1017 lines
26 KiB
C
1017 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019, Intel Corporation. */
|
|
|
|
#include <linux/bpf_trace.h>
|
|
#include <net/xdp_sock_drv.h>
|
|
#include <net/xdp.h>
|
|
#include "ice.h"
|
|
#include "ice_base.h"
|
|
#include "ice_type.h"
|
|
#include "ice_xsk.h"
|
|
#include "ice_txrx.h"
|
|
#include "ice_txrx_lib.h"
|
|
#include "ice_lib.h"
|
|
|
|
static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
|
|
{
|
|
return &rx_ring->xdp_buf[idx];
|
|
}
|
|
|
|
/**
|
|
* ice_qp_reset_stats - Resets all stats for rings of given index
|
|
* @vsi: VSI that contains rings of interest
|
|
* @q_idx: ring index in array
|
|
*/
|
|
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
|
|
{
|
|
memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
|
|
sizeof(vsi->rx_rings[q_idx]->rx_stats));
|
|
memset(&vsi->tx_rings[q_idx]->stats, 0,
|
|
sizeof(vsi->tx_rings[q_idx]->stats));
|
|
if (ice_is_xdp_ena_vsi(vsi))
|
|
memset(&vsi->xdp_rings[q_idx]->stats, 0,
|
|
sizeof(vsi->xdp_rings[q_idx]->stats));
|
|
}
|
|
|
|
/**
|
|
* ice_qp_clean_rings - Cleans all the rings of a given index
|
|
* @vsi: VSI that contains rings of interest
|
|
* @q_idx: ring index in array
|
|
*/
|
|
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
|
|
{
|
|
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
|
|
if (ice_is_xdp_ena_vsi(vsi)) {
|
|
synchronize_rcu();
|
|
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
|
|
}
|
|
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
|
|
}
|
|
|
|
/**
|
|
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
|
|
* @vsi: VSI that has netdev
|
|
* @q_vector: q_vector that has NAPI context
|
|
* @enable: true for enable, false for disable
|
|
*/
|
|
static void
|
|
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
|
|
bool enable)
|
|
{
|
|
if (!vsi->netdev || !q_vector)
|
|
return;
|
|
|
|
if (enable)
|
|
napi_enable(&q_vector->napi);
|
|
else
|
|
napi_disable(&q_vector->napi);
|
|
}
|
|
|
|
/**
|
|
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
|
|
* @vsi: the VSI that contains queue vector being un-configured
|
|
* @rx_ring: Rx ring that will have its IRQ disabled
|
|
* @q_vector: queue vector
|
|
*/
|
|
static void
|
|
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
|
|
struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
int base = vsi->base_vector;
|
|
u16 reg;
|
|
u32 val;
|
|
|
|
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
|
|
* here only QINT_RQCTL
|
|
*/
|
|
reg = rx_ring->reg_idx;
|
|
val = rd32(hw, QINT_RQCTL(reg));
|
|
val &= ~QINT_RQCTL_CAUSE_ENA_M;
|
|
wr32(hw, QINT_RQCTL(reg), val);
|
|
|
|
if (q_vector) {
|
|
u16 v_idx = q_vector->v_idx;
|
|
|
|
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
|
|
ice_flush(hw);
|
|
synchronize_irq(pf->msix_entries[v_idx + base].vector);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
|
|
* @vsi: the VSI that contains queue vector
|
|
* @q_vector: queue vector
|
|
*/
|
|
static void
|
|
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
|
|
{
|
|
u16 reg_idx = q_vector->reg_idx;
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct ice_tx_ring *tx_ring;
|
|
struct ice_rx_ring *rx_ring;
|
|
|
|
ice_cfg_itr(hw, q_vector);
|
|
|
|
ice_for_each_tx_ring(tx_ring, q_vector->tx)
|
|
ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
|
|
q_vector->tx.itr_idx);
|
|
|
|
ice_for_each_rx_ring(rx_ring, q_vector->rx)
|
|
ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
|
|
q_vector->rx.itr_idx);
|
|
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_qvec_ena_irq - Enable IRQ for given queue vector
|
|
* @vsi: the VSI that contains queue vector
|
|
* @q_vector: queue vector
|
|
*/
|
|
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_pf *pf = vsi->back;
|
|
struct ice_hw *hw = &pf->hw;
|
|
|
|
ice_irq_dynamic_ena(hw, vsi, q_vector);
|
|
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_qp_dis - Disables a queue pair
|
|
* @vsi: VSI of interest
|
|
* @q_idx: ring index in array
|
|
*
|
|
* Returns 0 on success, negative on failure.
|
|
*/
|
|
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
|
|
{
|
|
struct ice_txq_meta txq_meta = { };
|
|
struct ice_q_vector *q_vector;
|
|
struct ice_tx_ring *tx_ring;
|
|
struct ice_rx_ring *rx_ring;
|
|
int timeout = 50;
|
|
int err;
|
|
|
|
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
|
|
return -EINVAL;
|
|
|
|
tx_ring = vsi->tx_rings[q_idx];
|
|
rx_ring = vsi->rx_rings[q_idx];
|
|
q_vector = rx_ring->q_vector;
|
|
|
|
while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
|
|
timeout--;
|
|
if (!timeout)
|
|
return -EBUSY;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
|
|
|
|
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
|
|
|
|
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
|
|
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
|
|
if (err)
|
|
return err;
|
|
if (ice_is_xdp_ena_vsi(vsi)) {
|
|
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
|
|
|
|
memset(&txq_meta, 0, sizeof(txq_meta));
|
|
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
|
|
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
|
|
&txq_meta);
|
|
if (err)
|
|
return err;
|
|
}
|
|
err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
|
|
if (err)
|
|
return err;
|
|
|
|
ice_qvec_toggle_napi(vsi, q_vector, false);
|
|
ice_qp_clean_rings(vsi, q_idx);
|
|
ice_qp_reset_stats(vsi, q_idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_qp_ena - Enables a queue pair
|
|
* @vsi: VSI of interest
|
|
* @q_idx: ring index in array
|
|
*
|
|
* Returns 0 on success, negative on failure.
|
|
*/
|
|
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
|
|
{
|
|
struct ice_aqc_add_tx_qgrp *qg_buf;
|
|
struct ice_q_vector *q_vector;
|
|
struct ice_tx_ring *tx_ring;
|
|
struct ice_rx_ring *rx_ring;
|
|
u16 size;
|
|
int err;
|
|
|
|
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
|
|
return -EINVAL;
|
|
|
|
size = struct_size(qg_buf, txqs, 1);
|
|
qg_buf = kzalloc(size, GFP_KERNEL);
|
|
if (!qg_buf)
|
|
return -ENOMEM;
|
|
|
|
qg_buf->num_txqs = 1;
|
|
|
|
tx_ring = vsi->tx_rings[q_idx];
|
|
rx_ring = vsi->rx_rings[q_idx];
|
|
q_vector = rx_ring->q_vector;
|
|
|
|
err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
|
|
if (err)
|
|
goto free_buf;
|
|
|
|
if (ice_is_xdp_ena_vsi(vsi)) {
|
|
struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
|
|
|
|
memset(qg_buf, 0, size);
|
|
qg_buf->num_txqs = 1;
|
|
err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
|
|
if (err)
|
|
goto free_buf;
|
|
ice_set_ring_xdp(xdp_ring);
|
|
xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring);
|
|
}
|
|
|
|
err = ice_vsi_cfg_rxq(rx_ring);
|
|
if (err)
|
|
goto free_buf;
|
|
|
|
ice_qvec_cfg_msix(vsi, q_vector);
|
|
|
|
err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
|
|
if (err)
|
|
goto free_buf;
|
|
|
|
clear_bit(ICE_CFG_BUSY, vsi->state);
|
|
ice_qvec_toggle_napi(vsi, q_vector, true);
|
|
ice_qvec_ena_irq(vsi, q_vector);
|
|
|
|
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
|
|
free_buf:
|
|
kfree(qg_buf);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_pool_disable - disable a buffer pool region
|
|
* @vsi: Current VSI
|
|
* @qid: queue ID
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*/
|
|
static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
|
|
{
|
|
struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
|
|
|
|
if (!pool)
|
|
return -EINVAL;
|
|
|
|
clear_bit(qid, vsi->af_xdp_zc_qps);
|
|
xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_pool_enable - enable a buffer pool region
|
|
* @vsi: Current VSI
|
|
* @pool: pointer to a requested buffer pool region
|
|
* @qid: queue ID
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*/
|
|
static int
|
|
ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
|
|
{
|
|
int err;
|
|
|
|
if (vsi->type != ICE_VSI_PF)
|
|
return -EINVAL;
|
|
|
|
if (qid >= vsi->netdev->real_num_rx_queues ||
|
|
qid >= vsi->netdev->real_num_tx_queues)
|
|
return -EINVAL;
|
|
|
|
err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
|
|
ICE_RX_DMA_ATTR);
|
|
if (err)
|
|
return err;
|
|
|
|
set_bit(qid, vsi->af_xdp_zc_qps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
|
|
* @vsi: Current VSI
|
|
* @pool: buffer pool to enable/associate to a ring, NULL to disable
|
|
* @qid: queue ID
|
|
*
|
|
* Returns 0 on success, negative on failure
|
|
*/
|
|
int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
|
|
{
|
|
bool if_running, pool_present = !!pool;
|
|
int ret = 0, pool_failure = 0;
|
|
|
|
if (!is_power_of_2(vsi->rx_rings[qid]->count) ||
|
|
!is_power_of_2(vsi->tx_rings[qid]->count)) {
|
|
netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n");
|
|
pool_failure = -EINVAL;
|
|
goto failure;
|
|
}
|
|
|
|
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
|
|
|
|
if (if_running) {
|
|
ret = ice_qp_dis(vsi, qid);
|
|
if (ret) {
|
|
netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
|
|
goto xsk_pool_if_up;
|
|
}
|
|
}
|
|
|
|
pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
|
|
ice_xsk_pool_disable(vsi, qid);
|
|
|
|
xsk_pool_if_up:
|
|
if (if_running) {
|
|
ret = ice_qp_ena(vsi, qid);
|
|
if (!ret && pool_present)
|
|
napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
|
|
else if (ret)
|
|
netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
|
|
}
|
|
|
|
failure:
|
|
if (pool_failure) {
|
|
netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
|
|
pool_present ? "en" : "dis", pool_failure);
|
|
return pool_failure;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
|
|
* @pool: XSK Buffer pool to pull the buffers from
|
|
* @xdp: SW ring of xdp_buff that will hold the buffers
|
|
* @rx_desc: Pointer to Rx descriptors that will be filled
|
|
* @count: The number of buffers to allocate
|
|
*
|
|
* This function allocates a number of Rx buffers from the fill ring
|
|
* or the internal recycle mechanism and places them on the Rx ring.
|
|
*
|
|
* Note that ring wrap should be handled by caller of this function.
|
|
*
|
|
* Returns the amount of allocated Rx descriptors
|
|
*/
|
|
static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
|
|
union ice_32b_rx_flex_desc *rx_desc, u16 count)
|
|
{
|
|
dma_addr_t dma;
|
|
u16 buffs;
|
|
int i;
|
|
|
|
buffs = xsk_buff_alloc_batch(pool, xdp, count);
|
|
for (i = 0; i < buffs; i++) {
|
|
dma = xsk_buff_xdp_get_dma(*xdp);
|
|
rx_desc->read.pkt_addr = cpu_to_le64(dma);
|
|
rx_desc->wb.status_error0 = 0;
|
|
|
|
rx_desc++;
|
|
xdp++;
|
|
}
|
|
|
|
return buffs;
|
|
}
|
|
|
|
/**
|
|
* __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
|
|
* @rx_ring: Rx ring
|
|
* @count: The number of buffers to allocate
|
|
*
|
|
* Place the @count of descriptors onto Rx ring. Handle the ring wrap
|
|
* for case where space from next_to_use up to the end of ring is less
|
|
* than @count. Finally do a tail bump.
|
|
*
|
|
* Returns true if all allocations were successful, false if any fail.
|
|
*/
|
|
static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
|
|
{
|
|
u32 nb_buffs_extra = 0, nb_buffs = 0;
|
|
union ice_32b_rx_flex_desc *rx_desc;
|
|
u16 ntu = rx_ring->next_to_use;
|
|
u16 total_count = count;
|
|
struct xdp_buff **xdp;
|
|
|
|
rx_desc = ICE_RX_DESC(rx_ring, ntu);
|
|
xdp = ice_xdp_buf(rx_ring, ntu);
|
|
|
|
if (ntu + count >= rx_ring->count) {
|
|
nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
|
|
rx_desc,
|
|
rx_ring->count - ntu);
|
|
if (nb_buffs_extra != rx_ring->count - ntu) {
|
|
ntu += nb_buffs_extra;
|
|
goto exit;
|
|
}
|
|
rx_desc = ICE_RX_DESC(rx_ring, 0);
|
|
xdp = ice_xdp_buf(rx_ring, 0);
|
|
ntu = 0;
|
|
count -= nb_buffs_extra;
|
|
ice_release_rx_desc(rx_ring, 0);
|
|
}
|
|
|
|
nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
|
|
|
|
ntu += nb_buffs;
|
|
if (ntu == rx_ring->count)
|
|
ntu = 0;
|
|
|
|
exit:
|
|
if (rx_ring->next_to_use != ntu)
|
|
ice_release_rx_desc(rx_ring, ntu);
|
|
|
|
return total_count == (nb_buffs_extra + nb_buffs);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
|
|
* @rx_ring: Rx ring
|
|
* @count: The number of buffers to allocate
|
|
*
|
|
* Wrapper for internal allocation routine; figure out how many tail
|
|
* bumps should take place based on the given threshold
|
|
*
|
|
* Returns true if all calls to internal alloc routine succeeded
|
|
*/
|
|
bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
|
|
{
|
|
u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
|
|
u16 batched, leftover, i, tail_bumps;
|
|
|
|
batched = ALIGN_DOWN(count, rx_thresh);
|
|
tail_bumps = batched / rx_thresh;
|
|
leftover = count & (rx_thresh - 1);
|
|
|
|
for (i = 0; i < tail_bumps; i++)
|
|
if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
|
|
return false;
|
|
return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
|
|
}
|
|
|
|
/**
|
|
* ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
|
|
* @rx_ring: Rx ring
|
|
*/
|
|
static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
|
|
{
|
|
int ntc = rx_ring->next_to_clean + 1;
|
|
|
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
|
rx_ring->next_to_clean = ntc;
|
|
prefetch(ICE_RX_DESC(rx_ring, ntc));
|
|
}
|
|
|
|
/**
|
|
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
|
|
* @rx_ring: Rx ring
|
|
* @xdp: Pointer to XDP buffer
|
|
*
|
|
* This function allocates a new skb from a zero-copy Rx buffer.
|
|
*
|
|
* Returns the skb on success, NULL on failure.
|
|
*/
|
|
static struct sk_buff *
|
|
ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
|
|
{
|
|
unsigned int totalsize = xdp->data_end - xdp->data_meta;
|
|
unsigned int metasize = xdp->data - xdp->data_meta;
|
|
struct sk_buff *skb;
|
|
|
|
net_prefetch(xdp->data_meta);
|
|
|
|
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
|
|
GFP_ATOMIC | __GFP_NOWARN);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
memcpy(__skb_put(skb, totalsize), xdp->data_meta,
|
|
ALIGN(totalsize, sizeof(long)));
|
|
|
|
if (metasize) {
|
|
skb_metadata_set(skb, metasize);
|
|
__skb_pull(skb, metasize);
|
|
}
|
|
|
|
xsk_buff_free(xdp);
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
|
|
* @rx_ring: Rx ring
|
|
* @xdp: xdp_buff used as input to the XDP program
|
|
* @xdp_prog: XDP program to run
|
|
* @xdp_ring: ring to be used for XDP_TX action
|
|
*
|
|
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
|
|
*/
|
|
static int
|
|
ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
|
|
struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
|
|
{
|
|
int err, result = ICE_XDP_PASS;
|
|
u32 act;
|
|
|
|
act = bpf_prog_run_xdp(xdp_prog, xdp);
|
|
|
|
if (likely(act == XDP_REDIRECT)) {
|
|
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
|
|
if (err)
|
|
goto out_failure;
|
|
return ICE_XDP_REDIR;
|
|
}
|
|
|
|
switch (act) {
|
|
case XDP_PASS:
|
|
break;
|
|
case XDP_TX:
|
|
result = ice_xmit_xdp_buff(xdp, xdp_ring);
|
|
if (result == ICE_XDP_CONSUMED)
|
|
goto out_failure;
|
|
break;
|
|
default:
|
|
bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_ABORTED:
|
|
out_failure:
|
|
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
|
|
fallthrough;
|
|
case XDP_DROP:
|
|
result = ICE_XDP_CONSUMED;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
|
|
* @rx_ring: AF_XDP Rx ring
|
|
* @budget: NAPI budget
|
|
*
|
|
* Returns number of processed packets on success, remaining budget on failure.
|
|
*/
|
|
int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
|
|
{
|
|
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
|
|
struct ice_tx_ring *xdp_ring;
|
|
unsigned int xdp_xmit = 0;
|
|
struct bpf_prog *xdp_prog;
|
|
bool failure = false;
|
|
|
|
/* ZC patch is enabled only when XDP program is set,
|
|
* so here it can not be NULL
|
|
*/
|
|
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
|
|
xdp_ring = rx_ring->xdp_ring;
|
|
|
|
while (likely(total_rx_packets < (unsigned int)budget)) {
|
|
union ice_32b_rx_flex_desc *rx_desc;
|
|
unsigned int size, xdp_res = 0;
|
|
struct xdp_buff *xdp;
|
|
struct sk_buff *skb;
|
|
u16 stat_err_bits;
|
|
u16 vlan_tag = 0;
|
|
u16 rx_ptype;
|
|
|
|
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
|
|
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
|
|
if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we have
|
|
* verified the descriptor has been written back.
|
|
*/
|
|
dma_rmb();
|
|
|
|
if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use))
|
|
break;
|
|
|
|
xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
|
|
|
|
size = le16_to_cpu(rx_desc->wb.pkt_len) &
|
|
ICE_RX_FLX_DESC_PKT_LEN_M;
|
|
if (!size) {
|
|
xdp->data = NULL;
|
|
xdp->data_end = NULL;
|
|
xdp->data_hard_start = NULL;
|
|
xdp->data_meta = NULL;
|
|
goto construct_skb;
|
|
}
|
|
|
|
xsk_buff_set_size(xdp, size);
|
|
xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
|
|
|
|
xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
|
|
if (xdp_res) {
|
|
if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
|
|
xdp_xmit |= xdp_res;
|
|
else
|
|
xsk_buff_free(xdp);
|
|
|
|
total_rx_bytes += size;
|
|
total_rx_packets++;
|
|
|
|
ice_bump_ntc(rx_ring);
|
|
continue;
|
|
}
|
|
construct_skb:
|
|
/* XDP_PASS path */
|
|
skb = ice_construct_skb_zc(rx_ring, xdp);
|
|
if (!skb) {
|
|
rx_ring->rx_stats.alloc_buf_failed++;
|
|
break;
|
|
}
|
|
|
|
ice_bump_ntc(rx_ring);
|
|
|
|
if (eth_skb_pad(skb)) {
|
|
skb = NULL;
|
|
continue;
|
|
}
|
|
|
|
total_rx_bytes += skb->len;
|
|
total_rx_packets++;
|
|
|
|
vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
|
|
|
|
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
|
|
ICE_RX_FLEX_DESC_PTYPE_M;
|
|
|
|
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
|
|
ice_receive_skb(rx_ring, skb, vlan_tag);
|
|
}
|
|
|
|
failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring));
|
|
|
|
ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
|
|
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
|
|
|
|
if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
|
|
if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
|
|
xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
|
|
else
|
|
xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
|
|
|
|
return (int)total_rx_packets;
|
|
}
|
|
|
|
return failure ? budget : (int)total_rx_packets;
|
|
}
|
|
|
|
/**
|
|
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
|
|
* @xdp_ring: XDP Tx ring
|
|
* @tx_buf: Tx buffer to clean
|
|
*/
|
|
static void
|
|
ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
|
|
{
|
|
xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
|
|
xdp_ring->xdp_tx_active--;
|
|
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
|
|
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buf, len, 0);
|
|
}
|
|
|
|
/**
|
|
* ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring
|
|
* @xdp_ring: XDP ring to clean
|
|
* @napi_budget: amount of descriptors that NAPI allows us to clean
|
|
*
|
|
* Returns count of cleaned descriptors
|
|
*/
|
|
static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget)
|
|
{
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
int budget = napi_budget / tx_thresh;
|
|
u16 next_dd = xdp_ring->next_dd;
|
|
u16 ntc, cleared_dds = 0;
|
|
|
|
do {
|
|
struct ice_tx_desc *next_dd_desc;
|
|
u16 desc_cnt = xdp_ring->count;
|
|
struct ice_tx_buf *tx_buf;
|
|
u32 xsk_frames;
|
|
u16 i;
|
|
|
|
next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd);
|
|
if (!(next_dd_desc->cmd_type_offset_bsz &
|
|
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
|
|
break;
|
|
|
|
cleared_dds++;
|
|
xsk_frames = 0;
|
|
if (likely(!xdp_ring->xdp_tx_active)) {
|
|
xsk_frames = tx_thresh;
|
|
goto skip;
|
|
}
|
|
|
|
ntc = xdp_ring->next_to_clean;
|
|
|
|
for (i = 0; i < tx_thresh; i++) {
|
|
tx_buf = &xdp_ring->tx_buf[ntc];
|
|
|
|
if (tx_buf->raw_buf) {
|
|
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
|
|
tx_buf->raw_buf = NULL;
|
|
} else {
|
|
xsk_frames++;
|
|
}
|
|
|
|
ntc++;
|
|
if (ntc >= xdp_ring->count)
|
|
ntc = 0;
|
|
}
|
|
skip:
|
|
xdp_ring->next_to_clean += tx_thresh;
|
|
if (xdp_ring->next_to_clean >= desc_cnt)
|
|
xdp_ring->next_to_clean -= desc_cnt;
|
|
if (xsk_frames)
|
|
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
|
|
next_dd_desc->cmd_type_offset_bsz = 0;
|
|
next_dd = next_dd + tx_thresh;
|
|
if (next_dd >= desc_cnt)
|
|
next_dd = tx_thresh - 1;
|
|
} while (--budget);
|
|
|
|
xdp_ring->next_dd = next_dd;
|
|
|
|
return cleared_dds * tx_thresh;
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
|
|
* @xdp_ring: XDP ring to produce the HW Tx descriptor on
|
|
* @desc: AF_XDP descriptor to pull the DMA address and length from
|
|
* @total_bytes: bytes accumulator that will be used for stats update
|
|
*/
|
|
static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
|
|
unsigned int *total_bytes)
|
|
{
|
|
struct ice_tx_desc *tx_desc;
|
|
dma_addr_t dma;
|
|
|
|
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
|
|
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
|
|
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
|
|
0, desc->len, 0);
|
|
|
|
*total_bytes += desc->len;
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
|
|
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
|
|
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
|
|
* @total_bytes: bytes accumulator that will be used for stats update
|
|
*/
|
|
static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
|
|
unsigned int *total_bytes)
|
|
{
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
u16 ntu = xdp_ring->next_to_use;
|
|
struct ice_tx_desc *tx_desc;
|
|
u32 i;
|
|
|
|
loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
|
|
dma_addr_t dma;
|
|
|
|
dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
|
|
xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
|
|
|
|
tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
|
|
tx_desc->buf_addr = cpu_to_le64(dma);
|
|
tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
|
|
0, descs[i].len, 0);
|
|
|
|
*total_bytes += descs[i].len;
|
|
}
|
|
|
|
xdp_ring->next_to_use = ntu;
|
|
|
|
if (xdp_ring->next_to_use > xdp_ring->next_rs) {
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
|
|
tx_desc->cmd_type_offset_bsz |=
|
|
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
|
|
xdp_ring->next_rs += tx_thresh;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
|
|
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
|
|
* @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
|
|
* @nb_pkts: count of packets to be send
|
|
* @total_bytes: bytes accumulator that will be used for stats update
|
|
*/
|
|
static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
|
|
u32 nb_pkts, unsigned int *total_bytes)
|
|
{
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
u32 batched, leftover, i;
|
|
|
|
batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
|
|
leftover = nb_pkts & (PKTS_PER_BATCH - 1);
|
|
for (i = 0; i < batched; i += PKTS_PER_BATCH)
|
|
ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
|
|
for (; i < batched + leftover; i++)
|
|
ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
|
|
|
|
if (xdp_ring->next_to_use > xdp_ring->next_rs) {
|
|
struct ice_tx_desc *tx_desc;
|
|
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
|
|
tx_desc->cmd_type_offset_bsz |=
|
|
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
|
|
xdp_ring->next_rs += tx_thresh;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
|
|
* @xdp_ring: XDP ring to produce the HW Tx descriptors on
|
|
* @budget: number of free descriptors on HW Tx ring that can be used
|
|
* @napi_budget: amount of descriptors that NAPI allows us to clean
|
|
*
|
|
* Returns true if there is no more work that needs to be done, false otherwise
|
|
*/
|
|
bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget)
|
|
{
|
|
struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
|
|
u16 tx_thresh = ICE_RING_QUARTER(xdp_ring);
|
|
u32 nb_pkts, nb_processed = 0;
|
|
unsigned int total_bytes = 0;
|
|
|
|
if (budget < tx_thresh)
|
|
budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget);
|
|
|
|
nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
|
|
if (!nb_pkts)
|
|
return true;
|
|
|
|
if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
|
|
struct ice_tx_desc *tx_desc;
|
|
|
|
nb_processed = xdp_ring->count - xdp_ring->next_to_use;
|
|
ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
|
|
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs);
|
|
tx_desc->cmd_type_offset_bsz |=
|
|
cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
|
|
xdp_ring->next_rs = tx_thresh - 1;
|
|
xdp_ring->next_to_use = 0;
|
|
}
|
|
|
|
ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
|
|
&total_bytes);
|
|
|
|
ice_xdp_ring_update_tail(xdp_ring);
|
|
ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
|
|
|
|
if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
|
|
xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
|
|
|
|
return nb_pkts < budget;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
|
|
* @netdev: net_device
|
|
* @queue_id: queue to wake up
|
|
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
|
|
*
|
|
* Returns negative on error, zero otherwise.
|
|
*/
|
|
int
|
|
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
|
|
u32 __always_unused flags)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_q_vector *q_vector;
|
|
struct ice_vsi *vsi = np->vsi;
|
|
struct ice_tx_ring *ring;
|
|
|
|
if (test_bit(ICE_VSI_DOWN, vsi->state))
|
|
return -ENETDOWN;
|
|
|
|
if (!ice_is_xdp_ena_vsi(vsi))
|
|
return -ENXIO;
|
|
|
|
if (queue_id >= vsi->num_txq)
|
|
return -ENXIO;
|
|
|
|
if (!vsi->xdp_rings[queue_id]->xsk_pool)
|
|
return -ENXIO;
|
|
|
|
ring = vsi->xdp_rings[queue_id];
|
|
|
|
/* The idea here is that if NAPI is running, mark a miss, so
|
|
* it will run again. If not, trigger an interrupt and
|
|
* schedule the NAPI from interrupt context. If NAPI would be
|
|
* scheduled here, the interrupt affinity would not be
|
|
* honored.
|
|
*/
|
|
q_vector = ring->q_vector;
|
|
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
|
|
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
|
|
* @vsi: VSI to be checked
|
|
*
|
|
* Returns true if any of the Rx rings has an AF_XDP buff pool attached
|
|
*/
|
|
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
|
|
{
|
|
int i;
|
|
|
|
ice_for_each_rxq(vsi, i) {
|
|
if (xsk_get_pool_from_qid(vsi->netdev, i))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
|
|
* @rx_ring: ring to be cleaned
|
|
*/
|
|
void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
|
|
{
|
|
u16 count_mask = rx_ring->count - 1;
|
|
u16 ntc = rx_ring->next_to_clean;
|
|
u16 ntu = rx_ring->next_to_use;
|
|
|
|
for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) {
|
|
struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
|
|
|
|
xsk_buff_free(xdp);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
|
|
* @xdp_ring: XDP_Tx ring
|
|
*/
|
|
void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
|
|
{
|
|
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
|
|
u32 xsk_frames = 0;
|
|
|
|
while (ntc != ntu) {
|
|
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
|
|
|
|
if (tx_buf->raw_buf)
|
|
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
|
|
else
|
|
xsk_frames++;
|
|
|
|
tx_buf->raw_buf = NULL;
|
|
|
|
ntc++;
|
|
if (ntc >= xdp_ring->count)
|
|
ntc = 0;
|
|
}
|
|
|
|
if (xsk_frames)
|
|
xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
|
|
}
|