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&ocelot->mact_lock);
|
|
ret = __ocelot_mact_learn(ocelot, port, mac, vid, type);
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_mact_learn);
|
|
|
|
int ocelot_mact_forget(struct ocelot *ocelot,
|
|
const unsigned char mac[ETH_ALEN], unsigned int vid)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&ocelot->mact_lock);
|
|
|
|
ocelot_mact_select(ocelot, mac, vid);
|
|
|
|
/* Issue a forget command */
|
|
ocelot_write(ocelot,
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_FORGET),
|
|
ANA_TABLES_MACACCESS);
|
|
|
|
err = ocelot_mact_wait_for_completion(ocelot);
|
|
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_mact_forget);
|
|
|
|
int ocelot_mact_lookup(struct ocelot *ocelot, int *dst_idx,
|
|
const unsigned char mac[ETH_ALEN],
|
|
unsigned int vid, enum macaccess_entry_type *type)
|
|
{
|
|
int val;
|
|
|
|
mutex_lock(&ocelot->mact_lock);
|
|
|
|
ocelot_mact_select(ocelot, mac, vid);
|
|
|
|
/* Issue a read command with MACACCESS_VALID=1. */
|
|
ocelot_write(ocelot, ANA_TABLES_MACACCESS_VALID |
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_READ),
|
|
ANA_TABLES_MACACCESS);
|
|
|
|
if (ocelot_mact_wait_for_completion(ocelot)) {
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Read back the entry flags */
|
|
val = ocelot_read(ocelot, ANA_TABLES_MACACCESS);
|
|
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
if (!(val & ANA_TABLES_MACACCESS_VALID))
|
|
return -ENOENT;
|
|
|
|
*dst_idx = ANA_TABLES_MACACCESS_DEST_IDX_X(val);
|
|
*type = ANA_TABLES_MACACCESS_ENTRYTYPE_X(val);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_mact_lookup);
|
|
|
|
int ocelot_mact_learn_streamdata(struct ocelot *ocelot, int dst_idx,
|
|
const unsigned char mac[ETH_ALEN],
|
|
unsigned int vid,
|
|
enum macaccess_entry_type type,
|
|
int sfid, int ssid)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&ocelot->mact_lock);
|
|
|
|
ocelot_write(ocelot,
|
|
(sfid < 0 ? 0 : ANA_TABLES_STREAMDATA_SFID_VALID) |
|
|
ANA_TABLES_STREAMDATA_SFID(sfid) |
|
|
(ssid < 0 ? 0 : ANA_TABLES_STREAMDATA_SSID_VALID) |
|
|
ANA_TABLES_STREAMDATA_SSID(ssid),
|
|
ANA_TABLES_STREAMDATA);
|
|
|
|
ret = __ocelot_mact_learn(ocelot, dst_idx, mac, vid, type);
|
|
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_mact_learn_streamdata);
|
|
|
|
static void ocelot_mact_init(struct ocelot *ocelot)
|
|
{
|
|
/* Configure the learning mode entries attributes:
|
|
* - Do not copy the frame to the CPU extraction queues.
|
|
* - Use the vlan and mac_cpoy for dmac lookup.
|
|
*/
|
|
ocelot_rmw(ocelot, 0,
|
|
ANA_AGENCTRL_LEARN_CPU_COPY | ANA_AGENCTRL_IGNORE_DMAC_FLAGS
|
|
| ANA_AGENCTRL_LEARN_FWD_KILL
|
|
| ANA_AGENCTRL_LEARN_IGNORE_VLAN,
|
|
ANA_AGENCTRL);
|
|
|
|
/* Clear the MAC table. We are not concurrent with anyone, so
|
|
* holding &ocelot->mact_lock is pointless.
|
|
*/
|
|
ocelot_write(ocelot, MACACCESS_CMD_INIT, ANA_TABLES_MACACCESS);
|
|
}
|
|
|
|
static void ocelot_vcap_enable(struct ocelot *ocelot, int port)
|
|
{
|
|
ocelot_write_gix(ocelot, ANA_PORT_VCAP_S2_CFG_S2_ENA |
|
|
ANA_PORT_VCAP_S2_CFG_S2_IP6_CFG(0xa),
|
|
ANA_PORT_VCAP_S2_CFG, port);
|
|
|
|
ocelot_write_gix(ocelot, ANA_PORT_VCAP_CFG_S1_ENA,
|
|
ANA_PORT_VCAP_CFG, port);
|
|
|
|
ocelot_rmw_gix(ocelot, REW_PORT_CFG_ES0_EN,
|
|
REW_PORT_CFG_ES0_EN,
|
|
REW_PORT_CFG, port);
|
|
}
|
|
|
|
static int ocelot_single_vlan_aware_bridge(struct ocelot *ocelot,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct net_device *bridge = NULL;
|
|
int port;
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port || !ocelot_port->bridge ||
|
|
!br_vlan_enabled(ocelot_port->bridge))
|
|
continue;
|
|
|
|
if (!bridge) {
|
|
bridge = ocelot_port->bridge;
|
|
continue;
|
|
}
|
|
|
|
if (bridge == ocelot_port->bridge)
|
|
continue;
|
|
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Only one VLAN-aware bridge is supported");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 ocelot_vlant_read_vlanaccess(struct ocelot *ocelot)
|
|
{
|
|
return ocelot_read(ocelot, ANA_TABLES_VLANACCESS);
|
|
}
|
|
|
|
static inline int ocelot_vlant_wait_for_completion(struct ocelot *ocelot)
|
|
{
|
|
u32 val;
|
|
|
|
return readx_poll_timeout(ocelot_vlant_read_vlanaccess,
|
|
ocelot,
|
|
val,
|
|
(val & ANA_TABLES_VLANACCESS_VLAN_TBL_CMD_M) ==
|
|
ANA_TABLES_VLANACCESS_CMD_IDLE,
|
|
TABLE_UPDATE_SLEEP_US, TABLE_UPDATE_TIMEOUT_US);
|
|
}
|
|
|
|
static int ocelot_vlant_set_mask(struct ocelot *ocelot, u16 vid, u32 mask)
|
|
{
|
|
/* Select the VID to configure */
|
|
ocelot_write(ocelot, ANA_TABLES_VLANTIDX_V_INDEX(vid),
|
|
ANA_TABLES_VLANTIDX);
|
|
/* Set the vlan port members mask and issue a write command */
|
|
ocelot_write(ocelot, ANA_TABLES_VLANACCESS_VLAN_PORT_MASK(mask) |
|
|
ANA_TABLES_VLANACCESS_CMD_WRITE,
|
|
ANA_TABLES_VLANACCESS);
|
|
|
|
return ocelot_vlant_wait_for_completion(ocelot);
|
|
}
|
|
|
|
static int ocelot_port_num_untagged_vlans(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan;
|
|
int num_untagged = 0;
|
|
|
|
list_for_each_entry(vlan, &ocelot->vlans, list) {
|
|
if (!(vlan->portmask & BIT(port)))
|
|
continue;
|
|
|
|
if (vlan->untagged & BIT(port))
|
|
num_untagged++;
|
|
}
|
|
|
|
return num_untagged;
|
|
}
|
|
|
|
static int ocelot_port_num_tagged_vlans(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan;
|
|
int num_tagged = 0;
|
|
|
|
list_for_each_entry(vlan, &ocelot->vlans, list) {
|
|
if (!(vlan->portmask & BIT(port)))
|
|
continue;
|
|
|
|
if (!(vlan->untagged & BIT(port)))
|
|
num_tagged++;
|
|
}
|
|
|
|
return num_tagged;
|
|
}
|
|
|
|
/* We use native VLAN when we have to mix egress-tagged VLANs with exactly
|
|
* _one_ egress-untagged VLAN (_the_ native VLAN)
|
|
*/
|
|
static bool ocelot_port_uses_native_vlan(struct ocelot *ocelot, int port)
|
|
{
|
|
return ocelot_port_num_tagged_vlans(ocelot, port) &&
|
|
ocelot_port_num_untagged_vlans(ocelot, port) == 1;
|
|
}
|
|
|
|
static struct ocelot_bridge_vlan *
|
|
ocelot_port_find_native_vlan(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan;
|
|
|
|
list_for_each_entry(vlan, &ocelot->vlans, list)
|
|
if (vlan->portmask & BIT(port) && vlan->untagged & BIT(port))
|
|
return vlan;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Keep in sync REW_TAG_CFG_TAG_CFG and, if applicable,
|
|
* REW_PORT_VLAN_CFG_PORT_VID, with the bridge VLAN table and VLAN awareness
|
|
* state of the port.
|
|
*/
|
|
static void ocelot_port_manage_port_tag(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
enum ocelot_port_tag_config tag_cfg;
|
|
bool uses_native_vlan = false;
|
|
|
|
if (ocelot_port->vlan_aware) {
|
|
uses_native_vlan = ocelot_port_uses_native_vlan(ocelot, port);
|
|
|
|
if (uses_native_vlan)
|
|
tag_cfg = OCELOT_PORT_TAG_NATIVE;
|
|
else if (ocelot_port_num_untagged_vlans(ocelot, port))
|
|
tag_cfg = OCELOT_PORT_TAG_DISABLED;
|
|
else
|
|
tag_cfg = OCELOT_PORT_TAG_TRUNK;
|
|
} else {
|
|
tag_cfg = OCELOT_PORT_TAG_DISABLED;
|
|
}
|
|
|
|
ocelot_rmw_gix(ocelot, REW_TAG_CFG_TAG_CFG(tag_cfg),
|
|
REW_TAG_CFG_TAG_CFG_M,
|
|
REW_TAG_CFG, port);
|
|
|
|
if (uses_native_vlan) {
|
|
struct ocelot_bridge_vlan *native_vlan;
|
|
|
|
/* Not having a native VLAN is impossible, because
|
|
* ocelot_port_num_untagged_vlans has returned 1.
|
|
* So there is no use in checking for NULL here.
|
|
*/
|
|
native_vlan = ocelot_port_find_native_vlan(ocelot, port);
|
|
|
|
ocelot_rmw_gix(ocelot,
|
|
REW_PORT_VLAN_CFG_PORT_VID(native_vlan->vid),
|
|
REW_PORT_VLAN_CFG_PORT_VID_M,
|
|
REW_PORT_VLAN_CFG, port);
|
|
}
|
|
}
|
|
|
|
int ocelot_bridge_num_find(struct ocelot *ocelot,
|
|
const struct net_device *bridge)
|
|
{
|
|
int port;
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (ocelot_port && ocelot_port->bridge == bridge)
|
|
return ocelot_port->bridge_num;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_bridge_num_find);
|
|
|
|
static u16 ocelot_vlan_unaware_pvid(struct ocelot *ocelot,
|
|
const struct net_device *bridge)
|
|
{
|
|
int bridge_num;
|
|
|
|
/* Standalone ports use VID 0 */
|
|
if (!bridge)
|
|
return 0;
|
|
|
|
bridge_num = ocelot_bridge_num_find(ocelot, bridge);
|
|
if (WARN_ON(bridge_num < 0))
|
|
return 0;
|
|
|
|
/* VLAN-unaware bridges use a reserved VID going from 4095 downwards */
|
|
return VLAN_N_VID - bridge_num - 1;
|
|
}
|
|
|
|
/* Default vlan to clasify for untagged frames (may be zero) */
|
|
static void ocelot_port_set_pvid(struct ocelot *ocelot, int port,
|
|
const struct ocelot_bridge_vlan *pvid_vlan)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
u16 pvid = ocelot_vlan_unaware_pvid(ocelot, ocelot_port->bridge);
|
|
u32 val = 0;
|
|
|
|
ocelot_port->pvid_vlan = pvid_vlan;
|
|
|
|
if (ocelot_port->vlan_aware && pvid_vlan)
|
|
pvid = pvid_vlan->vid;
|
|
|
|
ocelot_rmw_gix(ocelot,
|
|
ANA_PORT_VLAN_CFG_VLAN_VID(pvid),
|
|
ANA_PORT_VLAN_CFG_VLAN_VID_M,
|
|
ANA_PORT_VLAN_CFG, port);
|
|
|
|
/* If there's no pvid, we should drop not only untagged traffic (which
|
|
* happens automatically), but also 802.1p traffic which gets
|
|
* classified to VLAN 0, but that is always in our RX filter, so it
|
|
* would get accepted were it not for this setting.
|
|
*/
|
|
if (!pvid_vlan && ocelot_port->vlan_aware)
|
|
val = ANA_PORT_DROP_CFG_DROP_PRIO_S_TAGGED_ENA |
|
|
ANA_PORT_DROP_CFG_DROP_PRIO_C_TAGGED_ENA;
|
|
|
|
ocelot_rmw_gix(ocelot, val,
|
|
ANA_PORT_DROP_CFG_DROP_PRIO_S_TAGGED_ENA |
|
|
ANA_PORT_DROP_CFG_DROP_PRIO_C_TAGGED_ENA,
|
|
ANA_PORT_DROP_CFG, port);
|
|
}
|
|
|
|
static struct ocelot_bridge_vlan *ocelot_bridge_vlan_find(struct ocelot *ocelot,
|
|
u16 vid)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan;
|
|
|
|
list_for_each_entry(vlan, &ocelot->vlans, list)
|
|
if (vlan->vid == vid)
|
|
return vlan;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ocelot_vlan_member_add(struct ocelot *ocelot, int port, u16 vid,
|
|
bool untagged)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan = ocelot_bridge_vlan_find(ocelot, vid);
|
|
unsigned long portmask;
|
|
int err;
|
|
|
|
if (vlan) {
|
|
portmask = vlan->portmask | BIT(port);
|
|
|
|
err = ocelot_vlant_set_mask(ocelot, vid, portmask);
|
|
if (err)
|
|
return err;
|
|
|
|
vlan->portmask = portmask;
|
|
/* Bridge VLANs can be overwritten with a different
|
|
* egress-tagging setting, so make sure to override an untagged
|
|
* with a tagged VID if that's going on.
|
|
*/
|
|
if (untagged)
|
|
vlan->untagged |= BIT(port);
|
|
else
|
|
vlan->untagged &= ~BIT(port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
|
|
if (!vlan)
|
|
return -ENOMEM;
|
|
|
|
portmask = BIT(port);
|
|
|
|
err = ocelot_vlant_set_mask(ocelot, vid, portmask);
|
|
if (err) {
|
|
kfree(vlan);
|
|
return err;
|
|
}
|
|
|
|
vlan->vid = vid;
|
|
vlan->portmask = portmask;
|
|
if (untagged)
|
|
vlan->untagged = BIT(port);
|
|
INIT_LIST_HEAD(&vlan->list);
|
|
list_add_tail(&vlan->list, &ocelot->vlans);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ocelot_vlan_member_del(struct ocelot *ocelot, int port, u16 vid)
|
|
{
|
|
struct ocelot_bridge_vlan *vlan = ocelot_bridge_vlan_find(ocelot, vid);
|
|
unsigned long portmask;
|
|
int err;
|
|
|
|
if (!vlan)
|
|
return 0;
|
|
|
|
portmask = vlan->portmask & ~BIT(port);
|
|
|
|
err = ocelot_vlant_set_mask(ocelot, vid, portmask);
|
|
if (err)
|
|
return err;
|
|
|
|
vlan->portmask = portmask;
|
|
if (vlan->portmask)
|
|
return 0;
|
|
|
|
list_del(&vlan->list);
|
|
kfree(vlan);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ocelot_add_vlan_unaware_pvid(struct ocelot *ocelot, int port,
|
|
const struct net_device *bridge)
|
|
{
|
|
u16 vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
return ocelot_vlan_member_add(ocelot, port, vid, true);
|
|
}
|
|
|
|
static int ocelot_del_vlan_unaware_pvid(struct ocelot *ocelot, int port,
|
|
const struct net_device *bridge)
|
|
{
|
|
u16 vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
return ocelot_vlan_member_del(ocelot, port, vid);
|
|
}
|
|
|
|
int ocelot_port_vlan_filtering(struct ocelot *ocelot, int port,
|
|
bool vlan_aware, struct netlink_ext_ack *extack)
|
|
{
|
|
struct ocelot_vcap_block *block = &ocelot->block[VCAP_IS1];
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
struct ocelot_vcap_filter *filter;
|
|
int err = 0;
|
|
u32 val;
|
|
|
|
list_for_each_entry(filter, &block->rules, list) {
|
|
if (filter->ingress_port_mask & BIT(port) &&
|
|
filter->action.vid_replace_ena) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Cannot change VLAN state with vlan modify rules active");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
err = ocelot_single_vlan_aware_bridge(ocelot, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vlan_aware)
|
|
err = ocelot_del_vlan_unaware_pvid(ocelot, port,
|
|
ocelot_port->bridge);
|
|
else if (ocelot_port->bridge)
|
|
err = ocelot_add_vlan_unaware_pvid(ocelot, port,
|
|
ocelot_port->bridge);
|
|
if (err)
|
|
return err;
|
|
|
|
ocelot_port->vlan_aware = vlan_aware;
|
|
|
|
if (vlan_aware)
|
|
val = ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA |
|
|
ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1);
|
|
else
|
|
val = 0;
|
|
ocelot_rmw_gix(ocelot, val,
|
|
ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA |
|
|
ANA_PORT_VLAN_CFG_VLAN_POP_CNT_M,
|
|
ANA_PORT_VLAN_CFG, port);
|
|
|
|
ocelot_port_set_pvid(ocelot, port, ocelot_port->pvid_vlan);
|
|
ocelot_port_manage_port_tag(ocelot, port);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_vlan_filtering);
|
|
|
|
int ocelot_vlan_prepare(struct ocelot *ocelot, int port, u16 vid, bool pvid,
|
|
bool untagged, struct netlink_ext_ack *extack)
|
|
{
|
|
if (untagged) {
|
|
/* We are adding an egress-tagged VLAN */
|
|
if (ocelot_port_uses_native_vlan(ocelot, port)) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Port with egress-tagged VLANs cannot have more than one egress-untagged (native) VLAN");
|
|
return -EBUSY;
|
|
}
|
|
} else {
|
|
/* We are adding an egress-tagged VLAN */
|
|
if (ocelot_port_num_untagged_vlans(ocelot, port) > 1) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Port with more than one egress-untagged VLAN cannot have egress-tagged VLANs");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (vid > OCELOT_RSV_VLAN_RANGE_START) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"VLAN range 4000-4095 reserved for VLAN-unaware bridging");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_vlan_prepare);
|
|
|
|
int ocelot_vlan_add(struct ocelot *ocelot, int port, u16 vid, bool pvid,
|
|
bool untagged)
|
|
{
|
|
int err;
|
|
|
|
/* Ignore VID 0 added to our RX filter by the 8021q module, since
|
|
* that collides with OCELOT_STANDALONE_PVID and changes it from
|
|
* egress-untagged to egress-tagged.
|
|
*/
|
|
if (!vid)
|
|
return 0;
|
|
|
|
err = ocelot_vlan_member_add(ocelot, port, vid, untagged);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Default ingress vlan classification */
|
|
if (pvid)
|
|
ocelot_port_set_pvid(ocelot, port,
|
|
ocelot_bridge_vlan_find(ocelot, vid));
|
|
|
|
/* Untagged egress vlan clasification */
|
|
ocelot_port_manage_port_tag(ocelot, port);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_vlan_add);
|
|
|
|
int ocelot_vlan_del(struct ocelot *ocelot, int port, u16 vid)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
bool del_pvid = false;
|
|
int err;
|
|
|
|
if (!vid)
|
|
return 0;
|
|
|
|
if (ocelot_port->pvid_vlan && ocelot_port->pvid_vlan->vid == vid)
|
|
del_pvid = true;
|
|
|
|
err = ocelot_vlan_member_del(ocelot, port, vid);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Ingress */
|
|
if (del_pvid)
|
|
ocelot_port_set_pvid(ocelot, port, NULL);
|
|
|
|
/* Egress */
|
|
ocelot_port_manage_port_tag(ocelot, port);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_vlan_del);
|
|
|
|
static void ocelot_vlan_init(struct ocelot *ocelot)
|
|
{
|
|
unsigned long all_ports = GENMASK(ocelot->num_phys_ports - 1, 0);
|
|
u16 port, vid;
|
|
|
|
/* Clear VLAN table, by default all ports are members of all VLANs */
|
|
ocelot_write(ocelot, ANA_TABLES_VLANACCESS_CMD_INIT,
|
|
ANA_TABLES_VLANACCESS);
|
|
ocelot_vlant_wait_for_completion(ocelot);
|
|
|
|
/* Configure the port VLAN memberships */
|
|
for (vid = 1; vid < VLAN_N_VID; vid++)
|
|
ocelot_vlant_set_mask(ocelot, vid, 0);
|
|
|
|
/* We need VID 0 to get traffic on standalone ports.
|
|
* It is added automatically if the 8021q module is loaded, but we
|
|
* can't rely on that since it might not be.
|
|
*/
|
|
ocelot_vlant_set_mask(ocelot, OCELOT_STANDALONE_PVID, all_ports);
|
|
|
|
/* Set vlan ingress filter mask to all ports but the CPU port by
|
|
* default.
|
|
*/
|
|
ocelot_write(ocelot, all_ports, ANA_VLANMASK);
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
ocelot_write_gix(ocelot, 0, REW_PORT_VLAN_CFG, port);
|
|
ocelot_write_gix(ocelot, 0, REW_TAG_CFG, port);
|
|
}
|
|
}
|
|
|
|
static u32 ocelot_read_eq_avail(struct ocelot *ocelot, int port)
|
|
{
|
|
return ocelot_read_rix(ocelot, QSYS_SW_STATUS, port);
|
|
}
|
|
|
|
static int ocelot_port_flush(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned int pause_ena;
|
|
int err, val;
|
|
|
|
/* Disable dequeuing from the egress queues */
|
|
ocelot_rmw_rix(ocelot, QSYS_PORT_MODE_DEQUEUE_DIS,
|
|
QSYS_PORT_MODE_DEQUEUE_DIS,
|
|
QSYS_PORT_MODE, port);
|
|
|
|
/* Disable flow control */
|
|
ocelot_fields_read(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, &pause_ena);
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 0);
|
|
|
|
/* Disable priority flow control */
|
|
ocelot_fields_write(ocelot, port,
|
|
QSYS_SWITCH_PORT_MODE_TX_PFC_ENA, 0);
|
|
|
|
/* Wait at least the time it takes to receive a frame of maximum length
|
|
* at the port.
|
|
* Worst-case delays for 10 kilobyte jumbo frames are:
|
|
* 8 ms on a 10M port
|
|
* 800 μs on a 100M port
|
|
* 80 μs on a 1G port
|
|
* 32 μs on a 2.5G port
|
|
*/
|
|
usleep_range(8000, 10000);
|
|
|
|
/* Disable half duplex backpressure. */
|
|
ocelot_rmw_rix(ocelot, 0, SYS_FRONT_PORT_MODE_HDX_MODE,
|
|
SYS_FRONT_PORT_MODE, port);
|
|
|
|
/* Flush the queues associated with the port. */
|
|
ocelot_rmw_gix(ocelot, REW_PORT_CFG_FLUSH_ENA, REW_PORT_CFG_FLUSH_ENA,
|
|
REW_PORT_CFG, port);
|
|
|
|
/* Enable dequeuing from the egress queues. */
|
|
ocelot_rmw_rix(ocelot, 0, QSYS_PORT_MODE_DEQUEUE_DIS, QSYS_PORT_MODE,
|
|
port);
|
|
|
|
/* Wait until flushing is complete. */
|
|
err = read_poll_timeout(ocelot_read_eq_avail, val, !val,
|
|
100, 2000000, false, ocelot, port);
|
|
|
|
/* Clear flushing again. */
|
|
ocelot_rmw_gix(ocelot, 0, REW_PORT_CFG_FLUSH_ENA, REW_PORT_CFG, port);
|
|
|
|
/* Re-enable flow control */
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, pause_ena);
|
|
|
|
return err;
|
|
}
|
|
|
|
void ocelot_phylink_mac_link_down(struct ocelot *ocelot, int port,
|
|
unsigned int link_an_mode,
|
|
phy_interface_t interface,
|
|
unsigned long quirks)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
int err;
|
|
|
|
ocelot_port->speed = SPEED_UNKNOWN;
|
|
|
|
ocelot_port_rmwl(ocelot_port, 0, DEV_MAC_ENA_CFG_RX_ENA,
|
|
DEV_MAC_ENA_CFG);
|
|
|
|
if (ocelot->ops->cut_through_fwd) {
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
ocelot->ops->cut_through_fwd(ocelot);
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
|
|
ocelot_fields_write(ocelot, port, QSYS_SWITCH_PORT_MODE_PORT_ENA, 0);
|
|
|
|
err = ocelot_port_flush(ocelot, port);
|
|
if (err)
|
|
dev_err(ocelot->dev, "failed to flush port %d: %d\n",
|
|
port, err);
|
|
|
|
/* Put the port in reset. */
|
|
if (interface != PHY_INTERFACE_MODE_QSGMII ||
|
|
!(quirks & OCELOT_QUIRK_QSGMII_PORTS_MUST_BE_UP))
|
|
ocelot_port_rmwl(ocelot_port,
|
|
DEV_CLOCK_CFG_MAC_TX_RST |
|
|
DEV_CLOCK_CFG_MAC_RX_RST,
|
|
DEV_CLOCK_CFG_MAC_TX_RST |
|
|
DEV_CLOCK_CFG_MAC_RX_RST,
|
|
DEV_CLOCK_CFG);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_phylink_mac_link_down);
|
|
|
|
void ocelot_phylink_mac_link_up(struct ocelot *ocelot, int port,
|
|
struct phy_device *phydev,
|
|
unsigned int link_an_mode,
|
|
phy_interface_t interface,
|
|
int speed, int duplex,
|
|
bool tx_pause, bool rx_pause,
|
|
unsigned long quirks)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
int mac_speed, mode = 0;
|
|
u32 mac_fc_cfg;
|
|
|
|
ocelot_port->speed = speed;
|
|
|
|
/* The MAC might be integrated in systems where the MAC speed is fixed
|
|
* and it's the PCS who is performing the rate adaptation, so we have
|
|
* to write "1000Mbps" into the LINK_SPEED field of DEV_CLOCK_CFG
|
|
* (which is also its default value).
|
|
*/
|
|
if ((quirks & OCELOT_QUIRK_PCS_PERFORMS_RATE_ADAPTATION) ||
|
|
speed == SPEED_1000) {
|
|
mac_speed = OCELOT_SPEED_1000;
|
|
mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA;
|
|
} else if (speed == SPEED_2500) {
|
|
mac_speed = OCELOT_SPEED_2500;
|
|
mode = DEV_MAC_MODE_CFG_GIGA_MODE_ENA;
|
|
} else if (speed == SPEED_100) {
|
|
mac_speed = OCELOT_SPEED_100;
|
|
} else {
|
|
mac_speed = OCELOT_SPEED_10;
|
|
}
|
|
|
|
if (duplex == DUPLEX_FULL)
|
|
mode |= DEV_MAC_MODE_CFG_FDX_ENA;
|
|
|
|
ocelot_port_writel(ocelot_port, mode, DEV_MAC_MODE_CFG);
|
|
|
|
/* Take port out of reset by clearing the MAC_TX_RST, MAC_RX_RST and
|
|
* PORT_RST bits in DEV_CLOCK_CFG.
|
|
*/
|
|
ocelot_port_writel(ocelot_port, DEV_CLOCK_CFG_LINK_SPEED(mac_speed),
|
|
DEV_CLOCK_CFG);
|
|
|
|
switch (speed) {
|
|
case SPEED_10:
|
|
mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_10);
|
|
break;
|
|
case SPEED_100:
|
|
mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_100);
|
|
break;
|
|
case SPEED_1000:
|
|
case SPEED_2500:
|
|
mac_fc_cfg = SYS_MAC_FC_CFG_FC_LINK_SPEED(OCELOT_SPEED_1000);
|
|
break;
|
|
default:
|
|
dev_err(ocelot->dev, "Unsupported speed on port %d: %d\n",
|
|
port, speed);
|
|
return;
|
|
}
|
|
|
|
/* Handle RX pause in all cases, with 2500base-X this is used for rate
|
|
* adaptation.
|
|
*/
|
|
mac_fc_cfg |= SYS_MAC_FC_CFG_RX_FC_ENA;
|
|
|
|
if (tx_pause)
|
|
mac_fc_cfg |= SYS_MAC_FC_CFG_TX_FC_ENA |
|
|
SYS_MAC_FC_CFG_PAUSE_VAL_CFG(0xffff) |
|
|
SYS_MAC_FC_CFG_FC_LATENCY_CFG(0x7) |
|
|
SYS_MAC_FC_CFG_ZERO_PAUSE_ENA;
|
|
|
|
/* Flow control. Link speed is only used here to evaluate the time
|
|
* specification in incoming pause frames.
|
|
*/
|
|
ocelot_write_rix(ocelot, mac_fc_cfg, SYS_MAC_FC_CFG, port);
|
|
|
|
ocelot_write_rix(ocelot, 0, ANA_POL_FLOWC, port);
|
|
|
|
/* Don't attempt to send PAUSE frames on the NPI port, it's broken */
|
|
if (port != ocelot->npi)
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA,
|
|
tx_pause);
|
|
|
|
/* Undo the effects of ocelot_phylink_mac_link_down:
|
|
* enable MAC module
|
|
*/
|
|
ocelot_port_writel(ocelot_port, DEV_MAC_ENA_CFG_RX_ENA |
|
|
DEV_MAC_ENA_CFG_TX_ENA, DEV_MAC_ENA_CFG);
|
|
|
|
/* If the port supports cut-through forwarding, update the masks before
|
|
* enabling forwarding on the port.
|
|
*/
|
|
if (ocelot->ops->cut_through_fwd) {
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
ocelot->ops->cut_through_fwd(ocelot);
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
|
|
/* Core: Enable port for frame transfer */
|
|
ocelot_fields_write(ocelot, port,
|
|
QSYS_SWITCH_PORT_MODE_PORT_ENA, 1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_phylink_mac_link_up);
|
|
|
|
static int ocelot_port_add_txtstamp_skb(struct ocelot *ocelot, int port,
|
|
struct sk_buff *clone)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ocelot->ts_id_lock, flags);
|
|
|
|
if (ocelot_port->ptp_skbs_in_flight == OCELOT_MAX_PTP_ID ||
|
|
ocelot->ptp_skbs_in_flight == OCELOT_PTP_FIFO_SIZE) {
|
|
spin_unlock_irqrestore(&ocelot->ts_id_lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
skb_shinfo(clone)->tx_flags |= SKBTX_IN_PROGRESS;
|
|
/* Store timestamp ID in OCELOT_SKB_CB(clone)->ts_id */
|
|
OCELOT_SKB_CB(clone)->ts_id = ocelot_port->ts_id;
|
|
|
|
ocelot_port->ts_id++;
|
|
if (ocelot_port->ts_id == OCELOT_MAX_PTP_ID)
|
|
ocelot_port->ts_id = 0;
|
|
|
|
ocelot_port->ptp_skbs_in_flight++;
|
|
ocelot->ptp_skbs_in_flight++;
|
|
|
|
skb_queue_tail(&ocelot_port->tx_skbs, clone);
|
|
|
|
spin_unlock_irqrestore(&ocelot->ts_id_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool ocelot_ptp_is_onestep_sync(struct sk_buff *skb,
|
|
unsigned int ptp_class)
|
|
{
|
|
struct ptp_header *hdr;
|
|
u8 msgtype, twostep;
|
|
|
|
hdr = ptp_parse_header(skb, ptp_class);
|
|
if (!hdr)
|
|
return false;
|
|
|
|
msgtype = ptp_get_msgtype(hdr, ptp_class);
|
|
twostep = hdr->flag_field[0] & 0x2;
|
|
|
|
if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int ocelot_port_txtstamp_request(struct ocelot *ocelot, int port,
|
|
struct sk_buff *skb,
|
|
struct sk_buff **clone)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
u8 ptp_cmd = ocelot_port->ptp_cmd;
|
|
unsigned int ptp_class;
|
|
int err;
|
|
|
|
/* Don't do anything if PTP timestamping not enabled */
|
|
if (!ptp_cmd)
|
|
return 0;
|
|
|
|
ptp_class = ptp_classify_raw(skb);
|
|
if (ptp_class == PTP_CLASS_NONE)
|
|
return -EINVAL;
|
|
|
|
/* Store ptp_cmd in OCELOT_SKB_CB(skb)->ptp_cmd */
|
|
if (ptp_cmd == IFH_REW_OP_ORIGIN_PTP) {
|
|
if (ocelot_ptp_is_onestep_sync(skb, ptp_class)) {
|
|
OCELOT_SKB_CB(skb)->ptp_cmd = ptp_cmd;
|
|
return 0;
|
|
}
|
|
|
|
/* Fall back to two-step timestamping */
|
|
ptp_cmd = IFH_REW_OP_TWO_STEP_PTP;
|
|
}
|
|
|
|
if (ptp_cmd == IFH_REW_OP_TWO_STEP_PTP) {
|
|
*clone = skb_clone_sk(skb);
|
|
if (!(*clone))
|
|
return -ENOMEM;
|
|
|
|
err = ocelot_port_add_txtstamp_skb(ocelot, port, *clone);
|
|
if (err)
|
|
return err;
|
|
|
|
OCELOT_SKB_CB(skb)->ptp_cmd = ptp_cmd;
|
|
OCELOT_SKB_CB(*clone)->ptp_class = ptp_class;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_txtstamp_request);
|
|
|
|
static void ocelot_get_hwtimestamp(struct ocelot *ocelot,
|
|
struct timespec64 *ts)
|
|
{
|
|
unsigned long flags;
|
|
u32 val;
|
|
|
|
spin_lock_irqsave(&ocelot->ptp_clock_lock, flags);
|
|
|
|
/* Read current PTP time to get seconds */
|
|
val = ocelot_read_rix(ocelot, PTP_PIN_CFG, TOD_ACC_PIN);
|
|
|
|
val &= ~(PTP_PIN_CFG_SYNC | PTP_PIN_CFG_ACTION_MASK | PTP_PIN_CFG_DOM);
|
|
val |= PTP_PIN_CFG_ACTION(PTP_PIN_ACTION_SAVE);
|
|
ocelot_write_rix(ocelot, val, PTP_PIN_CFG, TOD_ACC_PIN);
|
|
ts->tv_sec = ocelot_read_rix(ocelot, PTP_PIN_TOD_SEC_LSB, TOD_ACC_PIN);
|
|
|
|
/* Read packet HW timestamp from FIFO */
|
|
val = ocelot_read(ocelot, SYS_PTP_TXSTAMP);
|
|
ts->tv_nsec = SYS_PTP_TXSTAMP_PTP_TXSTAMP(val);
|
|
|
|
/* Sec has incremented since the ts was registered */
|
|
if ((ts->tv_sec & 0x1) != !!(val & SYS_PTP_TXSTAMP_PTP_TXSTAMP_SEC))
|
|
ts->tv_sec--;
|
|
|
|
spin_unlock_irqrestore(&ocelot->ptp_clock_lock, flags);
|
|
}
|
|
|
|
static bool ocelot_validate_ptp_skb(struct sk_buff *clone, u16 seqid)
|
|
{
|
|
struct ptp_header *hdr;
|
|
|
|
hdr = ptp_parse_header(clone, OCELOT_SKB_CB(clone)->ptp_class);
|
|
if (WARN_ON(!hdr))
|
|
return false;
|
|
|
|
return seqid == ntohs(hdr->sequence_id);
|
|
}
|
|
|
|
void ocelot_get_txtstamp(struct ocelot *ocelot)
|
|
{
|
|
int budget = OCELOT_PTP_QUEUE_SZ;
|
|
|
|
while (budget--) {
|
|
struct sk_buff *skb, *skb_tmp, *skb_match = NULL;
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
u32 val, id, seqid, txport;
|
|
struct ocelot_port *port;
|
|
struct timespec64 ts;
|
|
unsigned long flags;
|
|
|
|
val = ocelot_read(ocelot, SYS_PTP_STATUS);
|
|
|
|
/* Check if a timestamp can be retrieved */
|
|
if (!(val & SYS_PTP_STATUS_PTP_MESS_VLD))
|
|
break;
|
|
|
|
WARN_ON(val & SYS_PTP_STATUS_PTP_OVFL);
|
|
|
|
/* Retrieve the ts ID and Tx port */
|
|
id = SYS_PTP_STATUS_PTP_MESS_ID_X(val);
|
|
txport = SYS_PTP_STATUS_PTP_MESS_TXPORT_X(val);
|
|
seqid = SYS_PTP_STATUS_PTP_MESS_SEQ_ID(val);
|
|
|
|
port = ocelot->ports[txport];
|
|
|
|
spin_lock(&ocelot->ts_id_lock);
|
|
port->ptp_skbs_in_flight--;
|
|
ocelot->ptp_skbs_in_flight--;
|
|
spin_unlock(&ocelot->ts_id_lock);
|
|
|
|
/* Retrieve its associated skb */
|
|
try_again:
|
|
spin_lock_irqsave(&port->tx_skbs.lock, flags);
|
|
|
|
skb_queue_walk_safe(&port->tx_skbs, skb, skb_tmp) {
|
|
if (OCELOT_SKB_CB(skb)->ts_id != id)
|
|
continue;
|
|
__skb_unlink(skb, &port->tx_skbs);
|
|
skb_match = skb;
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&port->tx_skbs.lock, flags);
|
|
|
|
if (WARN_ON(!skb_match))
|
|
continue;
|
|
|
|
if (!ocelot_validate_ptp_skb(skb_match, seqid)) {
|
|
dev_err_ratelimited(ocelot->dev,
|
|
"port %d received stale TX timestamp for seqid %d, discarding\n",
|
|
txport, seqid);
|
|
dev_kfree_skb_any(skb);
|
|
goto try_again;
|
|
}
|
|
|
|
/* Get the h/w timestamp */
|
|
ocelot_get_hwtimestamp(ocelot, &ts);
|
|
|
|
/* Set the timestamp into the skb */
|
|
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
|
|
shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
|
|
skb_complete_tx_timestamp(skb_match, &shhwtstamps);
|
|
|
|
/* Next ts */
|
|
ocelot_write(ocelot, SYS_PTP_NXT_PTP_NXT, SYS_PTP_NXT);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_txtstamp);
|
|
|
|
static int ocelot_rx_frame_word(struct ocelot *ocelot, u8 grp, bool ifh,
|
|
u32 *rval)
|
|
{
|
|
u32 bytes_valid, val;
|
|
|
|
val = ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
if (val == XTR_NOT_READY) {
|
|
if (ifh)
|
|
return -EIO;
|
|
|
|
do {
|
|
val = ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
} while (val == XTR_NOT_READY);
|
|
}
|
|
|
|
switch (val) {
|
|
case XTR_ABORT:
|
|
return -EIO;
|
|
case XTR_EOF_0:
|
|
case XTR_EOF_1:
|
|
case XTR_EOF_2:
|
|
case XTR_EOF_3:
|
|
case XTR_PRUNED:
|
|
bytes_valid = XTR_VALID_BYTES(val);
|
|
val = ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
if (val == XTR_ESCAPE)
|
|
*rval = ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
else
|
|
*rval = val;
|
|
|
|
return bytes_valid;
|
|
case XTR_ESCAPE:
|
|
*rval = ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
|
|
return 4;
|
|
default:
|
|
*rval = val;
|
|
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
static int ocelot_xtr_poll_xfh(struct ocelot *ocelot, int grp, u32 *xfh)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < OCELOT_TAG_LEN / 4; i++) {
|
|
err = ocelot_rx_frame_word(ocelot, grp, true, &xfh[i]);
|
|
if (err != 4)
|
|
return (err < 0) ? err : -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ocelot_ptp_rx_timestamp(struct ocelot *ocelot, struct sk_buff *skb,
|
|
u64 timestamp)
|
|
{
|
|
struct skb_shared_hwtstamps *shhwtstamps;
|
|
u64 tod_in_ns, full_ts_in_ns;
|
|
struct timespec64 ts;
|
|
|
|
ocelot_ptp_gettime64(&ocelot->ptp_info, &ts);
|
|
|
|
tod_in_ns = ktime_set(ts.tv_sec, ts.tv_nsec);
|
|
if ((tod_in_ns & 0xffffffff) < timestamp)
|
|
full_ts_in_ns = (((tod_in_ns >> 32) - 1) << 32) |
|
|
timestamp;
|
|
else
|
|
full_ts_in_ns = (tod_in_ns & GENMASK_ULL(63, 32)) |
|
|
timestamp;
|
|
|
|
shhwtstamps = skb_hwtstamps(skb);
|
|
memset(shhwtstamps, 0, sizeof(struct skb_shared_hwtstamps));
|
|
shhwtstamps->hwtstamp = full_ts_in_ns;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_ptp_rx_timestamp);
|
|
|
|
int ocelot_xtr_poll_frame(struct ocelot *ocelot, int grp, struct sk_buff **nskb)
|
|
{
|
|
u64 timestamp, src_port, len;
|
|
u32 xfh[OCELOT_TAG_LEN / 4];
|
|
struct net_device *dev;
|
|
struct sk_buff *skb;
|
|
int sz, buf_len;
|
|
u32 val, *buf;
|
|
int err;
|
|
|
|
err = ocelot_xtr_poll_xfh(ocelot, grp, xfh);
|
|
if (err)
|
|
return err;
|
|
|
|
ocelot_xfh_get_src_port(xfh, &src_port);
|
|
ocelot_xfh_get_len(xfh, &len);
|
|
ocelot_xfh_get_rew_val(xfh, ×tamp);
|
|
|
|
if (WARN_ON(src_port >= ocelot->num_phys_ports))
|
|
return -EINVAL;
|
|
|
|
dev = ocelot->ops->port_to_netdev(ocelot, src_port);
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
skb = netdev_alloc_skb(dev, len);
|
|
if (unlikely(!skb)) {
|
|
netdev_err(dev, "Unable to allocate sk_buff\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
buf_len = len - ETH_FCS_LEN;
|
|
buf = (u32 *)skb_put(skb, buf_len);
|
|
|
|
len = 0;
|
|
do {
|
|
sz = ocelot_rx_frame_word(ocelot, grp, false, &val);
|
|
if (sz < 0) {
|
|
err = sz;
|
|
goto out_free_skb;
|
|
}
|
|
*buf++ = val;
|
|
len += sz;
|
|
} while (len < buf_len);
|
|
|
|
/* Read the FCS */
|
|
sz = ocelot_rx_frame_word(ocelot, grp, false, &val);
|
|
if (sz < 0) {
|
|
err = sz;
|
|
goto out_free_skb;
|
|
}
|
|
|
|
/* Update the statistics if part of the FCS was read before */
|
|
len -= ETH_FCS_LEN - sz;
|
|
|
|
if (unlikely(dev->features & NETIF_F_RXFCS)) {
|
|
buf = (u32 *)skb_put(skb, ETH_FCS_LEN);
|
|
*buf = val;
|
|
}
|
|
|
|
if (ocelot->ptp)
|
|
ocelot_ptp_rx_timestamp(ocelot, skb, timestamp);
|
|
|
|
/* Everything we see on an interface that is in the HW bridge
|
|
* has already been forwarded.
|
|
*/
|
|
if (ocelot->ports[src_port]->bridge)
|
|
skb->offload_fwd_mark = 1;
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
*nskb = skb;
|
|
|
|
return 0;
|
|
|
|
out_free_skb:
|
|
kfree_skb(skb);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_xtr_poll_frame);
|
|
|
|
bool ocelot_can_inject(struct ocelot *ocelot, int grp)
|
|
{
|
|
u32 val = ocelot_read(ocelot, QS_INJ_STATUS);
|
|
|
|
if (!(val & QS_INJ_STATUS_FIFO_RDY(BIT(grp))))
|
|
return false;
|
|
if (val & QS_INJ_STATUS_WMARK_REACHED(BIT(grp)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_can_inject);
|
|
|
|
void ocelot_ifh_port_set(void *ifh, int port, u32 rew_op, u32 vlan_tag)
|
|
{
|
|
ocelot_ifh_set_bypass(ifh, 1);
|
|
ocelot_ifh_set_dest(ifh, BIT_ULL(port));
|
|
ocelot_ifh_set_tag_type(ifh, IFH_TAG_TYPE_C);
|
|
if (vlan_tag)
|
|
ocelot_ifh_set_vlan_tci(ifh, vlan_tag);
|
|
if (rew_op)
|
|
ocelot_ifh_set_rew_op(ifh, rew_op);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_ifh_port_set);
|
|
|
|
void ocelot_port_inject_frame(struct ocelot *ocelot, int port, int grp,
|
|
u32 rew_op, struct sk_buff *skb)
|
|
{
|
|
u32 ifh[OCELOT_TAG_LEN / 4] = {0};
|
|
unsigned int i, count, last;
|
|
|
|
ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) |
|
|
QS_INJ_CTRL_SOF, QS_INJ_CTRL, grp);
|
|
|
|
ocelot_ifh_port_set(ifh, port, rew_op, skb_vlan_tag_get(skb));
|
|
|
|
for (i = 0; i < OCELOT_TAG_LEN / 4; i++)
|
|
ocelot_write_rix(ocelot, ifh[i], QS_INJ_WR, grp);
|
|
|
|
count = DIV_ROUND_UP(skb->len, 4);
|
|
last = skb->len % 4;
|
|
for (i = 0; i < count; i++)
|
|
ocelot_write_rix(ocelot, ((u32 *)skb->data)[i], QS_INJ_WR, grp);
|
|
|
|
/* Add padding */
|
|
while (i < (OCELOT_BUFFER_CELL_SZ / 4)) {
|
|
ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp);
|
|
i++;
|
|
}
|
|
|
|
/* Indicate EOF and valid bytes in last word */
|
|
ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(1) |
|
|
QS_INJ_CTRL_VLD_BYTES(skb->len < OCELOT_BUFFER_CELL_SZ ? 0 : last) |
|
|
QS_INJ_CTRL_EOF,
|
|
QS_INJ_CTRL, grp);
|
|
|
|
/* Add dummy CRC */
|
|
ocelot_write_rix(ocelot, 0, QS_INJ_WR, grp);
|
|
skb_tx_timestamp(skb);
|
|
|
|
skb->dev->stats.tx_packets++;
|
|
skb->dev->stats.tx_bytes += skb->len;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_inject_frame);
|
|
|
|
void ocelot_drain_cpu_queue(struct ocelot *ocelot, int grp)
|
|
{
|
|
while (ocelot_read(ocelot, QS_XTR_DATA_PRESENT) & BIT(grp))
|
|
ocelot_read_rix(ocelot, QS_XTR_RD, grp);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_drain_cpu_queue);
|
|
|
|
int ocelot_fdb_add(struct ocelot *ocelot, int port, const unsigned char *addr,
|
|
u16 vid, const struct net_device *bridge)
|
|
{
|
|
int pgid = port;
|
|
|
|
if (port == ocelot->npi)
|
|
pgid = PGID_CPU;
|
|
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
return ocelot_mact_learn(ocelot, pgid, addr, vid, ENTRYTYPE_LOCKED);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_fdb_add);
|
|
|
|
int ocelot_fdb_del(struct ocelot *ocelot, int port, const unsigned char *addr,
|
|
u16 vid, const struct net_device *bridge)
|
|
{
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
return ocelot_mact_forget(ocelot, addr, vid);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_fdb_del);
|
|
|
|
int ocelot_port_fdb_do_dump(const unsigned char *addr, u16 vid,
|
|
bool is_static, void *data)
|
|
{
|
|
struct ocelot_dump_ctx *dump = data;
|
|
u32 portid = NETLINK_CB(dump->cb->skb).portid;
|
|
u32 seq = dump->cb->nlh->nlmsg_seq;
|
|
struct nlmsghdr *nlh;
|
|
struct ndmsg *ndm;
|
|
|
|
if (dump->idx < dump->cb->args[2])
|
|
goto skip;
|
|
|
|
nlh = nlmsg_put(dump->skb, portid, seq, RTM_NEWNEIGH,
|
|
sizeof(*ndm), NLM_F_MULTI);
|
|
if (!nlh)
|
|
return -EMSGSIZE;
|
|
|
|
ndm = nlmsg_data(nlh);
|
|
ndm->ndm_family = AF_BRIDGE;
|
|
ndm->ndm_pad1 = 0;
|
|
ndm->ndm_pad2 = 0;
|
|
ndm->ndm_flags = NTF_SELF;
|
|
ndm->ndm_type = 0;
|
|
ndm->ndm_ifindex = dump->dev->ifindex;
|
|
ndm->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
|
|
|
|
if (nla_put(dump->skb, NDA_LLADDR, ETH_ALEN, addr))
|
|
goto nla_put_failure;
|
|
|
|
if (vid && nla_put_u16(dump->skb, NDA_VLAN, vid))
|
|
goto nla_put_failure;
|
|
|
|
nlmsg_end(dump->skb, nlh);
|
|
|
|
skip:
|
|
dump->idx++;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_cancel(dump->skb, nlh);
|
|
return -EMSGSIZE;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_fdb_do_dump);
|
|
|
|
/* Caller must hold &ocelot->mact_lock */
|
|
static int ocelot_mact_read(struct ocelot *ocelot, int port, int row, int col,
|
|
struct ocelot_mact_entry *entry)
|
|
{
|
|
u32 val, dst, macl, mach;
|
|
char mac[ETH_ALEN];
|
|
|
|
/* Set row and column to read from */
|
|
ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_M_INDEX, row);
|
|
ocelot_field_write(ocelot, ANA_TABLES_MACTINDX_BUCKET, col);
|
|
|
|
/* Issue a read command */
|
|
ocelot_write(ocelot,
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_READ),
|
|
ANA_TABLES_MACACCESS);
|
|
|
|
if (ocelot_mact_wait_for_completion(ocelot))
|
|
return -ETIMEDOUT;
|
|
|
|
/* Read the entry flags */
|
|
val = ocelot_read(ocelot, ANA_TABLES_MACACCESS);
|
|
if (!(val & ANA_TABLES_MACACCESS_VALID))
|
|
return -EINVAL;
|
|
|
|
/* If the entry read has another port configured as its destination,
|
|
* do not report it.
|
|
*/
|
|
dst = (val & ANA_TABLES_MACACCESS_DEST_IDX_M) >> 3;
|
|
if (dst != port)
|
|
return -EINVAL;
|
|
|
|
/* Get the entry's MAC address and VLAN id */
|
|
macl = ocelot_read(ocelot, ANA_TABLES_MACLDATA);
|
|
mach = ocelot_read(ocelot, ANA_TABLES_MACHDATA);
|
|
|
|
mac[0] = (mach >> 8) & 0xff;
|
|
mac[1] = (mach >> 0) & 0xff;
|
|
mac[2] = (macl >> 24) & 0xff;
|
|
mac[3] = (macl >> 16) & 0xff;
|
|
mac[4] = (macl >> 8) & 0xff;
|
|
mac[5] = (macl >> 0) & 0xff;
|
|
|
|
entry->vid = (mach >> 16) & 0xfff;
|
|
ether_addr_copy(entry->mac, mac);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ocelot_mact_flush(struct ocelot *ocelot, int port)
|
|
{
|
|
int err;
|
|
|
|
mutex_lock(&ocelot->mact_lock);
|
|
|
|
/* Program ageing filter for a single port */
|
|
ocelot_write(ocelot, ANA_ANAGEFIL_PID_EN | ANA_ANAGEFIL_PID_VAL(port),
|
|
ANA_ANAGEFIL);
|
|
|
|
/* Flushing dynamic FDB entries requires two successive age scans */
|
|
ocelot_write(ocelot,
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_AGE),
|
|
ANA_TABLES_MACACCESS);
|
|
|
|
err = ocelot_mact_wait_for_completion(ocelot);
|
|
if (err) {
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
return err;
|
|
}
|
|
|
|
/* And second... */
|
|
ocelot_write(ocelot,
|
|
ANA_TABLES_MACACCESS_MAC_TABLE_CMD(MACACCESS_CMD_AGE),
|
|
ANA_TABLES_MACACCESS);
|
|
|
|
err = ocelot_mact_wait_for_completion(ocelot);
|
|
|
|
/* Restore ageing filter */
|
|
ocelot_write(ocelot, 0, ANA_ANAGEFIL);
|
|
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_mact_flush);
|
|
|
|
int ocelot_fdb_dump(struct ocelot *ocelot, int port,
|
|
dsa_fdb_dump_cb_t *cb, void *data)
|
|
{
|
|
int err = 0;
|
|
int i, j;
|
|
|
|
/* We could take the lock just around ocelot_mact_read, but doing so
|
|
* thousands of times in a row seems rather pointless and inefficient.
|
|
*/
|
|
mutex_lock(&ocelot->mact_lock);
|
|
|
|
/* Loop through all the mac tables entries. */
|
|
for (i = 0; i < ocelot->num_mact_rows; i++) {
|
|
for (j = 0; j < 4; j++) {
|
|
struct ocelot_mact_entry entry;
|
|
bool is_static;
|
|
|
|
err = ocelot_mact_read(ocelot, port, i, j, &entry);
|
|
/* If the entry is invalid (wrong port, invalid...),
|
|
* skip it.
|
|
*/
|
|
if (err == -EINVAL)
|
|
continue;
|
|
else if (err)
|
|
break;
|
|
|
|
is_static = (entry.type == ENTRYTYPE_LOCKED);
|
|
|
|
/* Hide the reserved VLANs used for
|
|
* VLAN-unaware bridging.
|
|
*/
|
|
if (entry.vid > OCELOT_RSV_VLAN_RANGE_START)
|
|
entry.vid = 0;
|
|
|
|
err = cb(entry.mac, entry.vid, is_static, data);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&ocelot->mact_lock);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_fdb_dump);
|
|
|
|
static void ocelot_populate_l2_ptp_trap_key(struct ocelot_vcap_filter *trap)
|
|
{
|
|
trap->key_type = OCELOT_VCAP_KEY_ETYPE;
|
|
*(__be16 *)trap->key.etype.etype.value = htons(ETH_P_1588);
|
|
*(__be16 *)trap->key.etype.etype.mask = htons(0xffff);
|
|
}
|
|
|
|
static void
|
|
ocelot_populate_ipv4_ptp_event_trap_key(struct ocelot_vcap_filter *trap)
|
|
{
|
|
trap->key_type = OCELOT_VCAP_KEY_IPV4;
|
|
trap->key.ipv4.proto.value[0] = IPPROTO_UDP;
|
|
trap->key.ipv4.proto.mask[0] = 0xff;
|
|
trap->key.ipv4.dport.value = PTP_EV_PORT;
|
|
trap->key.ipv4.dport.mask = 0xffff;
|
|
}
|
|
|
|
static void
|
|
ocelot_populate_ipv6_ptp_event_trap_key(struct ocelot_vcap_filter *trap)
|
|
{
|
|
trap->key_type = OCELOT_VCAP_KEY_IPV6;
|
|
trap->key.ipv4.proto.value[0] = IPPROTO_UDP;
|
|
trap->key.ipv4.proto.mask[0] = 0xff;
|
|
trap->key.ipv6.dport.value = PTP_EV_PORT;
|
|
trap->key.ipv6.dport.mask = 0xffff;
|
|
}
|
|
|
|
static void
|
|
ocelot_populate_ipv4_ptp_general_trap_key(struct ocelot_vcap_filter *trap)
|
|
{
|
|
trap->key_type = OCELOT_VCAP_KEY_IPV4;
|
|
trap->key.ipv4.proto.value[0] = IPPROTO_UDP;
|
|
trap->key.ipv4.proto.mask[0] = 0xff;
|
|
trap->key.ipv4.dport.value = PTP_GEN_PORT;
|
|
trap->key.ipv4.dport.mask = 0xffff;
|
|
}
|
|
|
|
static void
|
|
ocelot_populate_ipv6_ptp_general_trap_key(struct ocelot_vcap_filter *trap)
|
|
{
|
|
trap->key_type = OCELOT_VCAP_KEY_IPV6;
|
|
trap->key.ipv4.proto.value[0] = IPPROTO_UDP;
|
|
trap->key.ipv4.proto.mask[0] = 0xff;
|
|
trap->key.ipv6.dport.value = PTP_GEN_PORT;
|
|
trap->key.ipv6.dport.mask = 0xffff;
|
|
}
|
|
|
|
int ocelot_trap_add(struct ocelot *ocelot, int port,
|
|
unsigned long cookie, bool take_ts,
|
|
void (*populate)(struct ocelot_vcap_filter *f))
|
|
{
|
|
struct ocelot_vcap_block *block_vcap_is2;
|
|
struct ocelot_vcap_filter *trap;
|
|
bool new = false;
|
|
int err;
|
|
|
|
block_vcap_is2 = &ocelot->block[VCAP_IS2];
|
|
|
|
trap = ocelot_vcap_block_find_filter_by_id(block_vcap_is2, cookie,
|
|
false);
|
|
if (!trap) {
|
|
trap = kzalloc(sizeof(*trap), GFP_KERNEL);
|
|
if (!trap)
|
|
return -ENOMEM;
|
|
|
|
populate(trap);
|
|
trap->prio = 1;
|
|
trap->id.cookie = cookie;
|
|
trap->id.tc_offload = false;
|
|
trap->block_id = VCAP_IS2;
|
|
trap->type = OCELOT_VCAP_FILTER_OFFLOAD;
|
|
trap->lookup = 0;
|
|
trap->action.cpu_copy_ena = true;
|
|
trap->action.mask_mode = OCELOT_MASK_MODE_PERMIT_DENY;
|
|
trap->action.port_mask = 0;
|
|
trap->take_ts = take_ts;
|
|
trap->is_trap = true;
|
|
new = true;
|
|
}
|
|
|
|
trap->ingress_port_mask |= BIT(port);
|
|
|
|
if (new)
|
|
err = ocelot_vcap_filter_add(ocelot, trap, NULL);
|
|
else
|
|
err = ocelot_vcap_filter_replace(ocelot, trap);
|
|
if (err) {
|
|
trap->ingress_port_mask &= ~BIT(port);
|
|
if (!trap->ingress_port_mask)
|
|
kfree(trap);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ocelot_trap_del(struct ocelot *ocelot, int port, unsigned long cookie)
|
|
{
|
|
struct ocelot_vcap_block *block_vcap_is2;
|
|
struct ocelot_vcap_filter *trap;
|
|
|
|
block_vcap_is2 = &ocelot->block[VCAP_IS2];
|
|
|
|
trap = ocelot_vcap_block_find_filter_by_id(block_vcap_is2, cookie,
|
|
false);
|
|
if (!trap)
|
|
return 0;
|
|
|
|
trap->ingress_port_mask &= ~BIT(port);
|
|
if (!trap->ingress_port_mask)
|
|
return ocelot_vcap_filter_del(ocelot, trap);
|
|
|
|
return ocelot_vcap_filter_replace(ocelot, trap);
|
|
}
|
|
|
|
static int ocelot_l2_ptp_trap_add(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long l2_cookie = OCELOT_VCAP_IS2_L2_PTP_TRAP(ocelot);
|
|
|
|
return ocelot_trap_add(ocelot, port, l2_cookie, true,
|
|
ocelot_populate_l2_ptp_trap_key);
|
|
}
|
|
|
|
static int ocelot_l2_ptp_trap_del(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long l2_cookie = OCELOT_VCAP_IS2_L2_PTP_TRAP(ocelot);
|
|
|
|
return ocelot_trap_del(ocelot, port, l2_cookie);
|
|
}
|
|
|
|
static int ocelot_ipv4_ptp_trap_add(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long ipv4_gen_cookie = OCELOT_VCAP_IS2_IPV4_GEN_PTP_TRAP(ocelot);
|
|
unsigned long ipv4_ev_cookie = OCELOT_VCAP_IS2_IPV4_EV_PTP_TRAP(ocelot);
|
|
int err;
|
|
|
|
err = ocelot_trap_add(ocelot, port, ipv4_ev_cookie, true,
|
|
ocelot_populate_ipv4_ptp_event_trap_key);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ocelot_trap_add(ocelot, port, ipv4_gen_cookie, false,
|
|
ocelot_populate_ipv4_ptp_general_trap_key);
|
|
if (err)
|
|
ocelot_trap_del(ocelot, port, ipv4_ev_cookie);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ocelot_ipv4_ptp_trap_del(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long ipv4_gen_cookie = OCELOT_VCAP_IS2_IPV4_GEN_PTP_TRAP(ocelot);
|
|
unsigned long ipv4_ev_cookie = OCELOT_VCAP_IS2_IPV4_EV_PTP_TRAP(ocelot);
|
|
int err;
|
|
|
|
err = ocelot_trap_del(ocelot, port, ipv4_ev_cookie);
|
|
err |= ocelot_trap_del(ocelot, port, ipv4_gen_cookie);
|
|
return err;
|
|
}
|
|
|
|
static int ocelot_ipv6_ptp_trap_add(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long ipv6_gen_cookie = OCELOT_VCAP_IS2_IPV6_GEN_PTP_TRAP(ocelot);
|
|
unsigned long ipv6_ev_cookie = OCELOT_VCAP_IS2_IPV6_EV_PTP_TRAP(ocelot);
|
|
int err;
|
|
|
|
err = ocelot_trap_add(ocelot, port, ipv6_ev_cookie, true,
|
|
ocelot_populate_ipv6_ptp_event_trap_key);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ocelot_trap_add(ocelot, port, ipv6_gen_cookie, false,
|
|
ocelot_populate_ipv6_ptp_general_trap_key);
|
|
if (err)
|
|
ocelot_trap_del(ocelot, port, ipv6_ev_cookie);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ocelot_ipv6_ptp_trap_del(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned long ipv6_gen_cookie = OCELOT_VCAP_IS2_IPV6_GEN_PTP_TRAP(ocelot);
|
|
unsigned long ipv6_ev_cookie = OCELOT_VCAP_IS2_IPV6_EV_PTP_TRAP(ocelot);
|
|
int err;
|
|
|
|
err = ocelot_trap_del(ocelot, port, ipv6_ev_cookie);
|
|
err |= ocelot_trap_del(ocelot, port, ipv6_gen_cookie);
|
|
return err;
|
|
}
|
|
|
|
static int ocelot_setup_ptp_traps(struct ocelot *ocelot, int port,
|
|
bool l2, bool l4)
|
|
{
|
|
int err;
|
|
|
|
if (l2)
|
|
err = ocelot_l2_ptp_trap_add(ocelot, port);
|
|
else
|
|
err = ocelot_l2_ptp_trap_del(ocelot, port);
|
|
if (err)
|
|
return err;
|
|
|
|
if (l4) {
|
|
err = ocelot_ipv4_ptp_trap_add(ocelot, port);
|
|
if (err)
|
|
goto err_ipv4;
|
|
|
|
err = ocelot_ipv6_ptp_trap_add(ocelot, port);
|
|
if (err)
|
|
goto err_ipv6;
|
|
} else {
|
|
err = ocelot_ipv4_ptp_trap_del(ocelot, port);
|
|
|
|
err |= ocelot_ipv6_ptp_trap_del(ocelot, port);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
|
|
err_ipv6:
|
|
ocelot_ipv4_ptp_trap_del(ocelot, port);
|
|
err_ipv4:
|
|
if (l2)
|
|
ocelot_l2_ptp_trap_del(ocelot, port);
|
|
return err;
|
|
}
|
|
|
|
int ocelot_hwstamp_get(struct ocelot *ocelot, int port, struct ifreq *ifr)
|
|
{
|
|
return copy_to_user(ifr->ifr_data, &ocelot->hwtstamp_config,
|
|
sizeof(ocelot->hwtstamp_config)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_hwstamp_get);
|
|
|
|
int ocelot_hwstamp_set(struct ocelot *ocelot, int port, struct ifreq *ifr)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
bool l2 = false, l4 = false;
|
|
struct hwtstamp_config cfg;
|
|
int err;
|
|
|
|
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
|
|
return -EFAULT;
|
|
|
|
/* Tx type sanity check */
|
|
switch (cfg.tx_type) {
|
|
case HWTSTAMP_TX_ON:
|
|
ocelot_port->ptp_cmd = IFH_REW_OP_TWO_STEP_PTP;
|
|
break;
|
|
case HWTSTAMP_TX_ONESTEP_SYNC:
|
|
/* IFH_REW_OP_ONE_STEP_PTP updates the correctional field, we
|
|
* need to update the origin time.
|
|
*/
|
|
ocelot_port->ptp_cmd = IFH_REW_OP_ORIGIN_PTP;
|
|
break;
|
|
case HWTSTAMP_TX_OFF:
|
|
ocelot_port->ptp_cmd = 0;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
mutex_lock(&ocelot->ptp_lock);
|
|
|
|
switch (cfg.rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
l4 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
l2 = true;
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
l2 = true;
|
|
l4 = true;
|
|
break;
|
|
default:
|
|
mutex_unlock(&ocelot->ptp_lock);
|
|
return -ERANGE;
|
|
}
|
|
|
|
err = ocelot_setup_ptp_traps(ocelot, port, l2, l4);
|
|
if (err) {
|
|
mutex_unlock(&ocelot->ptp_lock);
|
|
return err;
|
|
}
|
|
|
|
if (l2 && l4)
|
|
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
|
|
else if (l2)
|
|
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
|
|
else if (l4)
|
|
cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
|
|
else
|
|
cfg.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
|
|
/* Commit back the result & save it */
|
|
memcpy(&ocelot->hwtstamp_config, &cfg, sizeof(cfg));
|
|
mutex_unlock(&ocelot->ptp_lock);
|
|
|
|
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_hwstamp_set);
|
|
|
|
void ocelot_get_strings(struct ocelot *ocelot, int port, u32 sset, u8 *data)
|
|
{
|
|
int i;
|
|
|
|
if (sset != ETH_SS_STATS)
|
|
return;
|
|
|
|
for (i = 0; i < ocelot->num_stats; i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN, ocelot->stats_layout[i].name,
|
|
ETH_GSTRING_LEN);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_strings);
|
|
|
|
/* Caller must hold &ocelot->stats_lock */
|
|
static int ocelot_port_update_stats(struct ocelot *ocelot, int port)
|
|
{
|
|
unsigned int idx = port * ocelot->num_stats;
|
|
struct ocelot_stats_region *region;
|
|
int err, j;
|
|
|
|
/* Configure the port to read the stats from */
|
|
ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(port), SYS_STAT_CFG);
|
|
|
|
list_for_each_entry(region, &ocelot->stats_regions, node) {
|
|
err = ocelot_bulk_read_rix(ocelot, SYS_COUNT_RX_OCTETS,
|
|
region->offset, region->buf,
|
|
region->count);
|
|
if (err)
|
|
return err;
|
|
|
|
for (j = 0; j < region->count; j++) {
|
|
u64 *stat = &ocelot->stats[idx + j];
|
|
u64 val = region->buf[j];
|
|
|
|
if (val < (*stat & U32_MAX))
|
|
*stat += (u64)1 << 32;
|
|
|
|
*stat = (*stat & ~(u64)U32_MAX) + val;
|
|
}
|
|
|
|
idx += region->count;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void ocelot_check_stats_work(struct work_struct *work)
|
|
{
|
|
struct delayed_work *del_work = to_delayed_work(work);
|
|
struct ocelot *ocelot = container_of(del_work, struct ocelot,
|
|
stats_work);
|
|
int i, err;
|
|
|
|
mutex_lock(&ocelot->stats_lock);
|
|
for (i = 0; i < ocelot->num_phys_ports; i++) {
|
|
err = ocelot_port_update_stats(ocelot, i);
|
|
if (err)
|
|
break;
|
|
}
|
|
mutex_unlock(&ocelot->stats_lock);
|
|
|
|
if (err)
|
|
dev_err(ocelot->dev, "Error %d updating ethtool stats\n", err);
|
|
|
|
queue_delayed_work(ocelot->stats_queue, &ocelot->stats_work,
|
|
OCELOT_STATS_CHECK_DELAY);
|
|
}
|
|
|
|
void ocelot_get_ethtool_stats(struct ocelot *ocelot, int port, u64 *data)
|
|
{
|
|
int i, err;
|
|
|
|
mutex_lock(&ocelot->stats_lock);
|
|
|
|
/* check and update now */
|
|
err = ocelot_port_update_stats(ocelot, port);
|
|
|
|
/* Copy all counters */
|
|
for (i = 0; i < ocelot->num_stats; i++)
|
|
*data++ = ocelot->stats[port * ocelot->num_stats + i];
|
|
|
|
mutex_unlock(&ocelot->stats_lock);
|
|
|
|
if (err)
|
|
dev_err(ocelot->dev, "Error %d updating ethtool stats\n", err);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_ethtool_stats);
|
|
|
|
int ocelot_get_sset_count(struct ocelot *ocelot, int port, int sset)
|
|
{
|
|
if (sset != ETH_SS_STATS)
|
|
return -EOPNOTSUPP;
|
|
|
|
return ocelot->num_stats;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_sset_count);
|
|
|
|
static int ocelot_prepare_stats_regions(struct ocelot *ocelot)
|
|
{
|
|
struct ocelot_stats_region *region = NULL;
|
|
unsigned int last;
|
|
int i;
|
|
|
|
INIT_LIST_HEAD(&ocelot->stats_regions);
|
|
|
|
for (i = 0; i < ocelot->num_stats; i++) {
|
|
if (region && ocelot->stats_layout[i].offset == last + 1) {
|
|
region->count++;
|
|
} else {
|
|
region = devm_kzalloc(ocelot->dev, sizeof(*region),
|
|
GFP_KERNEL);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
|
|
region->offset = ocelot->stats_layout[i].offset;
|
|
region->count = 1;
|
|
list_add_tail(®ion->node, &ocelot->stats_regions);
|
|
}
|
|
|
|
last = ocelot->stats_layout[i].offset;
|
|
}
|
|
|
|
list_for_each_entry(region, &ocelot->stats_regions, node) {
|
|
region->buf = devm_kcalloc(ocelot->dev, region->count,
|
|
sizeof(*region->buf), GFP_KERNEL);
|
|
if (!region->buf)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ocelot_get_ts_info(struct ocelot *ocelot, int port,
|
|
struct ethtool_ts_info *info)
|
|
{
|
|
info->phc_index = ocelot->ptp_clock ?
|
|
ptp_clock_index(ocelot->ptp_clock) : -1;
|
|
if (info->phc_index == -1) {
|
|
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
|
|
SOF_TIMESTAMPING_RX_SOFTWARE |
|
|
SOF_TIMESTAMPING_SOFTWARE;
|
|
return 0;
|
|
}
|
|
info->so_timestamping |= SOF_TIMESTAMPING_TX_SOFTWARE |
|
|
SOF_TIMESTAMPING_RX_SOFTWARE |
|
|
SOF_TIMESTAMPING_SOFTWARE |
|
|
SOF_TIMESTAMPING_TX_HARDWARE |
|
|
SOF_TIMESTAMPING_RX_HARDWARE |
|
|
SOF_TIMESTAMPING_RAW_HARDWARE;
|
|
info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON) |
|
|
BIT(HWTSTAMP_TX_ONESTEP_SYNC);
|
|
info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) |
|
|
BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
|
|
BIT(HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
|
|
BIT(HWTSTAMP_FILTER_PTP_V2_L4_EVENT);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_ts_info);
|
|
|
|
static u32 ocelot_get_bond_mask(struct ocelot *ocelot, struct net_device *bond)
|
|
{
|
|
u32 mask = 0;
|
|
int port;
|
|
|
|
lockdep_assert_held(&ocelot->fwd_domain_lock);
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port)
|
|
continue;
|
|
|
|
if (ocelot_port->bond == bond)
|
|
mask |= BIT(port);
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/* The logical port number of a LAG is equal to the lowest numbered physical
|
|
* port ID present in that LAG. It may change if that port ever leaves the LAG.
|
|
*/
|
|
static int ocelot_bond_get_id(struct ocelot *ocelot, struct net_device *bond)
|
|
{
|
|
int bond_mask = ocelot_get_bond_mask(ocelot, bond);
|
|
|
|
if (!bond_mask)
|
|
return -ENOENT;
|
|
|
|
return __ffs(bond_mask);
|
|
}
|
|
|
|
u32 ocelot_get_bridge_fwd_mask(struct ocelot *ocelot, int src_port)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[src_port];
|
|
const struct net_device *bridge;
|
|
u32 mask = 0;
|
|
int port;
|
|
|
|
if (!ocelot_port || ocelot_port->stp_state != BR_STATE_FORWARDING)
|
|
return 0;
|
|
|
|
bridge = ocelot_port->bridge;
|
|
if (!bridge)
|
|
return 0;
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port)
|
|
continue;
|
|
|
|
if (ocelot_port->stp_state == BR_STATE_FORWARDING &&
|
|
ocelot_port->bridge == bridge)
|
|
mask |= BIT(port);
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_get_bridge_fwd_mask);
|
|
|
|
u32 ocelot_get_dsa_8021q_cpu_mask(struct ocelot *ocelot)
|
|
{
|
|
u32 mask = 0;
|
|
int port;
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port)
|
|
continue;
|
|
|
|
if (ocelot_port->is_dsa_8021q_cpu)
|
|
mask |= BIT(port);
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_get_dsa_8021q_cpu_mask);
|
|
|
|
void ocelot_apply_bridge_fwd_mask(struct ocelot *ocelot, bool joining)
|
|
{
|
|
unsigned long cpu_fwd_mask;
|
|
int port;
|
|
|
|
lockdep_assert_held(&ocelot->fwd_domain_lock);
|
|
|
|
/* If cut-through forwarding is supported, update the masks before a
|
|
* port joins the forwarding domain, to avoid potential underruns if it
|
|
* has the highest speed from the new domain.
|
|
*/
|
|
if (joining && ocelot->ops->cut_through_fwd)
|
|
ocelot->ops->cut_through_fwd(ocelot);
|
|
|
|
/* If a DSA tag_8021q CPU exists, it needs to be included in the
|
|
* regular forwarding path of the front ports regardless of whether
|
|
* those are bridged or standalone.
|
|
* If DSA tag_8021q is not used, this returns 0, which is fine because
|
|
* the hardware-based CPU port module can be a destination for packets
|
|
* even if it isn't part of PGID_SRC.
|
|
*/
|
|
cpu_fwd_mask = ocelot_get_dsa_8021q_cpu_mask(ocelot);
|
|
|
|
/* Apply FWD mask. The loop is needed to add/remove the current port as
|
|
* a source for the other ports.
|
|
*/
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
unsigned long mask;
|
|
|
|
if (!ocelot_port) {
|
|
/* Unused ports can't send anywhere */
|
|
mask = 0;
|
|
} else if (ocelot_port->is_dsa_8021q_cpu) {
|
|
/* The DSA tag_8021q CPU ports need to be able to
|
|
* forward packets to all other ports except for
|
|
* themselves
|
|
*/
|
|
mask = GENMASK(ocelot->num_phys_ports - 1, 0);
|
|
mask &= ~cpu_fwd_mask;
|
|
} else if (ocelot_port->bridge) {
|
|
struct net_device *bond = ocelot_port->bond;
|
|
|
|
mask = ocelot_get_bridge_fwd_mask(ocelot, port);
|
|
mask |= cpu_fwd_mask;
|
|
mask &= ~BIT(port);
|
|
if (bond)
|
|
mask &= ~ocelot_get_bond_mask(ocelot, bond);
|
|
} else {
|
|
/* Standalone ports forward only to DSA tag_8021q CPU
|
|
* ports (if those exist), or to the hardware CPU port
|
|
* module otherwise.
|
|
*/
|
|
mask = cpu_fwd_mask;
|
|
}
|
|
|
|
ocelot_write_rix(ocelot, mask, ANA_PGID_PGID, PGID_SRC + port);
|
|
}
|
|
|
|
/* If cut-through forwarding is supported and a port is leaving, there
|
|
* is a chance that cut-through was disabled on the other ports due to
|
|
* the port which is leaving (it has a higher link speed). We need to
|
|
* update the cut-through masks of the remaining ports no earlier than
|
|
* after the port has left, to prevent underruns from happening between
|
|
* the cut-through update and the forwarding domain update.
|
|
*/
|
|
if (!joining && ocelot->ops->cut_through_fwd)
|
|
ocelot->ops->cut_through_fwd(ocelot);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_apply_bridge_fwd_mask);
|
|
|
|
void ocelot_port_set_dsa_8021q_cpu(struct ocelot *ocelot, int port)
|
|
{
|
|
u16 vid;
|
|
|
|
ocelot->ports[port]->is_dsa_8021q_cpu = true;
|
|
|
|
for (vid = OCELOT_RSV_VLAN_RANGE_START; vid < VLAN_N_VID; vid++)
|
|
ocelot_vlan_member_add(ocelot, port, vid, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_set_dsa_8021q_cpu);
|
|
|
|
void ocelot_port_unset_dsa_8021q_cpu(struct ocelot *ocelot, int port)
|
|
{
|
|
u16 vid;
|
|
|
|
ocelot->ports[port]->is_dsa_8021q_cpu = false;
|
|
|
|
for (vid = OCELOT_RSV_VLAN_RANGE_START; vid < VLAN_N_VID; vid++)
|
|
ocelot_vlan_member_del(ocelot, port, vid);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_unset_dsa_8021q_cpu);
|
|
|
|
void ocelot_bridge_stp_state_set(struct ocelot *ocelot, int port, u8 state)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
u32 learn_ena = 0;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
ocelot_port->stp_state = state;
|
|
|
|
if ((state == BR_STATE_LEARNING || state == BR_STATE_FORWARDING) &&
|
|
ocelot_port->learn_ena)
|
|
learn_ena = ANA_PORT_PORT_CFG_LEARN_ENA;
|
|
|
|
ocelot_rmw_gix(ocelot, learn_ena, ANA_PORT_PORT_CFG_LEARN_ENA,
|
|
ANA_PORT_PORT_CFG, port);
|
|
|
|
ocelot_apply_bridge_fwd_mask(ocelot, state == BR_STATE_FORWARDING);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_bridge_stp_state_set);
|
|
|
|
void ocelot_set_ageing_time(struct ocelot *ocelot, unsigned int msecs)
|
|
{
|
|
unsigned int age_period = ANA_AUTOAGE_AGE_PERIOD(msecs / 2000);
|
|
|
|
/* Setting AGE_PERIOD to zero effectively disables automatic aging,
|
|
* which is clearly not what our intention is. So avoid that.
|
|
*/
|
|
if (!age_period)
|
|
age_period = 1;
|
|
|
|
ocelot_rmw(ocelot, age_period, ANA_AUTOAGE_AGE_PERIOD_M, ANA_AUTOAGE);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_set_ageing_time);
|
|
|
|
static struct ocelot_multicast *ocelot_multicast_get(struct ocelot *ocelot,
|
|
const unsigned char *addr,
|
|
u16 vid)
|
|
{
|
|
struct ocelot_multicast *mc;
|
|
|
|
list_for_each_entry(mc, &ocelot->multicast, list) {
|
|
if (ether_addr_equal(mc->addr, addr) && mc->vid == vid)
|
|
return mc;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static enum macaccess_entry_type ocelot_classify_mdb(const unsigned char *addr)
|
|
{
|
|
if (addr[0] == 0x01 && addr[1] == 0x00 && addr[2] == 0x5e)
|
|
return ENTRYTYPE_MACv4;
|
|
if (addr[0] == 0x33 && addr[1] == 0x33)
|
|
return ENTRYTYPE_MACv6;
|
|
return ENTRYTYPE_LOCKED;
|
|
}
|
|
|
|
static struct ocelot_pgid *ocelot_pgid_alloc(struct ocelot *ocelot, int index,
|
|
unsigned long ports)
|
|
{
|
|
struct ocelot_pgid *pgid;
|
|
|
|
pgid = kzalloc(sizeof(*pgid), GFP_KERNEL);
|
|
if (!pgid)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
pgid->ports = ports;
|
|
pgid->index = index;
|
|
refcount_set(&pgid->refcount, 1);
|
|
list_add_tail(&pgid->list, &ocelot->pgids);
|
|
|
|
return pgid;
|
|
}
|
|
|
|
static void ocelot_pgid_free(struct ocelot *ocelot, struct ocelot_pgid *pgid)
|
|
{
|
|
if (!refcount_dec_and_test(&pgid->refcount))
|
|
return;
|
|
|
|
list_del(&pgid->list);
|
|
kfree(pgid);
|
|
}
|
|
|
|
static struct ocelot_pgid *ocelot_mdb_get_pgid(struct ocelot *ocelot,
|
|
const struct ocelot_multicast *mc)
|
|
{
|
|
struct ocelot_pgid *pgid;
|
|
int index;
|
|
|
|
/* According to VSC7514 datasheet 3.9.1.5 IPv4 Multicast Entries and
|
|
* 3.9.1.6 IPv6 Multicast Entries, "Instead of a lookup in the
|
|
* destination mask table (PGID), the destination set is programmed as
|
|
* part of the entry MAC address.", and the DEST_IDX is set to 0.
|
|
*/
|
|
if (mc->entry_type == ENTRYTYPE_MACv4 ||
|
|
mc->entry_type == ENTRYTYPE_MACv6)
|
|
return ocelot_pgid_alloc(ocelot, 0, mc->ports);
|
|
|
|
list_for_each_entry(pgid, &ocelot->pgids, list) {
|
|
/* When searching for a nonreserved multicast PGID, ignore the
|
|
* dummy PGID of zero that we have for MACv4/MACv6 entries
|
|
*/
|
|
if (pgid->index && pgid->ports == mc->ports) {
|
|
refcount_inc(&pgid->refcount);
|
|
return pgid;
|
|
}
|
|
}
|
|
|
|
/* Search for a free index in the nonreserved multicast PGID area */
|
|
for_each_nonreserved_multicast_dest_pgid(ocelot, index) {
|
|
bool used = false;
|
|
|
|
list_for_each_entry(pgid, &ocelot->pgids, list) {
|
|
if (pgid->index == index) {
|
|
used = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!used)
|
|
return ocelot_pgid_alloc(ocelot, index, mc->ports);
|
|
}
|
|
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
static void ocelot_encode_ports_to_mdb(unsigned char *addr,
|
|
struct ocelot_multicast *mc)
|
|
{
|
|
ether_addr_copy(addr, mc->addr);
|
|
|
|
if (mc->entry_type == ENTRYTYPE_MACv4) {
|
|
addr[0] = 0;
|
|
addr[1] = mc->ports >> 8;
|
|
addr[2] = mc->ports & 0xff;
|
|
} else if (mc->entry_type == ENTRYTYPE_MACv6) {
|
|
addr[0] = mc->ports >> 8;
|
|
addr[1] = mc->ports & 0xff;
|
|
}
|
|
}
|
|
|
|
int ocelot_port_mdb_add(struct ocelot *ocelot, int port,
|
|
const struct switchdev_obj_port_mdb *mdb,
|
|
const struct net_device *bridge)
|
|
{
|
|
unsigned char addr[ETH_ALEN];
|
|
struct ocelot_multicast *mc;
|
|
struct ocelot_pgid *pgid;
|
|
u16 vid = mdb->vid;
|
|
|
|
if (port == ocelot->npi)
|
|
port = ocelot->num_phys_ports;
|
|
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
mc = ocelot_multicast_get(ocelot, mdb->addr, vid);
|
|
if (!mc) {
|
|
/* New entry */
|
|
mc = devm_kzalloc(ocelot->dev, sizeof(*mc), GFP_KERNEL);
|
|
if (!mc)
|
|
return -ENOMEM;
|
|
|
|
mc->entry_type = ocelot_classify_mdb(mdb->addr);
|
|
ether_addr_copy(mc->addr, mdb->addr);
|
|
mc->vid = vid;
|
|
|
|
list_add_tail(&mc->list, &ocelot->multicast);
|
|
} else {
|
|
/* Existing entry. Clean up the current port mask from
|
|
* hardware now, because we'll be modifying it.
|
|
*/
|
|
ocelot_pgid_free(ocelot, mc->pgid);
|
|
ocelot_encode_ports_to_mdb(addr, mc);
|
|
ocelot_mact_forget(ocelot, addr, vid);
|
|
}
|
|
|
|
mc->ports |= BIT(port);
|
|
|
|
pgid = ocelot_mdb_get_pgid(ocelot, mc);
|
|
if (IS_ERR(pgid)) {
|
|
dev_err(ocelot->dev,
|
|
"Cannot allocate PGID for mdb %pM vid %d\n",
|
|
mc->addr, mc->vid);
|
|
devm_kfree(ocelot->dev, mc);
|
|
return PTR_ERR(pgid);
|
|
}
|
|
mc->pgid = pgid;
|
|
|
|
ocelot_encode_ports_to_mdb(addr, mc);
|
|
|
|
if (mc->entry_type != ENTRYTYPE_MACv4 &&
|
|
mc->entry_type != ENTRYTYPE_MACv6)
|
|
ocelot_write_rix(ocelot, pgid->ports, ANA_PGID_PGID,
|
|
pgid->index);
|
|
|
|
return ocelot_mact_learn(ocelot, pgid->index, addr, vid,
|
|
mc->entry_type);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_mdb_add);
|
|
|
|
int ocelot_port_mdb_del(struct ocelot *ocelot, int port,
|
|
const struct switchdev_obj_port_mdb *mdb,
|
|
const struct net_device *bridge)
|
|
{
|
|
unsigned char addr[ETH_ALEN];
|
|
struct ocelot_multicast *mc;
|
|
struct ocelot_pgid *pgid;
|
|
u16 vid = mdb->vid;
|
|
|
|
if (port == ocelot->npi)
|
|
port = ocelot->num_phys_ports;
|
|
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
mc = ocelot_multicast_get(ocelot, mdb->addr, vid);
|
|
if (!mc)
|
|
return -ENOENT;
|
|
|
|
ocelot_encode_ports_to_mdb(addr, mc);
|
|
ocelot_mact_forget(ocelot, addr, vid);
|
|
|
|
ocelot_pgid_free(ocelot, mc->pgid);
|
|
mc->ports &= ~BIT(port);
|
|
if (!mc->ports) {
|
|
list_del(&mc->list);
|
|
devm_kfree(ocelot->dev, mc);
|
|
return 0;
|
|
}
|
|
|
|
/* We have a PGID with fewer ports now */
|
|
pgid = ocelot_mdb_get_pgid(ocelot, mc);
|
|
if (IS_ERR(pgid))
|
|
return PTR_ERR(pgid);
|
|
mc->pgid = pgid;
|
|
|
|
ocelot_encode_ports_to_mdb(addr, mc);
|
|
|
|
if (mc->entry_type != ENTRYTYPE_MACv4 &&
|
|
mc->entry_type != ENTRYTYPE_MACv6)
|
|
ocelot_write_rix(ocelot, pgid->ports, ANA_PGID_PGID,
|
|
pgid->index);
|
|
|
|
return ocelot_mact_learn(ocelot, pgid->index, addr, vid,
|
|
mc->entry_type);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_mdb_del);
|
|
|
|
int ocelot_port_bridge_join(struct ocelot *ocelot, int port,
|
|
struct net_device *bridge, int bridge_num,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
int err;
|
|
|
|
err = ocelot_single_vlan_aware_bridge(ocelot, extack);
|
|
if (err)
|
|
return err;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
ocelot_port->bridge = bridge;
|
|
ocelot_port->bridge_num = bridge_num;
|
|
|
|
ocelot_apply_bridge_fwd_mask(ocelot, true);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
|
|
if (br_vlan_enabled(bridge))
|
|
return 0;
|
|
|
|
return ocelot_add_vlan_unaware_pvid(ocelot, port, bridge);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_bridge_join);
|
|
|
|
void ocelot_port_bridge_leave(struct ocelot *ocelot, int port,
|
|
struct net_device *bridge)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
if (!br_vlan_enabled(bridge))
|
|
ocelot_del_vlan_unaware_pvid(ocelot, port, bridge);
|
|
|
|
ocelot_port->bridge = NULL;
|
|
ocelot_port->bridge_num = -1;
|
|
|
|
ocelot_port_set_pvid(ocelot, port, NULL);
|
|
ocelot_port_manage_port_tag(ocelot, port);
|
|
ocelot_apply_bridge_fwd_mask(ocelot, false);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_bridge_leave);
|
|
|
|
static void ocelot_set_aggr_pgids(struct ocelot *ocelot)
|
|
{
|
|
unsigned long visited = GENMASK(ocelot->num_phys_ports - 1, 0);
|
|
int i, port, lag;
|
|
|
|
/* Reset destination and aggregation PGIDS */
|
|
for_each_unicast_dest_pgid(ocelot, port)
|
|
ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port);
|
|
|
|
for_each_aggr_pgid(ocelot, i)
|
|
ocelot_write_rix(ocelot, GENMASK(ocelot->num_phys_ports - 1, 0),
|
|
ANA_PGID_PGID, i);
|
|
|
|
/* The visited ports bitmask holds the list of ports offloading any
|
|
* bonding interface. Initially we mark all these ports as unvisited,
|
|
* then every time we visit a port in this bitmask, we know that it is
|
|
* the lowest numbered port, i.e. the one whose logical ID == physical
|
|
* port ID == LAG ID. So we mark as visited all further ports in the
|
|
* bitmask that are offloading the same bonding interface. This way,
|
|
* we set up the aggregation PGIDs only once per bonding interface.
|
|
*/
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port || !ocelot_port->bond)
|
|
continue;
|
|
|
|
visited &= ~BIT(port);
|
|
}
|
|
|
|
/* Now, set PGIDs for each active LAG */
|
|
for (lag = 0; lag < ocelot->num_phys_ports; lag++) {
|
|
struct net_device *bond = ocelot->ports[lag]->bond;
|
|
int num_active_ports = 0;
|
|
unsigned long bond_mask;
|
|
u8 aggr_idx[16];
|
|
|
|
if (!bond || (visited & BIT(lag)))
|
|
continue;
|
|
|
|
bond_mask = ocelot_get_bond_mask(ocelot, bond);
|
|
|
|
for_each_set_bit(port, &bond_mask, ocelot->num_phys_ports) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
// Destination mask
|
|
ocelot_write_rix(ocelot, bond_mask,
|
|
ANA_PGID_PGID, port);
|
|
|
|
if (ocelot_port->lag_tx_active)
|
|
aggr_idx[num_active_ports++] = port;
|
|
}
|
|
|
|
for_each_aggr_pgid(ocelot, i) {
|
|
u32 ac;
|
|
|
|
ac = ocelot_read_rix(ocelot, ANA_PGID_PGID, i);
|
|
ac &= ~bond_mask;
|
|
/* Don't do division by zero if there was no active
|
|
* port. Just make all aggregation codes zero.
|
|
*/
|
|
if (num_active_ports)
|
|
ac |= BIT(aggr_idx[i % num_active_ports]);
|
|
ocelot_write_rix(ocelot, ac, ANA_PGID_PGID, i);
|
|
}
|
|
|
|
/* Mark all ports in the same LAG as visited to avoid applying
|
|
* the same config again.
|
|
*/
|
|
for (port = lag; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
if (!ocelot_port)
|
|
continue;
|
|
|
|
if (ocelot_port->bond == bond)
|
|
visited |= BIT(port);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* When offloading a bonding interface, the switch ports configured under the
|
|
* same bond must have the same logical port ID, equal to the physical port ID
|
|
* of the lowest numbered physical port in that bond. Otherwise, in standalone/
|
|
* bridged mode, each port has a logical port ID equal to its physical port ID.
|
|
*/
|
|
static void ocelot_setup_logical_port_ids(struct ocelot *ocelot)
|
|
{
|
|
int port;
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
struct net_device *bond;
|
|
|
|
if (!ocelot_port)
|
|
continue;
|
|
|
|
bond = ocelot_port->bond;
|
|
if (bond) {
|
|
int lag = ocelot_bond_get_id(ocelot, bond);
|
|
|
|
ocelot_rmw_gix(ocelot,
|
|
ANA_PORT_PORT_CFG_PORTID_VAL(lag),
|
|
ANA_PORT_PORT_CFG_PORTID_VAL_M,
|
|
ANA_PORT_PORT_CFG, port);
|
|
} else {
|
|
ocelot_rmw_gix(ocelot,
|
|
ANA_PORT_PORT_CFG_PORTID_VAL(port),
|
|
ANA_PORT_PORT_CFG_PORTID_VAL_M,
|
|
ANA_PORT_PORT_CFG, port);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Documentation for PORTID_VAL says:
|
|
* Logical port number for front port. If port is not a member of a LLAG,
|
|
* then PORTID must be set to the physical port number.
|
|
* If port is a member of a LLAG, then PORTID must be set to the common
|
|
* PORTID_VAL used for all member ports of the LLAG.
|
|
* The value must not exceed the number of physical ports on the device.
|
|
*
|
|
* This means we have little choice but to migrate FDB entries pointing towards
|
|
* a logical port when that changes.
|
|
*/
|
|
static void ocelot_migrate_lag_fdbs(struct ocelot *ocelot,
|
|
struct net_device *bond,
|
|
int lag)
|
|
{
|
|
struct ocelot_lag_fdb *fdb;
|
|
int err;
|
|
|
|
lockdep_assert_held(&ocelot->fwd_domain_lock);
|
|
|
|
list_for_each_entry(fdb, &ocelot->lag_fdbs, list) {
|
|
if (fdb->bond != bond)
|
|
continue;
|
|
|
|
err = ocelot_mact_forget(ocelot, fdb->addr, fdb->vid);
|
|
if (err) {
|
|
dev_err(ocelot->dev,
|
|
"failed to delete LAG %s FDB %pM vid %d: %pe\n",
|
|
bond->name, fdb->addr, fdb->vid, ERR_PTR(err));
|
|
}
|
|
|
|
err = ocelot_mact_learn(ocelot, lag, fdb->addr, fdb->vid,
|
|
ENTRYTYPE_LOCKED);
|
|
if (err) {
|
|
dev_err(ocelot->dev,
|
|
"failed to migrate LAG %s FDB %pM vid %d: %pe\n",
|
|
bond->name, fdb->addr, fdb->vid, ERR_PTR(err));
|
|
}
|
|
}
|
|
}
|
|
|
|
int ocelot_port_lag_join(struct ocelot *ocelot, int port,
|
|
struct net_device *bond,
|
|
struct netdev_lag_upper_info *info)
|
|
{
|
|
if (info->tx_type != NETDEV_LAG_TX_TYPE_HASH)
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
ocelot->ports[port]->bond = bond;
|
|
|
|
ocelot_setup_logical_port_ids(ocelot);
|
|
ocelot_apply_bridge_fwd_mask(ocelot, true);
|
|
ocelot_set_aggr_pgids(ocelot);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_lag_join);
|
|
|
|
void ocelot_port_lag_leave(struct ocelot *ocelot, int port,
|
|
struct net_device *bond)
|
|
{
|
|
int old_lag_id, new_lag_id;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
old_lag_id = ocelot_bond_get_id(ocelot, bond);
|
|
|
|
ocelot->ports[port]->bond = NULL;
|
|
|
|
ocelot_setup_logical_port_ids(ocelot);
|
|
ocelot_apply_bridge_fwd_mask(ocelot, false);
|
|
ocelot_set_aggr_pgids(ocelot);
|
|
|
|
new_lag_id = ocelot_bond_get_id(ocelot, bond);
|
|
|
|
if (new_lag_id >= 0 && old_lag_id != new_lag_id)
|
|
ocelot_migrate_lag_fdbs(ocelot, bond, new_lag_id);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_lag_leave);
|
|
|
|
void ocelot_port_lag_change(struct ocelot *ocelot, int port, bool lag_tx_active)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
ocelot_port->lag_tx_active = lag_tx_active;
|
|
|
|
/* Rebalance the LAGs */
|
|
ocelot_set_aggr_pgids(ocelot);
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_lag_change);
|
|
|
|
int ocelot_lag_fdb_add(struct ocelot *ocelot, struct net_device *bond,
|
|
const unsigned char *addr, u16 vid,
|
|
const struct net_device *bridge)
|
|
{
|
|
struct ocelot_lag_fdb *fdb;
|
|
int lag, err;
|
|
|
|
fdb = kzalloc(sizeof(*fdb), GFP_KERNEL);
|
|
if (!fdb)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
ether_addr_copy(fdb->addr, addr);
|
|
fdb->vid = vid;
|
|
fdb->bond = bond;
|
|
|
|
lag = ocelot_bond_get_id(ocelot, bond);
|
|
|
|
err = ocelot_mact_learn(ocelot, lag, addr, vid, ENTRYTYPE_LOCKED);
|
|
if (err) {
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
kfree(fdb);
|
|
return err;
|
|
}
|
|
|
|
list_add_tail(&fdb->list, &ocelot->lag_fdbs);
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_lag_fdb_add);
|
|
|
|
int ocelot_lag_fdb_del(struct ocelot *ocelot, struct net_device *bond,
|
|
const unsigned char *addr, u16 vid,
|
|
const struct net_device *bridge)
|
|
{
|
|
struct ocelot_lag_fdb *fdb, *tmp;
|
|
|
|
mutex_lock(&ocelot->fwd_domain_lock);
|
|
|
|
if (!vid)
|
|
vid = ocelot_vlan_unaware_pvid(ocelot, bridge);
|
|
|
|
list_for_each_entry_safe(fdb, tmp, &ocelot->lag_fdbs, list) {
|
|
if (!ether_addr_equal(fdb->addr, addr) || fdb->vid != vid ||
|
|
fdb->bond != bond)
|
|
continue;
|
|
|
|
ocelot_mact_forget(ocelot, addr, vid);
|
|
list_del(&fdb->list);
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
kfree(fdb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
mutex_unlock(&ocelot->fwd_domain_lock);
|
|
|
|
return -ENOENT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_lag_fdb_del);
|
|
|
|
/* Configure the maximum SDU (L2 payload) on RX to the value specified in @sdu.
|
|
* The length of VLAN tags is accounted for automatically via DEV_MAC_TAGS_CFG.
|
|
* In the special case that it's the NPI port that we're configuring, the
|
|
* length of the tag and optional prefix needs to be accounted for privately,
|
|
* in order to be able to sustain communication at the requested @sdu.
|
|
*/
|
|
void ocelot_port_set_maxlen(struct ocelot *ocelot, int port, size_t sdu)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
int maxlen = sdu + ETH_HLEN + ETH_FCS_LEN;
|
|
int pause_start, pause_stop;
|
|
int atop, atop_tot;
|
|
|
|
if (port == ocelot->npi) {
|
|
maxlen += OCELOT_TAG_LEN;
|
|
|
|
if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_SHORT)
|
|
maxlen += OCELOT_SHORT_PREFIX_LEN;
|
|
else if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_LONG)
|
|
maxlen += OCELOT_LONG_PREFIX_LEN;
|
|
}
|
|
|
|
ocelot_port_writel(ocelot_port, maxlen, DEV_MAC_MAXLEN_CFG);
|
|
|
|
/* Set Pause watermark hysteresis */
|
|
pause_start = 6 * maxlen / OCELOT_BUFFER_CELL_SZ;
|
|
pause_stop = 4 * maxlen / OCELOT_BUFFER_CELL_SZ;
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_START,
|
|
pause_start);
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_STOP,
|
|
pause_stop);
|
|
|
|
/* Tail dropping watermarks */
|
|
atop_tot = (ocelot->packet_buffer_size - 9 * maxlen) /
|
|
OCELOT_BUFFER_CELL_SZ;
|
|
atop = (9 * maxlen) / OCELOT_BUFFER_CELL_SZ;
|
|
ocelot_write_rix(ocelot, ocelot->ops->wm_enc(atop), SYS_ATOP, port);
|
|
ocelot_write(ocelot, ocelot->ops->wm_enc(atop_tot), SYS_ATOP_TOT_CFG);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_set_maxlen);
|
|
|
|
int ocelot_get_max_mtu(struct ocelot *ocelot, int port)
|
|
{
|
|
int max_mtu = 65535 - ETH_HLEN - ETH_FCS_LEN;
|
|
|
|
if (port == ocelot->npi) {
|
|
max_mtu -= OCELOT_TAG_LEN;
|
|
|
|
if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_SHORT)
|
|
max_mtu -= OCELOT_SHORT_PREFIX_LEN;
|
|
else if (ocelot->npi_inj_prefix == OCELOT_TAG_PREFIX_LONG)
|
|
max_mtu -= OCELOT_LONG_PREFIX_LEN;
|
|
}
|
|
|
|
return max_mtu;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_get_max_mtu);
|
|
|
|
static void ocelot_port_set_learning(struct ocelot *ocelot, int port,
|
|
bool enabled)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
u32 val = 0;
|
|
|
|
if (enabled)
|
|
val = ANA_PORT_PORT_CFG_LEARN_ENA;
|
|
|
|
ocelot_rmw_gix(ocelot, val, ANA_PORT_PORT_CFG_LEARN_ENA,
|
|
ANA_PORT_PORT_CFG, port);
|
|
|
|
ocelot_port->learn_ena = enabled;
|
|
}
|
|
|
|
static void ocelot_port_set_ucast_flood(struct ocelot *ocelot, int port,
|
|
bool enabled)
|
|
{
|
|
u32 val = 0;
|
|
|
|
if (enabled)
|
|
val = BIT(port);
|
|
|
|
ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_UC);
|
|
}
|
|
|
|
static void ocelot_port_set_mcast_flood(struct ocelot *ocelot, int port,
|
|
bool enabled)
|
|
{
|
|
u32 val = 0;
|
|
|
|
if (enabled)
|
|
val = BIT(port);
|
|
|
|
ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MC);
|
|
ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MCIPV4);
|
|
ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_MCIPV6);
|
|
}
|
|
|
|
static void ocelot_port_set_bcast_flood(struct ocelot *ocelot, int port,
|
|
bool enabled)
|
|
{
|
|
u32 val = 0;
|
|
|
|
if (enabled)
|
|
val = BIT(port);
|
|
|
|
ocelot_rmw_rix(ocelot, val, BIT(port), ANA_PGID_PGID, PGID_BC);
|
|
}
|
|
|
|
int ocelot_port_pre_bridge_flags(struct ocelot *ocelot, int port,
|
|
struct switchdev_brport_flags flags)
|
|
{
|
|
if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
|
|
BR_BCAST_FLOOD))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_pre_bridge_flags);
|
|
|
|
void ocelot_port_bridge_flags(struct ocelot *ocelot, int port,
|
|
struct switchdev_brport_flags flags)
|
|
{
|
|
if (port == ocelot->npi)
|
|
port = ocelot->num_phys_ports;
|
|
|
|
if (flags.mask & BR_LEARNING)
|
|
ocelot_port_set_learning(ocelot, port,
|
|
!!(flags.val & BR_LEARNING));
|
|
|
|
if (flags.mask & BR_FLOOD)
|
|
ocelot_port_set_ucast_flood(ocelot, port,
|
|
!!(flags.val & BR_FLOOD));
|
|
|
|
if (flags.mask & BR_MCAST_FLOOD)
|
|
ocelot_port_set_mcast_flood(ocelot, port,
|
|
!!(flags.val & BR_MCAST_FLOOD));
|
|
|
|
if (flags.mask & BR_BCAST_FLOOD)
|
|
ocelot_port_set_bcast_flood(ocelot, port,
|
|
!!(flags.val & BR_BCAST_FLOOD));
|
|
}
|
|
EXPORT_SYMBOL(ocelot_port_bridge_flags);
|
|
|
|
int ocelot_port_get_default_prio(struct ocelot *ocelot, int port)
|
|
{
|
|
int val = ocelot_read_gix(ocelot, ANA_PORT_QOS_CFG, port);
|
|
|
|
return ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL_X(val);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_get_default_prio);
|
|
|
|
int ocelot_port_set_default_prio(struct ocelot *ocelot, int port, u8 prio)
|
|
{
|
|
if (prio >= OCELOT_NUM_TC)
|
|
return -ERANGE;
|
|
|
|
ocelot_rmw_gix(ocelot,
|
|
ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL(prio),
|
|
ANA_PORT_QOS_CFG_QOS_DEFAULT_VAL_M,
|
|
ANA_PORT_QOS_CFG,
|
|
port);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_set_default_prio);
|
|
|
|
int ocelot_port_get_dscp_prio(struct ocelot *ocelot, int port, u8 dscp)
|
|
{
|
|
int qos_cfg = ocelot_read_gix(ocelot, ANA_PORT_QOS_CFG, port);
|
|
int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp);
|
|
|
|
/* Return error if DSCP prioritization isn't enabled */
|
|
if (!(qos_cfg & ANA_PORT_QOS_CFG_QOS_DSCP_ENA))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (qos_cfg & ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA) {
|
|
dscp = ANA_DSCP_CFG_DSCP_TRANSLATE_VAL_X(dscp_cfg);
|
|
/* Re-read ANA_DSCP_CFG for the translated DSCP */
|
|
dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp);
|
|
}
|
|
|
|
/* If the DSCP value is not trusted, the QoS classification falls back
|
|
* to VLAN PCP or port-based default.
|
|
*/
|
|
if (!(dscp_cfg & ANA_DSCP_CFG_DSCP_TRUST_ENA))
|
|
return -EOPNOTSUPP;
|
|
|
|
return ANA_DSCP_CFG_QOS_DSCP_VAL_X(dscp_cfg);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_get_dscp_prio);
|
|
|
|
int ocelot_port_add_dscp_prio(struct ocelot *ocelot, int port, u8 dscp, u8 prio)
|
|
{
|
|
int mask, val;
|
|
|
|
if (prio >= OCELOT_NUM_TC)
|
|
return -ERANGE;
|
|
|
|
/* There is at least one app table priority (this one), so we need to
|
|
* make sure DSCP prioritization is enabled on the port.
|
|
* Also make sure DSCP translation is disabled
|
|
* (dcbnl doesn't support it).
|
|
*/
|
|
mask = ANA_PORT_QOS_CFG_QOS_DSCP_ENA |
|
|
ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA;
|
|
|
|
ocelot_rmw_gix(ocelot, ANA_PORT_QOS_CFG_QOS_DSCP_ENA, mask,
|
|
ANA_PORT_QOS_CFG, port);
|
|
|
|
/* Trust this DSCP value and map it to the given QoS class */
|
|
val = ANA_DSCP_CFG_DSCP_TRUST_ENA | ANA_DSCP_CFG_QOS_DSCP_VAL(prio);
|
|
|
|
ocelot_write_rix(ocelot, val, ANA_DSCP_CFG, dscp);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_add_dscp_prio);
|
|
|
|
int ocelot_port_del_dscp_prio(struct ocelot *ocelot, int port, u8 dscp, u8 prio)
|
|
{
|
|
int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, dscp);
|
|
int mask, i;
|
|
|
|
/* During a "dcb app replace" command, the new app table entry will be
|
|
* added first, then the old one will be deleted. But the hardware only
|
|
* supports one QoS class per DSCP value (duh), so if we blindly delete
|
|
* the app table entry for this DSCP value, we end up deleting the
|
|
* entry with the new priority. Avoid that by checking whether user
|
|
* space wants to delete the priority which is currently configured, or
|
|
* something else which is no longer current.
|
|
*/
|
|
if (ANA_DSCP_CFG_QOS_DSCP_VAL_X(dscp_cfg) != prio)
|
|
return 0;
|
|
|
|
/* Untrust this DSCP value */
|
|
ocelot_write_rix(ocelot, 0, ANA_DSCP_CFG, dscp);
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
int dscp_cfg = ocelot_read_rix(ocelot, ANA_DSCP_CFG, i);
|
|
|
|
/* There are still app table entries on the port, so we need to
|
|
* keep DSCP enabled, nothing to do.
|
|
*/
|
|
if (dscp_cfg & ANA_DSCP_CFG_DSCP_TRUST_ENA)
|
|
return 0;
|
|
}
|
|
|
|
/* Disable DSCP QoS classification if there isn't any trusted
|
|
* DSCP value left.
|
|
*/
|
|
mask = ANA_PORT_QOS_CFG_QOS_DSCP_ENA |
|
|
ANA_PORT_QOS_CFG_DSCP_TRANSLATE_ENA;
|
|
|
|
ocelot_rmw_gix(ocelot, 0, mask, ANA_PORT_QOS_CFG, port);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_del_dscp_prio);
|
|
|
|
struct ocelot_mirror *ocelot_mirror_get(struct ocelot *ocelot, int to,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct ocelot_mirror *m = ocelot->mirror;
|
|
|
|
if (m) {
|
|
if (m->to != to) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Mirroring already configured towards different egress port");
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
refcount_inc(&m->refcount);
|
|
return m;
|
|
}
|
|
|
|
m = kzalloc(sizeof(*m), GFP_KERNEL);
|
|
if (!m)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
m->to = to;
|
|
refcount_set(&m->refcount, 1);
|
|
ocelot->mirror = m;
|
|
|
|
/* Program the mirror port to hardware */
|
|
ocelot_write(ocelot, BIT(to), ANA_MIRRORPORTS);
|
|
|
|
return m;
|
|
}
|
|
|
|
void ocelot_mirror_put(struct ocelot *ocelot)
|
|
{
|
|
struct ocelot_mirror *m = ocelot->mirror;
|
|
|
|
if (!refcount_dec_and_test(&m->refcount))
|
|
return;
|
|
|
|
ocelot_write(ocelot, 0, ANA_MIRRORPORTS);
|
|
ocelot->mirror = NULL;
|
|
kfree(m);
|
|
}
|
|
|
|
int ocelot_port_mirror_add(struct ocelot *ocelot, int from, int to,
|
|
bool ingress, struct netlink_ext_ack *extack)
|
|
{
|
|
struct ocelot_mirror *m = ocelot_mirror_get(ocelot, to, extack);
|
|
|
|
if (IS_ERR(m))
|
|
return PTR_ERR(m);
|
|
|
|
if (ingress) {
|
|
ocelot_rmw_gix(ocelot, ANA_PORT_PORT_CFG_SRC_MIRROR_ENA,
|
|
ANA_PORT_PORT_CFG_SRC_MIRROR_ENA,
|
|
ANA_PORT_PORT_CFG, from);
|
|
} else {
|
|
ocelot_rmw(ocelot, BIT(from), BIT(from),
|
|
ANA_EMIRRORPORTS);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_mirror_add);
|
|
|
|
void ocelot_port_mirror_del(struct ocelot *ocelot, int from, bool ingress)
|
|
{
|
|
if (ingress) {
|
|
ocelot_rmw_gix(ocelot, 0, ANA_PORT_PORT_CFG_SRC_MIRROR_ENA,
|
|
ANA_PORT_PORT_CFG, from);
|
|
} else {
|
|
ocelot_rmw(ocelot, 0, BIT(from), ANA_EMIRRORPORTS);
|
|
}
|
|
|
|
ocelot_mirror_put(ocelot);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ocelot_port_mirror_del);
|
|
|
|
void ocelot_init_port(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
skb_queue_head_init(&ocelot_port->tx_skbs);
|
|
|
|
/* Basic L2 initialization */
|
|
|
|
/* Set MAC IFG Gaps
|
|
* FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 0
|
|
* !FDX: TX_IFG = 5, RX_IFG1 = RX_IFG2 = 5
|
|
*/
|
|
ocelot_port_writel(ocelot_port, DEV_MAC_IFG_CFG_TX_IFG(5),
|
|
DEV_MAC_IFG_CFG);
|
|
|
|
/* Load seed (0) and set MAC HDX late collision */
|
|
ocelot_port_writel(ocelot_port, DEV_MAC_HDX_CFG_LATE_COL_POS(67) |
|
|
DEV_MAC_HDX_CFG_SEED_LOAD,
|
|
DEV_MAC_HDX_CFG);
|
|
mdelay(1);
|
|
ocelot_port_writel(ocelot_port, DEV_MAC_HDX_CFG_LATE_COL_POS(67),
|
|
DEV_MAC_HDX_CFG);
|
|
|
|
/* Set Max Length and maximum tags allowed */
|
|
ocelot_port_set_maxlen(ocelot, port, ETH_DATA_LEN);
|
|
ocelot_port_writel(ocelot_port, DEV_MAC_TAGS_CFG_TAG_ID(ETH_P_8021AD) |
|
|
DEV_MAC_TAGS_CFG_VLAN_AWR_ENA |
|
|
DEV_MAC_TAGS_CFG_VLAN_DBL_AWR_ENA |
|
|
DEV_MAC_TAGS_CFG_VLAN_LEN_AWR_ENA,
|
|
DEV_MAC_TAGS_CFG);
|
|
|
|
/* Set SMAC of Pause frame (00:00:00:00:00:00) */
|
|
ocelot_port_writel(ocelot_port, 0, DEV_MAC_FC_MAC_HIGH_CFG);
|
|
ocelot_port_writel(ocelot_port, 0, DEV_MAC_FC_MAC_LOW_CFG);
|
|
|
|
/* Enable transmission of pause frames */
|
|
ocelot_fields_write(ocelot, port, SYS_PAUSE_CFG_PAUSE_ENA, 1);
|
|
|
|
/* Drop frames with multicast source address */
|
|
ocelot_rmw_gix(ocelot, ANA_PORT_DROP_CFG_DROP_MC_SMAC_ENA,
|
|
ANA_PORT_DROP_CFG_DROP_MC_SMAC_ENA,
|
|
ANA_PORT_DROP_CFG, port);
|
|
|
|
/* Set default VLAN and tag type to 8021Q. */
|
|
ocelot_rmw_gix(ocelot, REW_PORT_VLAN_CFG_PORT_TPID(ETH_P_8021Q),
|
|
REW_PORT_VLAN_CFG_PORT_TPID_M,
|
|
REW_PORT_VLAN_CFG, port);
|
|
|
|
/* Disable source address learning for standalone mode */
|
|
ocelot_port_set_learning(ocelot, port, false);
|
|
|
|
/* Set the port's initial logical port ID value, enable receiving
|
|
* frames on it, and configure the MAC address learning type to
|
|
* automatic.
|
|
*/
|
|
ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_LEARNAUTO |
|
|
ANA_PORT_PORT_CFG_RECV_ENA |
|
|
ANA_PORT_PORT_CFG_PORTID_VAL(port),
|
|
ANA_PORT_PORT_CFG, port);
|
|
|
|
/* Enable vcap lookups */
|
|
ocelot_vcap_enable(ocelot, port);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_init_port);
|
|
|
|
/* Configure and enable the CPU port module, which is a set of queues
|
|
* accessible through register MMIO, frame DMA or Ethernet (in case
|
|
* NPI mode is used).
|
|
*/
|
|
static void ocelot_cpu_port_init(struct ocelot *ocelot)
|
|
{
|
|
int cpu = ocelot->num_phys_ports;
|
|
|
|
/* The unicast destination PGID for the CPU port module is unused */
|
|
ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, cpu);
|
|
/* Instead set up a multicast destination PGID for traffic copied to
|
|
* the CPU. Whitelisted MAC addresses like the port netdevice MAC
|
|
* addresses will be copied to the CPU via this PGID.
|
|
*/
|
|
ocelot_write_rix(ocelot, BIT(cpu), ANA_PGID_PGID, PGID_CPU);
|
|
ocelot_write_gix(ocelot, ANA_PORT_PORT_CFG_RECV_ENA |
|
|
ANA_PORT_PORT_CFG_PORTID_VAL(cpu),
|
|
ANA_PORT_PORT_CFG, cpu);
|
|
|
|
/* Enable CPU port module */
|
|
ocelot_fields_write(ocelot, cpu, QSYS_SWITCH_PORT_MODE_PORT_ENA, 1);
|
|
/* CPU port Injection/Extraction configuration */
|
|
ocelot_fields_write(ocelot, cpu, SYS_PORT_MODE_INCL_XTR_HDR,
|
|
OCELOT_TAG_PREFIX_NONE);
|
|
ocelot_fields_write(ocelot, cpu, SYS_PORT_MODE_INCL_INJ_HDR,
|
|
OCELOT_TAG_PREFIX_NONE);
|
|
|
|
/* Configure the CPU port to be VLAN aware */
|
|
ocelot_write_gix(ocelot,
|
|
ANA_PORT_VLAN_CFG_VLAN_VID(OCELOT_STANDALONE_PVID) |
|
|
ANA_PORT_VLAN_CFG_VLAN_AWARE_ENA |
|
|
ANA_PORT_VLAN_CFG_VLAN_POP_CNT(1),
|
|
ANA_PORT_VLAN_CFG, cpu);
|
|
}
|
|
|
|
static void ocelot_detect_features(struct ocelot *ocelot)
|
|
{
|
|
int mmgt, eq_ctrl;
|
|
|
|
/* For Ocelot, Felix, Seville, Serval etc, SYS:MMGT:MMGT:FREECNT holds
|
|
* the number of 240-byte free memory words (aka 4-cell chunks) and not
|
|
* 192 bytes as the documentation incorrectly says.
|
|
*/
|
|
mmgt = ocelot_read(ocelot, SYS_MMGT);
|
|
ocelot->packet_buffer_size = 240 * SYS_MMGT_FREECNT(mmgt);
|
|
|
|
eq_ctrl = ocelot_read(ocelot, QSYS_EQ_CTRL);
|
|
ocelot->num_frame_refs = QSYS_MMGT_EQ_CTRL_FP_FREE_CNT(eq_ctrl);
|
|
}
|
|
|
|
int ocelot_init(struct ocelot *ocelot)
|
|
{
|
|
char queue_name[32];
|
|
int i, ret;
|
|
u32 port;
|
|
|
|
if (ocelot->ops->reset) {
|
|
ret = ocelot->ops->reset(ocelot);
|
|
if (ret) {
|
|
dev_err(ocelot->dev, "Switch reset failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ocelot->stats = devm_kcalloc(ocelot->dev,
|
|
ocelot->num_phys_ports * ocelot->num_stats,
|
|
sizeof(u64), GFP_KERNEL);
|
|
if (!ocelot->stats)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&ocelot->stats_lock);
|
|
mutex_init(&ocelot->ptp_lock);
|
|
mutex_init(&ocelot->mact_lock);
|
|
mutex_init(&ocelot->fwd_domain_lock);
|
|
spin_lock_init(&ocelot->ptp_clock_lock);
|
|
spin_lock_init(&ocelot->ts_id_lock);
|
|
snprintf(queue_name, sizeof(queue_name), "%s-stats",
|
|
dev_name(ocelot->dev));
|
|
ocelot->stats_queue = create_singlethread_workqueue(queue_name);
|
|
if (!ocelot->stats_queue)
|
|
return -ENOMEM;
|
|
|
|
ocelot->owq = alloc_ordered_workqueue("ocelot-owq", 0);
|
|
if (!ocelot->owq) {
|
|
destroy_workqueue(ocelot->stats_queue);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ocelot->multicast);
|
|
INIT_LIST_HEAD(&ocelot->pgids);
|
|
INIT_LIST_HEAD(&ocelot->vlans);
|
|
INIT_LIST_HEAD(&ocelot->lag_fdbs);
|
|
ocelot_detect_features(ocelot);
|
|
ocelot_mact_init(ocelot);
|
|
ocelot_vlan_init(ocelot);
|
|
ocelot_vcap_init(ocelot);
|
|
ocelot_cpu_port_init(ocelot);
|
|
|
|
if (ocelot->ops->psfp_init)
|
|
ocelot->ops->psfp_init(ocelot);
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
/* Clear all counters (5 groups) */
|
|
ocelot_write(ocelot, SYS_STAT_CFG_STAT_VIEW(port) |
|
|
SYS_STAT_CFG_STAT_CLEAR_SHOT(0x7f),
|
|
SYS_STAT_CFG);
|
|
}
|
|
|
|
/* Only use S-Tag */
|
|
ocelot_write(ocelot, ETH_P_8021AD, SYS_VLAN_ETYPE_CFG);
|
|
|
|
/* Aggregation mode */
|
|
ocelot_write(ocelot, ANA_AGGR_CFG_AC_SMAC_ENA |
|
|
ANA_AGGR_CFG_AC_DMAC_ENA |
|
|
ANA_AGGR_CFG_AC_IP4_SIPDIP_ENA |
|
|
ANA_AGGR_CFG_AC_IP4_TCPUDP_ENA |
|
|
ANA_AGGR_CFG_AC_IP6_FLOW_LBL_ENA |
|
|
ANA_AGGR_CFG_AC_IP6_TCPUDP_ENA,
|
|
ANA_AGGR_CFG);
|
|
|
|
/* Set MAC age time to default value. The entry is aged after
|
|
* 2*AGE_PERIOD
|
|
*/
|
|
ocelot_write(ocelot,
|
|
ANA_AUTOAGE_AGE_PERIOD(BR_DEFAULT_AGEING_TIME / 2 / HZ),
|
|
ANA_AUTOAGE);
|
|
|
|
/* Disable learning for frames discarded by VLAN ingress filtering */
|
|
regmap_field_write(ocelot->regfields[ANA_ADVLEARN_VLAN_CHK], 1);
|
|
|
|
/* Setup frame ageing - fixed value "2 sec" - in 6.5 us units */
|
|
ocelot_write(ocelot, SYS_FRM_AGING_AGE_TX_ENA |
|
|
SYS_FRM_AGING_MAX_AGE(307692), SYS_FRM_AGING);
|
|
|
|
/* Setup flooding PGIDs */
|
|
for (i = 0; i < ocelot->num_flooding_pgids; i++)
|
|
ocelot_write_rix(ocelot, ANA_FLOODING_FLD_MULTICAST(PGID_MC) |
|
|
ANA_FLOODING_FLD_BROADCAST(PGID_BC) |
|
|
ANA_FLOODING_FLD_UNICAST(PGID_UC),
|
|
ANA_FLOODING, i);
|
|
ocelot_write(ocelot, ANA_FLOODING_IPMC_FLD_MC6_DATA(PGID_MCIPV6) |
|
|
ANA_FLOODING_IPMC_FLD_MC6_CTRL(PGID_MC) |
|
|
ANA_FLOODING_IPMC_FLD_MC4_DATA(PGID_MCIPV4) |
|
|
ANA_FLOODING_IPMC_FLD_MC4_CTRL(PGID_MC),
|
|
ANA_FLOODING_IPMC);
|
|
|
|
for (port = 0; port < ocelot->num_phys_ports; port++) {
|
|
/* Transmit the frame to the local port. */
|
|
ocelot_write_rix(ocelot, BIT(port), ANA_PGID_PGID, port);
|
|
/* Do not forward BPDU frames to the front ports. */
|
|
ocelot_write_gix(ocelot,
|
|
ANA_PORT_CPU_FWD_BPDU_CFG_BPDU_REDIR_ENA(0xffff),
|
|
ANA_PORT_CPU_FWD_BPDU_CFG,
|
|
port);
|
|
/* Ensure bridging is disabled */
|
|
ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_SRC + port);
|
|
}
|
|
|
|
for_each_nonreserved_multicast_dest_pgid(ocelot, i) {
|
|
u32 val = ANA_PGID_PGID_PGID(GENMASK(ocelot->num_phys_ports - 1, 0));
|
|
|
|
ocelot_write_rix(ocelot, val, ANA_PGID_PGID, i);
|
|
}
|
|
|
|
ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_BLACKHOLE);
|
|
|
|
/* Allow broadcast and unknown L2 multicast to the CPU. */
|
|
ocelot_rmw_rix(ocelot, ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)),
|
|
ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)),
|
|
ANA_PGID_PGID, PGID_MC);
|
|
ocelot_rmw_rix(ocelot, ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)),
|
|
ANA_PGID_PGID_PGID(BIT(ocelot->num_phys_ports)),
|
|
ANA_PGID_PGID, PGID_BC);
|
|
ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV4);
|
|
ocelot_write_rix(ocelot, 0, ANA_PGID_PGID, PGID_MCIPV6);
|
|
|
|
/* Allow manual injection via DEVCPU_QS registers, and byte swap these
|
|
* registers endianness.
|
|
*/
|
|
ocelot_write_rix(ocelot, QS_INJ_GRP_CFG_BYTE_SWAP |
|
|
QS_INJ_GRP_CFG_MODE(1), QS_INJ_GRP_CFG, 0);
|
|
ocelot_write_rix(ocelot, QS_XTR_GRP_CFG_BYTE_SWAP |
|
|
QS_XTR_GRP_CFG_MODE(1), QS_XTR_GRP_CFG, 0);
|
|
ocelot_write(ocelot, ANA_CPUQ_CFG_CPUQ_MIRROR(2) |
|
|
ANA_CPUQ_CFG_CPUQ_LRN(2) |
|
|
ANA_CPUQ_CFG_CPUQ_MAC_COPY(2) |
|
|
ANA_CPUQ_CFG_CPUQ_SRC_COPY(2) |
|
|
ANA_CPUQ_CFG_CPUQ_LOCKED_PORTMOVE(2) |
|
|
ANA_CPUQ_CFG_CPUQ_ALLBRIDGE(6) |
|
|
ANA_CPUQ_CFG_CPUQ_IPMC_CTRL(6) |
|
|
ANA_CPUQ_CFG_CPUQ_IGMP(6) |
|
|
ANA_CPUQ_CFG_CPUQ_MLD(6), ANA_CPUQ_CFG);
|
|
for (i = 0; i < 16; i++)
|
|
ocelot_write_rix(ocelot, ANA_CPUQ_8021_CFG_CPUQ_GARP_VAL(6) |
|
|
ANA_CPUQ_8021_CFG_CPUQ_BPDU_VAL(6),
|
|
ANA_CPUQ_8021_CFG, i);
|
|
|
|
ret = ocelot_prepare_stats_regions(ocelot);
|
|
if (ret) {
|
|
destroy_workqueue(ocelot->stats_queue);
|
|
destroy_workqueue(ocelot->owq);
|
|
return ret;
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&ocelot->stats_work, ocelot_check_stats_work);
|
|
queue_delayed_work(ocelot->stats_queue, &ocelot->stats_work,
|
|
OCELOT_STATS_CHECK_DELAY);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ocelot_init);
|
|
|
|
void ocelot_deinit(struct ocelot *ocelot)
|
|
{
|
|
cancel_delayed_work(&ocelot->stats_work);
|
|
destroy_workqueue(ocelot->stats_queue);
|
|
destroy_workqueue(ocelot->owq);
|
|
mutex_destroy(&ocelot->stats_lock);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_deinit);
|
|
|
|
void ocelot_deinit_port(struct ocelot *ocelot, int port)
|
|
{
|
|
struct ocelot_port *ocelot_port = ocelot->ports[port];
|
|
|
|
skb_queue_purge(&ocelot_port->tx_skbs);
|
|
}
|
|
EXPORT_SYMBOL(ocelot_deinit_port);
|
|
|
|
MODULE_LICENSE("Dual MIT/GPL");
|