1743 lines
49 KiB
C
1743 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* RSS and Classifier helpers for Marvell PPv2 Network Controller
|
|
*
|
|
* Copyright (C) 2014 Marvell
|
|
*
|
|
* Marcin Wojtas <mw@semihalf.com>
|
|
*/
|
|
|
|
#include "mvpp2.h"
|
|
#include "mvpp2_cls.h"
|
|
#include "mvpp2_prs.h"
|
|
|
|
#define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask) \
|
|
{ \
|
|
.flow_type = _type, \
|
|
.flow_id = _id, \
|
|
.supported_hash_opts = _opts, \
|
|
.prs_ri = { \
|
|
.ri = _ri, \
|
|
.ri_mask = _ri_mask \
|
|
} \
|
|
}
|
|
|
|
static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
|
|
/* TCP over IPv4 flows, Not fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* TCP over IPv4 flows, Not fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* TCP over IPv4 flows, fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* TCP over IPv4 flows, fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* UDP over IPv4 flows, Not fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* UDP over IPv4 flows, Not fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* UDP over IPv4 flows, fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* UDP over IPv4 flows, fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* TCP over IPv6 flows, not fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* TCP over IPv6 flows, not fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* TCP over IPv6 flows, fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
|
|
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
|
|
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* TCP over IPv6 flows, fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
|
|
MVPP2_PRS_RI_L4_TCP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* UDP over IPv6 flows, not fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_5T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* UDP over IPv6 flows, not fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
|
|
MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* UDP over IPv6 flows, fragmented, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
|
|
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
|
|
MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
|
|
|
|
/* UDP over IPv6 flows, fragmented, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
|
|
MVPP2_PRS_RI_L4_UDP,
|
|
MVPP2_PRS_IP_MASK),
|
|
|
|
/* IPv4 flows, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
|
|
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
|
|
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
|
|
MVPP22_CLS_HEK_IP4_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
|
|
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
|
|
/* IPv4 flows, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4,
|
|
MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OPT,
|
|
MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
|
|
MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP4_OTHER,
|
|
MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
|
|
/* IPv6 flows, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
|
|
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
|
|
MVPP22_CLS_HEK_IP6_2T,
|
|
MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
|
|
MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
|
|
/* IPv6 flows, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6,
|
|
MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
|
|
MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
|
|
MVPP2_PRS_RI_L3_IP6,
|
|
MVPP2_PRS_RI_L3_PROTO_MASK),
|
|
|
|
/* Non IP flow, no vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
|
|
0,
|
|
MVPP2_PRS_RI_VLAN_NONE,
|
|
MVPP2_PRS_RI_VLAN_MASK),
|
|
/* Non IP flow, with vlan tag */
|
|
MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
|
|
MVPP22_CLS_HEK_OPT_VLAN,
|
|
0, 0),
|
|
};
|
|
|
|
u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
|
|
{
|
|
mvpp2_write(priv, MVPP2_CTRS_IDX, index);
|
|
|
|
return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
|
|
}
|
|
|
|
void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
|
|
struct mvpp2_cls_flow_entry *fe)
|
|
{
|
|
fe->index = index;
|
|
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
|
|
fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
|
|
fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
|
|
fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
|
|
}
|
|
|
|
/* Update classification flow table registers */
|
|
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
|
|
struct mvpp2_cls_flow_entry *fe)
|
|
{
|
|
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
|
|
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
|
|
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
|
|
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
|
|
}
|
|
|
|
u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
|
|
{
|
|
mvpp2_write(priv, MVPP2_CTRS_IDX, index);
|
|
|
|
return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
|
|
}
|
|
|
|
void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
|
|
struct mvpp2_cls_lookup_entry *le)
|
|
{
|
|
u32 val;
|
|
|
|
val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
|
|
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
|
|
le->way = way;
|
|
le->lkpid = lkpid;
|
|
le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
|
|
}
|
|
|
|
/* Update classification lookup table register */
|
|
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
|
|
struct mvpp2_cls_lookup_entry *le)
|
|
{
|
|
u32 val;
|
|
|
|
val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
|
|
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
|
|
mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
|
|
}
|
|
|
|
/* Operations on flow entry */
|
|
static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
|
|
{
|
|
return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
|
|
}
|
|
|
|
static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
|
|
int num_of_fields)
|
|
{
|
|
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
|
|
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
|
|
}
|
|
|
|
static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
|
|
int field_index)
|
|
{
|
|
return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
|
|
MVPP2_CLS_FLOW_TBL2_FLD_MASK;
|
|
}
|
|
|
|
static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
|
|
int field_index, int field_id)
|
|
{
|
|
fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
|
|
MVPP2_CLS_FLOW_TBL2_FLD_MASK);
|
|
fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
|
|
}
|
|
|
|
static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
|
|
int engine)
|
|
{
|
|
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
|
|
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
|
|
}
|
|
|
|
int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
|
|
{
|
|
return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
|
|
MVPP2_CLS_FLOW_TBL0_ENG_MASK;
|
|
}
|
|
|
|
static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
|
|
bool from_packet)
|
|
{
|
|
if (from_packet)
|
|
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
|
|
else
|
|
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
|
|
}
|
|
|
|
static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
|
|
bool is_last)
|
|
{
|
|
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
|
|
fe->data[0] |= !!is_last;
|
|
}
|
|
|
|
static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
|
|
{
|
|
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
|
|
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
|
|
}
|
|
|
|
static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
|
|
u32 port)
|
|
{
|
|
fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
|
|
}
|
|
|
|
static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
|
|
u32 port)
|
|
{
|
|
fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
|
|
}
|
|
|
|
static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
|
|
u8 lu_type)
|
|
{
|
|
fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
|
|
fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
|
|
}
|
|
|
|
/* Initialize the parser entry for the given flow */
|
|
static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
|
|
const struct mvpp2_cls_flow *flow)
|
|
{
|
|
mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
|
|
flow->prs_ri.ri_mask);
|
|
}
|
|
|
|
/* Initialize the Lookup Id table entry for the given flow */
|
|
static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
|
|
const struct mvpp2_cls_flow *flow)
|
|
{
|
|
struct mvpp2_cls_lookup_entry le;
|
|
|
|
le.way = 0;
|
|
le.lkpid = flow->flow_id;
|
|
|
|
/* The default RxQ for this port is set in the C2 lookup */
|
|
le.data = 0;
|
|
|
|
/* We point on the first lookup in the sequence for the flow, that is
|
|
* the C2 lookup.
|
|
*/
|
|
le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
|
|
|
|
/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
|
|
le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
|
|
|
|
mvpp2_cls_lookup_write(priv, &le);
|
|
}
|
|
|
|
static void mvpp2_cls_c2_write(struct mvpp2 *priv,
|
|
struct mvpp2_cls_c2_entry *c2)
|
|
{
|
|
u32 val;
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
|
|
|
|
val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
|
|
if (c2->valid)
|
|
val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
|
|
else
|
|
val |= MVPP22_CLS_C2_TCAM_INV_BIT;
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
|
|
|
|
mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
|
|
|
|
mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
|
|
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
|
|
/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
|
|
}
|
|
|
|
void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
|
|
struct mvpp2_cls_c2_entry *c2)
|
|
{
|
|
u32 val;
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
|
|
|
|
c2->index = index;
|
|
|
|
c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
|
|
c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
|
|
c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
|
|
c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
|
|
c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
|
|
|
|
c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
|
|
|
|
c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
|
|
c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
|
|
c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
|
|
c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
|
|
|
|
val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
|
|
c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
|
|
}
|
|
|
|
static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
|
|
{
|
|
switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
|
|
case ETHER_FLOW:
|
|
return MVPP22_FLOW_ETHERNET;
|
|
case TCP_V4_FLOW:
|
|
return MVPP22_FLOW_TCP4;
|
|
case TCP_V6_FLOW:
|
|
return MVPP22_FLOW_TCP6;
|
|
case UDP_V4_FLOW:
|
|
return MVPP22_FLOW_UDP4;
|
|
case UDP_V6_FLOW:
|
|
return MVPP22_FLOW_UDP6;
|
|
case IPV4_FLOW:
|
|
return MVPP22_FLOW_IP4;
|
|
case IPV6_FLOW:
|
|
return MVPP22_FLOW_IP6;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
|
|
{
|
|
return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
|
|
}
|
|
|
|
/* Initialize the flow table entries for the given flow */
|
|
static void mvpp2_cls_flow_init(struct mvpp2 *priv,
|
|
const struct mvpp2_cls_flow *flow)
|
|
{
|
|
struct mvpp2_cls_flow_entry fe;
|
|
int i, pri = 0;
|
|
|
|
/* Assign default values to all entries in the flow */
|
|
for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
|
|
i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
|
|
memset(&fe, 0, sizeof(fe));
|
|
fe.index = i;
|
|
mvpp2_cls_flow_pri_set(&fe, pri++);
|
|
|
|
if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
|
|
mvpp2_cls_flow_last_set(&fe, 1);
|
|
|
|
mvpp2_cls_flow_write(priv, &fe);
|
|
}
|
|
|
|
/* RSS config C2 lookup */
|
|
mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
|
|
&fe);
|
|
|
|
mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
|
|
mvpp2_cls_flow_port_id_sel(&fe, true);
|
|
mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
|
|
|
|
/* Add all ports */
|
|
for (i = 0; i < MVPP2_MAX_PORTS; i++)
|
|
mvpp2_cls_flow_port_add(&fe, BIT(i));
|
|
|
|
mvpp2_cls_flow_write(priv, &fe);
|
|
|
|
/* C3Hx lookups */
|
|
for (i = 0; i < MVPP2_MAX_PORTS; i++) {
|
|
mvpp2_cls_flow_read(priv,
|
|
MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
|
|
&fe);
|
|
|
|
/* Set a default engine. Will be overwritten when setting the
|
|
* real HEK parameters
|
|
*/
|
|
mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
|
|
mvpp2_cls_flow_port_id_sel(&fe, true);
|
|
mvpp2_cls_flow_port_add(&fe, BIT(i));
|
|
|
|
mvpp2_cls_flow_write(priv, &fe);
|
|
}
|
|
}
|
|
|
|
/* Adds a field to the Header Extracted Key generation parameters*/
|
|
static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
|
|
u32 field_id)
|
|
{
|
|
int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
|
|
|
|
if (nb_fields == MVPP2_FLOW_N_FIELDS)
|
|
return -EINVAL;
|
|
|
|
mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
|
|
|
|
mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
|
|
unsigned long hash_opts)
|
|
{
|
|
u32 field_id;
|
|
int i;
|
|
|
|
/* Clear old fields */
|
|
mvpp2_cls_flow_hek_num_set(fe, 0);
|
|
fe->data[2] = 0;
|
|
|
|
for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
|
|
switch (BIT(i)) {
|
|
case MVPP22_CLS_HEK_OPT_MAC_DA:
|
|
field_id = MVPP22_CLS_FIELD_MAC_DA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_VLAN:
|
|
field_id = MVPP22_CLS_FIELD_VLAN;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_VLAN_PRI:
|
|
field_id = MVPP22_CLS_FIELD_VLAN_PRI;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP4SA:
|
|
field_id = MVPP22_CLS_FIELD_IP4SA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP4DA:
|
|
field_id = MVPP22_CLS_FIELD_IP4DA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP6SA:
|
|
field_id = MVPP22_CLS_FIELD_IP6SA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP6DA:
|
|
field_id = MVPP22_CLS_FIELD_IP6DA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_L4SIP:
|
|
field_id = MVPP22_CLS_FIELD_L4SIP;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_L4DIP:
|
|
field_id = MVPP22_CLS_FIELD_L4DIP;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (mvpp2_flow_add_hek_field(fe, field_id))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Returns the size, in bits, of the corresponding HEK field */
|
|
static int mvpp2_cls_hek_field_size(u32 field)
|
|
{
|
|
switch (field) {
|
|
case MVPP22_CLS_HEK_OPT_MAC_DA:
|
|
return 48;
|
|
case MVPP22_CLS_HEK_OPT_VLAN:
|
|
return 12;
|
|
case MVPP22_CLS_HEK_OPT_VLAN_PRI:
|
|
return 3;
|
|
case MVPP22_CLS_HEK_OPT_IP4SA:
|
|
case MVPP22_CLS_HEK_OPT_IP4DA:
|
|
return 32;
|
|
case MVPP22_CLS_HEK_OPT_IP6SA:
|
|
case MVPP22_CLS_HEK_OPT_IP6DA:
|
|
return 128;
|
|
case MVPP22_CLS_HEK_OPT_L4SIP:
|
|
case MVPP22_CLS_HEK_OPT_L4DIP:
|
|
return 16;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
|
|
{
|
|
if (flow >= MVPP2_N_PRS_FLOWS)
|
|
return NULL;
|
|
|
|
return &cls_flows[flow];
|
|
}
|
|
|
|
/* Set the hash generation options for the given traffic flow.
|
|
* One traffic flow (in the ethtool sense) has multiple classification flows,
|
|
* to handle specific cases such as fragmentation, or the presence of a
|
|
* VLAN / DSA Tag.
|
|
*
|
|
* Each of these individual flows has different constraints, for example we
|
|
* can't hash fragmented packets on L4 data (else we would risk having packet
|
|
* re-ordering), so each classification flows masks the options with their
|
|
* supported ones.
|
|
*
|
|
*/
|
|
static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
|
|
u16 requested_opts)
|
|
{
|
|
const struct mvpp2_cls_flow *flow;
|
|
struct mvpp2_cls_flow_entry fe;
|
|
int i, engine, flow_index;
|
|
u16 hash_opts;
|
|
|
|
for_each_cls_flow_id_with_type(i, flow_type) {
|
|
flow = mvpp2_cls_flow_get(i);
|
|
if (!flow)
|
|
return -EINVAL;
|
|
|
|
flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
|
|
|
|
mvpp2_cls_flow_read(port->priv, flow_index, &fe);
|
|
|
|
hash_opts = flow->supported_hash_opts & requested_opts;
|
|
|
|
/* Use C3HB engine to access L4 infos. This adds L4 infos to the
|
|
* hash parameters
|
|
*/
|
|
if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
|
|
engine = MVPP22_CLS_ENGINE_C3HB;
|
|
else
|
|
engine = MVPP22_CLS_ENGINE_C3HA;
|
|
|
|
if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
|
|
return -EINVAL;
|
|
|
|
mvpp2_cls_flow_eng_set(&fe, engine);
|
|
|
|
mvpp2_cls_flow_write(port->priv, &fe);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
|
|
{
|
|
u16 hash_opts = 0;
|
|
int n_fields, i, field;
|
|
|
|
n_fields = mvpp2_cls_flow_hek_num_get(fe);
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
field = mvpp2_cls_flow_hek_get(fe, i);
|
|
|
|
switch (field) {
|
|
case MVPP22_CLS_FIELD_MAC_DA:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
|
|
break;
|
|
case MVPP22_CLS_FIELD_VLAN:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
|
|
break;
|
|
case MVPP22_CLS_FIELD_VLAN_PRI:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
|
|
break;
|
|
case MVPP22_CLS_FIELD_L3_PROTO:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
|
|
break;
|
|
case MVPP22_CLS_FIELD_IP4SA:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
|
|
break;
|
|
case MVPP22_CLS_FIELD_IP4DA:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
|
|
break;
|
|
case MVPP22_CLS_FIELD_IP6SA:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
|
|
break;
|
|
case MVPP22_CLS_FIELD_IP6DA:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
|
|
break;
|
|
case MVPP22_CLS_FIELD_L4SIP:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
|
|
break;
|
|
case MVPP22_CLS_FIELD_L4DIP:
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return hash_opts;
|
|
}
|
|
|
|
/* Returns the hash opts for this flow. There are several classifier flows
|
|
* for one traffic flow, this returns an aggregation of all configurations.
|
|
*/
|
|
static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
|
|
{
|
|
const struct mvpp2_cls_flow *flow;
|
|
struct mvpp2_cls_flow_entry fe;
|
|
int i, flow_index;
|
|
u16 hash_opts = 0;
|
|
|
|
for_each_cls_flow_id_with_type(i, flow_type) {
|
|
flow = mvpp2_cls_flow_get(i);
|
|
if (!flow)
|
|
return 0;
|
|
|
|
flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
|
|
|
|
mvpp2_cls_flow_read(port->priv, flow_index, &fe);
|
|
|
|
hash_opts |= mvpp2_flow_get_hek_fields(&fe);
|
|
}
|
|
|
|
return hash_opts;
|
|
}
|
|
|
|
static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
|
|
{
|
|
const struct mvpp2_cls_flow *flow;
|
|
int i;
|
|
|
|
for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
|
|
flow = mvpp2_cls_flow_get(i);
|
|
if (!flow)
|
|
break;
|
|
|
|
mvpp2_cls_flow_prs_init(priv, flow);
|
|
mvpp2_cls_flow_lkp_init(priv, flow);
|
|
mvpp2_cls_flow_init(priv, flow);
|
|
}
|
|
}
|
|
|
|
static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
|
|
{
|
|
struct mvpp2_cls_c2_entry c2;
|
|
u8 qh, ql, pmap;
|
|
|
|
memset(&c2, 0, sizeof(c2));
|
|
|
|
c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
|
|
|
|
pmap = BIT(port->id);
|
|
c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
|
|
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
|
|
|
|
/* Match on Lookup Type */
|
|
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
|
|
c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
|
|
|
|
/* Update RSS status after matching this entry */
|
|
c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
|
|
|
|
/* Mark packet as "forwarded to software", needed for RSS */
|
|
c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
|
|
|
|
/* Configure the default rx queue : Update Queue Low and Queue High, but
|
|
* don't lock, since the rx queue selection might be overridden by RSS
|
|
*/
|
|
c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
|
|
MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
|
|
|
|
qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
|
|
ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
|
|
|
|
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
|
|
MVPP22_CLS_C2_ATTR0_QLOW(ql);
|
|
|
|
c2.valid = true;
|
|
|
|
mvpp2_cls_c2_write(port->priv, &c2);
|
|
}
|
|
|
|
/* Classifier default initialization */
|
|
void mvpp2_cls_init(struct mvpp2 *priv)
|
|
{
|
|
struct mvpp2_cls_lookup_entry le;
|
|
struct mvpp2_cls_flow_entry fe;
|
|
struct mvpp2_cls_c2_entry c2;
|
|
int index;
|
|
|
|
/* Enable classifier */
|
|
mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
|
|
|
|
/* Clear classifier flow table */
|
|
memset(&fe.data, 0, sizeof(fe.data));
|
|
for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
|
|
fe.index = index;
|
|
mvpp2_cls_flow_write(priv, &fe);
|
|
}
|
|
|
|
/* Clear classifier lookup table */
|
|
le.data = 0;
|
|
for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
|
|
le.lkpid = index;
|
|
le.way = 0;
|
|
mvpp2_cls_lookup_write(priv, &le);
|
|
|
|
le.way = 1;
|
|
mvpp2_cls_lookup_write(priv, &le);
|
|
}
|
|
|
|
/* Clear C2 TCAM engine table */
|
|
memset(&c2, 0, sizeof(c2));
|
|
c2.valid = false;
|
|
for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
|
|
c2.index = index;
|
|
mvpp2_cls_c2_write(priv, &c2);
|
|
}
|
|
|
|
/* Disable the FIFO stages in C2 engine, which are only used in BIST
|
|
* mode
|
|
*/
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
|
|
MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
|
|
|
|
mvpp2_cls_port_init_flows(priv);
|
|
}
|
|
|
|
void mvpp2_cls_port_config(struct mvpp2_port *port)
|
|
{
|
|
struct mvpp2_cls_lookup_entry le;
|
|
u32 val;
|
|
|
|
/* Set way for the port */
|
|
val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
|
|
val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
|
|
mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
|
|
|
|
/* Pick the entry to be accessed in lookup ID decoding table
|
|
* according to the way and lkpid.
|
|
*/
|
|
le.lkpid = port->id;
|
|
le.way = 0;
|
|
le.data = 0;
|
|
|
|
/* Set initial CPU queue for receiving packets */
|
|
le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
|
|
le.data |= port->first_rxq;
|
|
|
|
/* Disable classification engines */
|
|
le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
|
|
|
|
/* Update lookup ID table entry */
|
|
mvpp2_cls_lookup_write(port->priv, &le);
|
|
|
|
mvpp2_port_c2_cls_init(port);
|
|
}
|
|
|
|
u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
|
|
{
|
|
mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
|
|
|
|
return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
|
|
}
|
|
|
|
static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
|
|
{
|
|
struct mvpp2_cls_c2_entry c2;
|
|
u8 qh, ql;
|
|
|
|
mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
|
|
|
|
/* The RxQ number is used to select the RSS table. It that case, we set
|
|
* it to be the ctx number.
|
|
*/
|
|
qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
|
|
ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
|
|
|
|
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
|
|
MVPP22_CLS_C2_ATTR0_QLOW(ql);
|
|
|
|
c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
|
|
|
|
mvpp2_cls_c2_write(port->priv, &c2);
|
|
}
|
|
|
|
static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
|
|
{
|
|
struct mvpp2_cls_c2_entry c2;
|
|
u8 qh, ql;
|
|
|
|
mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
|
|
|
|
/* Reset the default destination RxQ to the port's first rx queue. */
|
|
qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
|
|
ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
|
|
|
|
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
|
|
MVPP22_CLS_C2_ATTR0_QLOW(ql);
|
|
|
|
c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
|
|
|
|
mvpp2_cls_c2_write(port->priv, &c2);
|
|
}
|
|
|
|
static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
|
|
{
|
|
return port->rss_ctx[port_rss_ctx];
|
|
}
|
|
|
|
int mvpp22_port_rss_enable(struct mvpp2_port *port)
|
|
{
|
|
if (mvpp22_rss_ctx(port, 0) < 0)
|
|
return -EINVAL;
|
|
|
|
mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp22_port_rss_disable(struct mvpp2_port *port)
|
|
{
|
|
if (mvpp22_rss_ctx(port, 0) < 0)
|
|
return -EINVAL;
|
|
|
|
mvpp2_rss_port_c2_disable(port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
|
|
{
|
|
struct mvpp2_cls_c2_entry c2;
|
|
|
|
mvpp2_cls_c2_read(port->priv, entry, &c2);
|
|
|
|
/* Clear the port map so that the entry doesn't match anymore */
|
|
c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
|
|
|
|
mvpp2_cls_c2_write(port->priv, &c2);
|
|
}
|
|
|
|
/* Set CPU queue number for oversize packets */
|
|
void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
|
|
{
|
|
u32 val;
|
|
|
|
mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
|
|
port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
|
|
|
|
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
|
|
(port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
|
|
|
|
val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
|
|
val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
|
|
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
|
|
}
|
|
|
|
static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
|
|
struct mvpp2_rfs_rule *rule)
|
|
{
|
|
struct flow_action_entry *act;
|
|
struct mvpp2_cls_c2_entry c2;
|
|
u8 qh, ql, pmap;
|
|
int index, ctx;
|
|
|
|
if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
|
|
return -EOPNOTSUPP;
|
|
|
|
memset(&c2, 0, sizeof(c2));
|
|
|
|
index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
|
|
if (index < 0)
|
|
return -EINVAL;
|
|
c2.index = index;
|
|
|
|
act = &rule->flow->action.entries[0];
|
|
|
|
rule->c2_index = c2.index;
|
|
|
|
c2.tcam[3] = (rule->c2_tcam & 0xffff) |
|
|
((rule->c2_tcam_mask & 0xffff) << 16);
|
|
c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
|
|
(((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
|
|
c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
|
|
(((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
|
|
c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
|
|
(((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
|
|
|
|
pmap = BIT(port->id);
|
|
c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
|
|
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
|
|
|
|
/* Match on Lookup Type */
|
|
c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
|
|
c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
|
|
|
|
if (act->id == FLOW_ACTION_DROP) {
|
|
c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
|
|
} else {
|
|
/* We want to keep the default color derived from the Header
|
|
* Parser drop entries, for VLAN and MAC filtering. This will
|
|
* assign a default color of Green or Red, and we want matches
|
|
* with a non-drop action to keep that color.
|
|
*/
|
|
c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
|
|
|
|
/* Update RSS status after matching this entry */
|
|
if (act->queue.ctx)
|
|
c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
|
|
|
|
/* Always lock the RSS_EN decision. We might have high prio
|
|
* rules steering to an RXQ, and a lower one steering to RSS,
|
|
* we don't want the low prio RSS rule overwriting this flag.
|
|
*/
|
|
c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
|
|
|
|
/* Mark packet as "forwarded to software", needed for RSS */
|
|
c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
|
|
|
|
c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
|
|
MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
|
|
|
|
if (act->queue.ctx) {
|
|
/* Get the global ctx number */
|
|
ctx = mvpp22_rss_ctx(port, act->queue.ctx);
|
|
if (ctx < 0)
|
|
return -EINVAL;
|
|
|
|
qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
|
|
ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
|
|
} else {
|
|
qh = ((act->queue.index + port->first_rxq) >> 3) &
|
|
MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
|
|
ql = (act->queue.index + port->first_rxq) &
|
|
MVPP22_CLS_C2_ATTR0_QLOW_MASK;
|
|
}
|
|
|
|
c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
|
|
MVPP22_CLS_C2_ATTR0_QLOW(ql);
|
|
}
|
|
|
|
c2.valid = true;
|
|
|
|
mvpp2_cls_c2_write(port->priv, &c2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
|
|
struct mvpp2_rfs_rule *rule)
|
|
{
|
|
return mvpp2_port_c2_tcam_rule_add(port, rule);
|
|
}
|
|
|
|
static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
|
|
struct mvpp2_rfs_rule *rule)
|
|
{
|
|
const struct mvpp2_cls_flow *flow;
|
|
struct mvpp2_cls_flow_entry fe;
|
|
int index, i;
|
|
|
|
for_each_cls_flow_id_containing_type(i, rule->flow_type) {
|
|
flow = mvpp2_cls_flow_get(i);
|
|
if (!flow)
|
|
return 0;
|
|
|
|
index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
|
|
|
|
mvpp2_cls_flow_read(port->priv, index, &fe);
|
|
mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
|
|
mvpp2_cls_flow_write(port->priv, &fe);
|
|
}
|
|
|
|
if (rule->c2_index >= 0)
|
|
mvpp22_port_c2_lookup_disable(port, rule->c2_index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
|
|
struct mvpp2_rfs_rule *rule)
|
|
{
|
|
const struct mvpp2_cls_flow *flow;
|
|
struct mvpp2 *priv = port->priv;
|
|
struct mvpp2_cls_flow_entry fe;
|
|
int index, ret, i;
|
|
|
|
if (rule->engine != MVPP22_CLS_ENGINE_C2)
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_cls_flow_id_containing_type(i, rule->flow_type) {
|
|
flow = mvpp2_cls_flow_get(i);
|
|
if (!flow)
|
|
return 0;
|
|
|
|
if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
|
|
continue;
|
|
|
|
index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
|
|
|
|
mvpp2_cls_flow_read(priv, index, &fe);
|
|
mvpp2_cls_flow_eng_set(&fe, rule->engine);
|
|
mvpp2_cls_flow_port_id_sel(&fe, true);
|
|
mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
|
|
mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
|
|
mvpp2_cls_flow_port_add(&fe, 0xf);
|
|
|
|
mvpp2_cls_flow_write(priv, &fe);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
|
|
{
|
|
struct flow_rule *flow = rule->flow;
|
|
int offs = 0;
|
|
|
|
/* The order of insertion in C2 tcam must match the order in which
|
|
* the fields are found in the header
|
|
*/
|
|
if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
|
|
struct flow_match_vlan match;
|
|
|
|
flow_rule_match_vlan(flow, &match);
|
|
if (match.mask->vlan_id) {
|
|
rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
|
|
|
|
rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
|
|
rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
|
|
|
|
/* Don't update the offset yet */
|
|
}
|
|
|
|
if (match.mask->vlan_priority) {
|
|
rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
|
|
|
|
/* VLAN pri is always at offset 13 relative to the
|
|
* current offset
|
|
*/
|
|
rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
|
|
(offs + 13);
|
|
rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
|
|
(offs + 13);
|
|
}
|
|
|
|
if (match.mask->vlan_dei)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* vlan id and prio always seem to take a full 16-bit slot in
|
|
* the Header Extracted Key.
|
|
*/
|
|
offs += 16;
|
|
}
|
|
|
|
if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
|
|
struct flow_match_ports match;
|
|
|
|
flow_rule_match_ports(flow, &match);
|
|
if (match.mask->src) {
|
|
rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
|
|
|
|
rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
|
|
rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
|
|
offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
|
|
}
|
|
|
|
if (match.mask->dst) {
|
|
rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
|
|
|
|
rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
|
|
rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
|
|
offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
|
|
}
|
|
}
|
|
|
|
if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
|
|
return -EOPNOTSUPP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
|
|
{
|
|
struct flow_rule *flow = rule->flow;
|
|
struct flow_action_entry *act;
|
|
|
|
if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
|
|
return -EOPNOTSUPP;
|
|
|
|
act = &flow->action.entries[0];
|
|
if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* When both an RSS context and an queue index are set, the index
|
|
* is considered as an offset to be added to the indirection table
|
|
* entries. We don't support this, so reject this rule.
|
|
*/
|
|
if (act->queue.ctx && act->queue.index)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* For now, only use the C2 engine which has a HEK size limited to 64
|
|
* bits for TCAM matching.
|
|
*/
|
|
rule->engine = MVPP22_CLS_ENGINE_C2;
|
|
|
|
if (mvpp2_cls_c2_build_match(rule))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
|
|
struct ethtool_rxnfc *rxnfc)
|
|
{
|
|
struct mvpp2_ethtool_fs *efs;
|
|
|
|
if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
|
|
return -EINVAL;
|
|
|
|
efs = port->rfs_rules[rxnfc->fs.location];
|
|
if (!efs)
|
|
return -ENOENT;
|
|
|
|
memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
|
|
struct ethtool_rxnfc *info)
|
|
{
|
|
struct ethtool_rx_flow_spec_input input = {};
|
|
struct ethtool_rx_flow_rule *ethtool_rule;
|
|
struct mvpp2_ethtool_fs *efs, *old_efs;
|
|
int ret = 0;
|
|
|
|
if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
|
|
return -EINVAL;
|
|
|
|
efs = kzalloc(sizeof(*efs), GFP_KERNEL);
|
|
if (!efs)
|
|
return -ENOMEM;
|
|
|
|
input.fs = &info->fs;
|
|
|
|
/* We need to manually set the rss_ctx, since this info isn't present
|
|
* in info->fs
|
|
*/
|
|
if (info->fs.flow_type & FLOW_RSS)
|
|
input.rss_ctx = info->rss_context;
|
|
|
|
ethtool_rule = ethtool_rx_flow_rule_create(&input);
|
|
if (IS_ERR(ethtool_rule)) {
|
|
ret = PTR_ERR(ethtool_rule);
|
|
goto clean_rule;
|
|
}
|
|
|
|
efs->rule.flow = ethtool_rule->rule;
|
|
efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
|
|
if (efs->rule.flow_type < 0) {
|
|
ret = efs->rule.flow_type;
|
|
goto clean_rule;
|
|
}
|
|
|
|
ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
|
|
if (ret)
|
|
goto clean_eth_rule;
|
|
|
|
efs->rule.loc = info->fs.location;
|
|
|
|
/* Replace an already existing rule */
|
|
if (port->rfs_rules[efs->rule.loc]) {
|
|
old_efs = port->rfs_rules[efs->rule.loc];
|
|
ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
|
|
if (ret)
|
|
goto clean_eth_rule;
|
|
kfree(old_efs);
|
|
port->n_rfs_rules--;
|
|
}
|
|
|
|
ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
|
|
if (ret)
|
|
goto clean_eth_rule;
|
|
|
|
ethtool_rx_flow_rule_destroy(ethtool_rule);
|
|
efs->rule.flow = NULL;
|
|
|
|
memcpy(&efs->rxnfc, info, sizeof(*info));
|
|
port->rfs_rules[efs->rule.loc] = efs;
|
|
port->n_rfs_rules++;
|
|
|
|
return ret;
|
|
|
|
clean_eth_rule:
|
|
ethtool_rx_flow_rule_destroy(ethtool_rule);
|
|
clean_rule:
|
|
kfree(efs);
|
|
return ret;
|
|
}
|
|
|
|
int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
|
|
struct ethtool_rxnfc *info)
|
|
{
|
|
struct mvpp2_ethtool_fs *efs;
|
|
int ret;
|
|
|
|
if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
|
|
return -EINVAL;
|
|
|
|
efs = port->rfs_rules[info->fs.location];
|
|
if (!efs)
|
|
return -EINVAL;
|
|
|
|
/* Remove the rule from the engines. */
|
|
ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
|
|
if (ret)
|
|
return ret;
|
|
|
|
port->n_rfs_rules--;
|
|
port->rfs_rules[info->fs.location] = NULL;
|
|
kfree(efs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
|
|
{
|
|
int nrxqs, cpu, cpus = num_possible_cpus();
|
|
|
|
/* Number of RXQs per CPU */
|
|
nrxqs = port->nrxqs / cpus;
|
|
|
|
/* CPU that will handle this rx queue */
|
|
cpu = rxq / nrxqs;
|
|
|
|
if (!cpu_online(cpu))
|
|
return port->first_rxq;
|
|
|
|
/* Indirection to better distribute the paquets on the CPUs when
|
|
* configuring the RSS queues.
|
|
*/
|
|
return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
|
|
}
|
|
|
|
static void mvpp22_rss_fill_table(struct mvpp2_port *port,
|
|
struct mvpp2_rss_table *table,
|
|
u32 rss_ctx)
|
|
{
|
|
struct mvpp2 *priv = port->priv;
|
|
int i;
|
|
|
|
for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
|
|
u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
|
|
MVPP22_RSS_INDEX_TABLE_ENTRY(i);
|
|
mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
|
|
|
|
mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
|
|
mvpp22_rxfh_indir(port, table->indir[i]));
|
|
}
|
|
}
|
|
|
|
static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
|
|
{
|
|
struct mvpp2 *priv = port->priv;
|
|
u32 ctx;
|
|
|
|
/* Find the first free RSS table */
|
|
for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
|
|
if (!priv->rss_tables[ctx])
|
|
break;
|
|
}
|
|
|
|
if (ctx == MVPP22_N_RSS_TABLES)
|
|
return -EINVAL;
|
|
|
|
priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
|
|
GFP_KERNEL);
|
|
if (!priv->rss_tables[ctx])
|
|
return -ENOMEM;
|
|
|
|
*rss_ctx = ctx;
|
|
|
|
/* Set the table width: replace the whole classifier Rx queue number
|
|
* with the ones configured in RSS table entries.
|
|
*/
|
|
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
|
|
mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
|
|
|
|
mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
|
|
mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
|
|
{
|
|
u32 rss_ctx;
|
|
int ret, i;
|
|
|
|
ret = mvpp22_rss_context_create(port, &rss_ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Find the first available context number in the port, starting from 1.
|
|
* Context 0 on each port is reserved for the default context.
|
|
*/
|
|
for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
|
|
if (port->rss_ctx[i] < 0)
|
|
break;
|
|
}
|
|
|
|
if (i == MVPP22_N_RSS_TABLES)
|
|
return -EINVAL;
|
|
|
|
port->rss_ctx[i] = rss_ctx;
|
|
*port_ctx = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
|
|
int rss_ctx)
|
|
{
|
|
if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
|
|
return NULL;
|
|
|
|
return priv->rss_tables[rss_ctx];
|
|
}
|
|
|
|
int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
|
|
{
|
|
struct mvpp2 *priv = port->priv;
|
|
struct ethtool_rxnfc *rxnfc;
|
|
int i, rss_ctx, ret;
|
|
|
|
rss_ctx = mvpp22_rss_ctx(port, port_ctx);
|
|
|
|
if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
|
|
return -EINVAL;
|
|
|
|
/* Invalidate any active classification rule that use this context */
|
|
for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
|
|
if (!port->rfs_rules[i])
|
|
continue;
|
|
|
|
rxnfc = &port->rfs_rules[i]->rxnfc;
|
|
if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
|
|
rxnfc->rss_context != port_ctx)
|
|
continue;
|
|
|
|
ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
|
|
if (ret) {
|
|
netdev_warn(port->dev,
|
|
"couldn't remove classification rule %d associated to this context",
|
|
rxnfc->fs.location);
|
|
}
|
|
}
|
|
|
|
kfree(priv->rss_tables[rss_ctx]);
|
|
|
|
priv->rss_tables[rss_ctx] = NULL;
|
|
port->rss_ctx[port_ctx] = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
|
|
const u32 *indir)
|
|
{
|
|
int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
|
|
struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
|
|
rss_ctx);
|
|
|
|
if (!rss_table)
|
|
return -EINVAL;
|
|
|
|
memcpy(rss_table->indir, indir,
|
|
MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
|
|
|
|
mvpp22_rss_fill_table(port, rss_table, rss_ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
|
|
u32 *indir)
|
|
{
|
|
int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
|
|
struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
|
|
rss_ctx);
|
|
|
|
if (!rss_table)
|
|
return -EINVAL;
|
|
|
|
memcpy(indir, rss_table->indir,
|
|
MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
|
|
{
|
|
u16 hash_opts = 0;
|
|
u32 flow_type;
|
|
|
|
flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
|
|
|
|
switch (flow_type) {
|
|
case MVPP22_FLOW_TCP4:
|
|
case MVPP22_FLOW_UDP4:
|
|
case MVPP22_FLOW_TCP6:
|
|
case MVPP22_FLOW_UDP6:
|
|
if (info->data & RXH_L4_B_0_1)
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
|
|
if (info->data & RXH_L4_B_2_3)
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
|
|
fallthrough;
|
|
case MVPP22_FLOW_IP4:
|
|
case MVPP22_FLOW_IP6:
|
|
if (info->data & RXH_L2DA)
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
|
|
if (info->data & RXH_VLAN)
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
|
|
if (info->data & RXH_L3_PROTO)
|
|
hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
|
|
if (info->data & RXH_IP_SRC)
|
|
hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
|
|
MVPP22_CLS_HEK_OPT_IP6SA);
|
|
if (info->data & RXH_IP_DST)
|
|
hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
|
|
MVPP22_CLS_HEK_OPT_IP6DA);
|
|
break;
|
|
default: return -EOPNOTSUPP;
|
|
}
|
|
|
|
return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
|
|
}
|
|
|
|
int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
|
|
{
|
|
unsigned long hash_opts;
|
|
u32 flow_type;
|
|
int i;
|
|
|
|
flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
|
|
|
|
hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
|
|
info->data = 0;
|
|
|
|
for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
|
|
switch (BIT(i)) {
|
|
case MVPP22_CLS_HEK_OPT_MAC_DA:
|
|
info->data |= RXH_L2DA;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_VLAN:
|
|
info->data |= RXH_VLAN;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_L3_PROTO:
|
|
info->data |= RXH_L3_PROTO;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP4SA:
|
|
case MVPP22_CLS_HEK_OPT_IP6SA:
|
|
info->data |= RXH_IP_SRC;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_IP4DA:
|
|
case MVPP22_CLS_HEK_OPT_IP6DA:
|
|
info->data |= RXH_IP_DST;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_L4SIP:
|
|
info->data |= RXH_L4_B_0_1;
|
|
break;
|
|
case MVPP22_CLS_HEK_OPT_L4DIP:
|
|
info->data |= RXH_L4_B_2_3;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mvpp22_port_rss_init(struct mvpp2_port *port)
|
|
{
|
|
struct mvpp2_rss_table *table;
|
|
u32 context = 0;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
|
|
port->rss_ctx[i] = -1;
|
|
|
|
ret = mvpp22_rss_context_create(port, &context);
|
|
if (ret)
|
|
return ret;
|
|
|
|
table = mvpp22_rss_table_get(port->priv, context);
|
|
if (!table)
|
|
return -EINVAL;
|
|
|
|
port->rss_ctx[0] = context;
|
|
|
|
/* Configure the first table to evenly distribute the packets across
|
|
* real Rx Queues. The table entries map a hash to a port Rx Queue.
|
|
*/
|
|
for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
|
|
table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
|
|
|
|
mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
|
|
|
|
/* Configure default flows */
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
|
|
mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
|
|
|
|
return 0;
|
|
}
|