1946 lines
50 KiB
C
1946 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018, Intel Corporation. */
|
|
|
|
#include "ice.h"
|
|
#include "ice_vf_lib_private.h"
|
|
#include "ice_base.h"
|
|
#include "ice_lib.h"
|
|
#include "ice_fltr.h"
|
|
#include "ice_dcb_lib.h"
|
|
#include "ice_flow.h"
|
|
#include "ice_eswitch.h"
|
|
#include "ice_virtchnl_allowlist.h"
|
|
#include "ice_flex_pipe.h"
|
|
#include "ice_vf_vsi_vlan_ops.h"
|
|
#include "ice_vlan.h"
|
|
|
|
/**
|
|
* ice_free_vf_entries - Free all VF entries from the hash table
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Iterate over the VF hash table, removing and releasing all VF entries.
|
|
* Called during VF teardown or as cleanup during failed VF initialization.
|
|
*/
|
|
static void ice_free_vf_entries(struct ice_pf *pf)
|
|
{
|
|
struct ice_vfs *vfs = &pf->vfs;
|
|
struct hlist_node *tmp;
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
|
|
/* Remove all VFs from the hash table and release their main
|
|
* reference. Once all references to the VF are dropped, ice_put_vf()
|
|
* will call ice_release_vf which will remove the VF memory.
|
|
*/
|
|
lockdep_assert_held(&vfs->table_lock);
|
|
|
|
hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
|
|
hash_del_rcu(&vf->entry);
|
|
ice_put_vf(vf);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_vf_vsi_release - invalidate the VF's VSI after freeing it
|
|
* @vf: invalidate this VF's VSI after freeing it
|
|
*/
|
|
static void ice_vf_vsi_release(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
|
|
|
|
if (WARN_ON(!vsi))
|
|
return;
|
|
|
|
ice_vsi_release(vsi);
|
|
ice_vf_invalidate_vsi(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_free_vf_res - Free a VF's resources
|
|
* @vf: pointer to the VF info
|
|
*/
|
|
static void ice_free_vf_res(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
int i, last_vector_idx;
|
|
|
|
/* First, disable VF's configuration API to prevent OS from
|
|
* accessing the VF's VSI after it's freed or invalidated.
|
|
*/
|
|
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
ice_vf_fdir_exit(vf);
|
|
/* free VF control VSI */
|
|
if (vf->ctrl_vsi_idx != ICE_NO_VSI)
|
|
ice_vf_ctrl_vsi_release(vf);
|
|
|
|
/* free VSI and disconnect it from the parent uplink */
|
|
if (vf->lan_vsi_idx != ICE_NO_VSI) {
|
|
ice_vf_vsi_release(vf);
|
|
vf->num_mac = 0;
|
|
}
|
|
|
|
last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
|
|
|
|
/* clear VF MDD event information */
|
|
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
|
|
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
|
|
|
|
/* Disable interrupts so that VF starts in a known state */
|
|
for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
|
|
wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
|
|
ice_flush(&pf->hw);
|
|
}
|
|
/* reset some of the state variables keeping track of the resources */
|
|
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
|
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vf_mappings
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_dis_vf_mappings(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
int first, last, v;
|
|
struct ice_hw *hw;
|
|
|
|
hw = &pf->hw;
|
|
vsi = ice_get_vf_vsi(vf);
|
|
if (WARN_ON(!vsi))
|
|
return;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
|
|
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
|
|
|
|
first = vf->first_vector_idx;
|
|
last = first + pf->vfs.num_msix_per - 1;
|
|
for (v = first; v <= last; v++) {
|
|
u32 reg;
|
|
|
|
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
|
|
GLINT_VECT2FUNC_IS_PF_M) |
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
}
|
|
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
|
|
else
|
|
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
|
|
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
|
|
else
|
|
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_free_msix_res - Reset/free any used MSIX resources
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Since no MSIX entries are taken from the pf->irq_tracker then just clear
|
|
* the pf->sriov_base_vector.
|
|
*
|
|
* Returns 0 on success, and -EINVAL on error.
|
|
*/
|
|
static int ice_sriov_free_msix_res(struct ice_pf *pf)
|
|
{
|
|
struct ice_res_tracker *res;
|
|
|
|
if (!pf)
|
|
return -EINVAL;
|
|
|
|
res = pf->irq_tracker;
|
|
if (!res)
|
|
return -EINVAL;
|
|
|
|
/* give back irq_tracker resources used */
|
|
WARN_ON(pf->sriov_base_vector < res->num_entries);
|
|
|
|
pf->sriov_base_vector = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_free_vfs - Free all VFs
|
|
* @pf: pointer to the PF structure
|
|
*/
|
|
void ice_free_vfs(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_vfs *vfs = &pf->vfs;
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
|
|
if (!ice_has_vfs(pf))
|
|
return;
|
|
|
|
while (test_and_set_bit(ICE_VF_DIS, pf->state))
|
|
usleep_range(1000, 2000);
|
|
|
|
/* Disable IOV before freeing resources. This lets any VF drivers
|
|
* running in the host get themselves cleaned up before we yank
|
|
* the carpet out from underneath their feet.
|
|
*/
|
|
if (!pci_vfs_assigned(pf->pdev))
|
|
pci_disable_sriov(pf->pdev);
|
|
else
|
|
dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
|
|
|
|
mutex_lock(&vfs->table_lock);
|
|
|
|
ice_eswitch_release(pf);
|
|
|
|
ice_for_each_vf(pf, bkt, vf) {
|
|
mutex_lock(&vf->cfg_lock);
|
|
|
|
ice_dis_vf_qs(vf);
|
|
|
|
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
|
|
/* disable VF qp mappings and set VF disable state */
|
|
ice_dis_vf_mappings(vf);
|
|
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
|
ice_free_vf_res(vf);
|
|
}
|
|
|
|
if (!pci_vfs_assigned(pf->pdev)) {
|
|
u32 reg_idx, bit_idx;
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
|
|
bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
}
|
|
|
|
/* clear malicious info since the VF is getting released */
|
|
if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
|
|
ICE_MAX_SRIOV_VFS, vf->vf_id))
|
|
dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
|
|
vf->vf_id);
|
|
|
|
mutex_unlock(&vf->cfg_lock);
|
|
}
|
|
|
|
if (ice_sriov_free_msix_res(pf))
|
|
dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
|
|
|
|
vfs->num_qps_per = 0;
|
|
ice_free_vf_entries(pf);
|
|
|
|
mutex_unlock(&vfs->table_lock);
|
|
|
|
clear_bit(ICE_VF_DIS, pf->state);
|
|
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
}
|
|
|
|
/**
|
|
* ice_vf_vsi_setup - Set up a VF VSI
|
|
* @vf: VF to setup VSI for
|
|
*
|
|
* Returns pointer to the successfully allocated VSI struct on success,
|
|
* otherwise returns NULL on failure.
|
|
*/
|
|
static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
|
|
{
|
|
struct ice_port_info *pi = ice_vf_get_port_info(vf);
|
|
struct ice_pf *pf = vf->pf;
|
|
struct ice_vsi *vsi;
|
|
|
|
vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf, NULL);
|
|
|
|
if (!vsi) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
|
|
ice_vf_invalidate_vsi(vf);
|
|
return NULL;
|
|
}
|
|
|
|
vf->lan_vsi_idx = vsi->idx;
|
|
vf->lan_vsi_num = vsi->vsi_num;
|
|
|
|
return vsi;
|
|
}
|
|
|
|
/**
|
|
* ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
|
|
* @pf: pointer to PF structure
|
|
* @vf: pointer to VF that the first MSIX vector index is being calculated for
|
|
*
|
|
* This returns the first MSIX vector index in PF space that is used by this VF.
|
|
* This index is used when accessing PF relative registers such as
|
|
* GLINT_VECT2FUNC and GLINT_DYN_CTL.
|
|
* This will always be the OICR index in the AVF driver so any functionality
|
|
* using vf->first_vector_idx for queue configuration will have to increment by
|
|
* 1 to avoid meddling with the OICR index.
|
|
*/
|
|
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
|
|
{
|
|
return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
|
|
* @vf: VF to enable MSIX mappings for
|
|
*
|
|
* Some of the registers need to be indexed/configured using hardware global
|
|
* device values and other registers need 0-based values, which represent PF
|
|
* based values.
|
|
*/
|
|
static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
|
|
{
|
|
int device_based_first_msix, device_based_last_msix;
|
|
int pf_based_first_msix, pf_based_last_msix, v;
|
|
struct ice_pf *pf = vf->pf;
|
|
int device_based_vf_id;
|
|
struct ice_hw *hw;
|
|
u32 reg;
|
|
|
|
hw = &pf->hw;
|
|
pf_based_first_msix = vf->first_vector_idx;
|
|
pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
|
|
|
|
device_based_first_msix = pf_based_first_msix +
|
|
pf->hw.func_caps.common_cap.msix_vector_first_id;
|
|
device_based_last_msix =
|
|
(device_based_first_msix + pf->vfs.num_msix_per) - 1;
|
|
device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
|
|
VPINT_ALLOC_FIRST_M) |
|
|
((device_based_last_msix << VPINT_ALLOC_LAST_S) &
|
|
VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
|
|
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
|
|
|
|
reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
|
|
& VPINT_ALLOC_PCI_FIRST_M) |
|
|
((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
|
|
VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
|
|
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
|
|
|
|
/* map the interrupts to its functions */
|
|
for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
|
|
reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
|
|
GLINT_VECT2FUNC_VF_NUM_M) |
|
|
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
|
GLINT_VECT2FUNC_PF_NUM_M));
|
|
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
|
}
|
|
|
|
/* Map mailbox interrupt to VF MSI-X vector 0 */
|
|
wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
|
|
* @vf: VF to enable the mappings for
|
|
* @max_txq: max Tx queues allowed on the VF's VSI
|
|
* @max_rxq: max Rx queues allowed on the VF's VSI
|
|
*/
|
|
static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(vf->pf);
|
|
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
|
|
struct ice_hw *hw = &vf->pf->hw;
|
|
u32 reg;
|
|
|
|
if (WARN_ON(!vsi))
|
|
return;
|
|
|
|
/* set regardless of mapping mode */
|
|
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
|
|
|
|
/* VF Tx queues allocation */
|
|
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
/* set the VF PF Tx queue range
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
*/
|
|
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
|
|
VPLAN_TX_QBASE_VFFIRSTQ_M) |
|
|
(((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
|
|
VPLAN_TX_QBASE_VFNUMQ_M));
|
|
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
|
|
} else {
|
|
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
|
|
}
|
|
|
|
/* set regardless of mapping mode */
|
|
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
|
|
|
|
/* VF Rx queues allocation */
|
|
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
|
/* set the VF PF Rx queue range
|
|
* VFNUMQ value should be set to (number of queues - 1). A value
|
|
* of 0 means 1 queue and a value of 255 means 256 queues
|
|
*/
|
|
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
|
|
VPLAN_RX_QBASE_VFFIRSTQ_M) |
|
|
(((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
|
|
VPLAN_RX_QBASE_VFNUMQ_M));
|
|
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
|
|
} else {
|
|
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vf_mappings - enable VF MSIX and queue mapping
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
static void ice_ena_vf_mappings(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
|
|
|
|
if (WARN_ON(!vsi))
|
|
return;
|
|
|
|
ice_ena_vf_msix_mappings(vf);
|
|
ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
|
|
}
|
|
|
|
/**
|
|
* ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
|
|
* @vf: VF to calculate the register index for
|
|
* @q_vector: a q_vector associated to the VF
|
|
*/
|
|
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
|
|
{
|
|
struct ice_pf *pf;
|
|
|
|
if (!vf || !q_vector)
|
|
return -EINVAL;
|
|
|
|
pf = vf->pf;
|
|
|
|
/* always add one to account for the OICR being the first MSIX */
|
|
return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
|
|
q_vector->v_idx + 1;
|
|
}
|
|
|
|
/**
|
|
* ice_get_max_valid_res_idx - Get the max valid resource index
|
|
* @res: pointer to the resource to find the max valid index for
|
|
*
|
|
* Start from the end of the ice_res_tracker and return right when we find the
|
|
* first res->list entry with the ICE_RES_VALID_BIT set. This function is only
|
|
* valid for SR-IOV because it is the only consumer that manipulates the
|
|
* res->end and this is always called when res->end is set to res->num_entries.
|
|
*/
|
|
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
|
|
{
|
|
int i;
|
|
|
|
if (!res)
|
|
return -EINVAL;
|
|
|
|
for (i = res->num_entries - 1; i >= 0; i--)
|
|
if (res->list[i] & ICE_RES_VALID_BIT)
|
|
return i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_set_msix_res - Set any used MSIX resources
|
|
* @pf: pointer to PF structure
|
|
* @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
|
|
*
|
|
* This function allows SR-IOV resources to be taken from the end of the PF's
|
|
* allowed HW MSIX vectors so that the irq_tracker will not be affected. We
|
|
* just set the pf->sriov_base_vector and return success.
|
|
*
|
|
* If there are not enough resources available, return an error. This should
|
|
* always be caught by ice_set_per_vf_res().
|
|
*
|
|
* Return 0 on success, and -EINVAL when there are not enough MSIX vectors
|
|
* in the PF's space available for SR-IOV.
|
|
*/
|
|
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
|
|
{
|
|
u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
|
|
int vectors_used = pf->irq_tracker->num_entries;
|
|
int sriov_base_vector;
|
|
|
|
sriov_base_vector = total_vectors - num_msix_needed;
|
|
|
|
/* make sure we only grab irq_tracker entries from the list end and
|
|
* that we have enough available MSIX vectors
|
|
*/
|
|
if (sriov_base_vector < vectors_used)
|
|
return -EINVAL;
|
|
|
|
pf->sriov_base_vector = sriov_base_vector;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_set_per_vf_res - check if vectors and queues are available
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: the number of SR-IOV VFs being configured
|
|
*
|
|
* First, determine HW interrupts from common pool. If we allocate fewer VFs, we
|
|
* get more vectors and can enable more queues per VF. Note that this does not
|
|
* grab any vectors from the SW pool already allocated. Also note, that all
|
|
* vector counts include one for each VF's miscellaneous interrupt vector
|
|
* (i.e. OICR).
|
|
*
|
|
* Minimum VFs - 2 vectors, 1 queue pair
|
|
* Small VFs - 5 vectors, 4 queue pairs
|
|
* Medium VFs - 17 vectors, 16 queue pairs
|
|
*
|
|
* Second, determine number of queue pairs per VF by starting with a pre-defined
|
|
* maximum each VF supports. If this is not possible, then we adjust based on
|
|
* queue pairs available on the device.
|
|
*
|
|
* Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
|
|
* by each VF during VF initialization and reset.
|
|
*/
|
|
static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
|
|
{
|
|
int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
|
|
u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
|
|
int msix_avail_per_vf, msix_avail_for_sriov;
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
lockdep_assert_held(&pf->vfs.table_lock);
|
|
|
|
if (!num_vfs)
|
|
return -EINVAL;
|
|
|
|
if (max_valid_res_idx < 0)
|
|
return -ENOSPC;
|
|
|
|
/* determine MSI-X resources per VF */
|
|
msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
|
|
pf->irq_tracker->num_entries;
|
|
msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
|
|
if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
|
|
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
|
|
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
|
|
num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
|
|
} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
|
|
num_msix_per_vf = ICE_MIN_INTR_PER_VF;
|
|
} else {
|
|
dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
|
|
msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
|
|
num_vfs);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
|
|
ICE_MAX_RSS_QS_PER_VF);
|
|
avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
|
|
if (!avail_qs)
|
|
num_txq = 0;
|
|
else if (num_txq > avail_qs)
|
|
num_txq = rounddown_pow_of_two(avail_qs);
|
|
|
|
num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
|
|
ICE_MAX_RSS_QS_PER_VF);
|
|
avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
|
|
if (!avail_qs)
|
|
num_rxq = 0;
|
|
else if (num_rxq > avail_qs)
|
|
num_rxq = rounddown_pow_of_two(avail_qs);
|
|
|
|
if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
|
|
dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
|
|
ICE_MIN_QS_PER_VF, num_vfs);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
|
|
if (err) {
|
|
dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
|
|
num_vfs, err);
|
|
return err;
|
|
}
|
|
|
|
/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
|
|
pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
|
|
pf->vfs.num_msix_per = num_msix_per_vf;
|
|
dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
|
|
num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_init_vf_vsi_res - initialize/setup VF VSI resources
|
|
* @vf: VF to initialize/setup the VSI for
|
|
*
|
|
* This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
|
|
* VF VSI's broadcast filter and is only used during initial VF creation.
|
|
*/
|
|
static int ice_init_vf_vsi_res(struct ice_vf *vf)
|
|
{
|
|
struct ice_vsi_vlan_ops *vlan_ops;
|
|
struct ice_pf *pf = vf->pf;
|
|
u8 broadcast[ETH_ALEN];
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
int err;
|
|
|
|
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
vsi = ice_vf_vsi_setup(vf);
|
|
if (!vsi)
|
|
return -ENOMEM;
|
|
|
|
err = ice_vsi_add_vlan_zero(vsi);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
|
|
vf->vf_id);
|
|
goto release_vsi;
|
|
}
|
|
|
|
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
|
|
err = vlan_ops->ena_rx_filtering(vsi);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to enable Rx VLAN filtering for VF %d\n",
|
|
vf->vf_id);
|
|
goto release_vsi;
|
|
}
|
|
|
|
eth_broadcast_addr(broadcast);
|
|
err = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
|
|
if (err) {
|
|
dev_err(dev, "Failed to add broadcast MAC filter for VF %d, error %d\n",
|
|
vf->vf_id, err);
|
|
goto release_vsi;
|
|
}
|
|
|
|
err = ice_vsi_apply_spoofchk(vsi, vf->spoofchk);
|
|
if (err) {
|
|
dev_warn(dev, "Failed to initialize spoofchk setting for VF %d\n",
|
|
vf->vf_id);
|
|
goto release_vsi;
|
|
}
|
|
|
|
vf->num_mac = 1;
|
|
|
|
return 0;
|
|
|
|
release_vsi:
|
|
ice_vf_vsi_release(vf);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_start_vfs - start VFs so they are ready to be used by SR-IOV
|
|
* @pf: PF the VFs are associated with
|
|
*/
|
|
static int ice_start_vfs(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
unsigned int bkt, it_cnt;
|
|
struct ice_vf *vf;
|
|
int retval;
|
|
|
|
lockdep_assert_held(&pf->vfs.table_lock);
|
|
|
|
it_cnt = 0;
|
|
ice_for_each_vf(pf, bkt, vf) {
|
|
vf->vf_ops->clear_reset_trigger(vf);
|
|
|
|
retval = ice_init_vf_vsi_res(vf);
|
|
if (retval) {
|
|
dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
|
|
vf->vf_id, retval);
|
|
goto teardown;
|
|
}
|
|
|
|
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
|
ice_ena_vf_mappings(vf);
|
|
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
|
it_cnt++;
|
|
}
|
|
|
|
ice_flush(hw);
|
|
return 0;
|
|
|
|
teardown:
|
|
ice_for_each_vf(pf, bkt, vf) {
|
|
if (it_cnt == 0)
|
|
break;
|
|
|
|
ice_dis_vf_mappings(vf);
|
|
ice_vf_vsi_release(vf);
|
|
it_cnt--;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_free_vf - Free VF memory after all references are dropped
|
|
* @vf: pointer to VF to free
|
|
*
|
|
* Called by ice_put_vf through ice_release_vf once the last reference to a VF
|
|
* structure has been dropped.
|
|
*/
|
|
static void ice_sriov_free_vf(struct ice_vf *vf)
|
|
{
|
|
mutex_destroy(&vf->cfg_lock);
|
|
|
|
kfree_rcu(vf, rcu);
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
|
|
* @vf: the vf to configure
|
|
*/
|
|
static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
|
|
wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
|
|
* @vf: pointer to VF structure
|
|
* @is_vflr: true if reset occurred due to VFLR
|
|
*
|
|
* Trigger and cleanup after a VF reset for a SR-IOV VF.
|
|
*/
|
|
static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
u32 reg, reg_idx, bit_idx;
|
|
unsigned int vf_abs_id, i;
|
|
struct device *dev;
|
|
struct ice_hw *hw;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
hw = &pf->hw;
|
|
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
|
|
|
|
/* In the case of a VFLR, HW has already reset the VF and we just need
|
|
* to clean up. Otherwise we must first trigger the reset using the
|
|
* VFRTRIG register.
|
|
*/
|
|
if (!is_vflr) {
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
reg |= VPGEN_VFRTRIG_VFSWR_M;
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
}
|
|
|
|
/* clear the VFLR bit in GLGEN_VFLRSTAT */
|
|
reg_idx = (vf_abs_id) / 32;
|
|
bit_idx = (vf_abs_id) % 32;
|
|
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
|
ice_flush(hw);
|
|
|
|
wr32(hw, PF_PCI_CIAA,
|
|
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
|
|
for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
|
|
reg = rd32(hw, PF_PCI_CIAD);
|
|
/* no transactions pending so stop polling */
|
|
if ((reg & VF_TRANS_PENDING_M) == 0)
|
|
break;
|
|
|
|
dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
|
|
udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_poll_reset_status - poll SRIOV VF reset status
|
|
* @vf: pointer to VF structure
|
|
*
|
|
* Returns true when reset is successful, else returns false
|
|
*/
|
|
static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
unsigned int i;
|
|
u32 reg;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
/* VF reset requires driver to first reset the VF and then
|
|
* poll the status register to make sure that the reset
|
|
* completed successfully.
|
|
*/
|
|
reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
|
|
if (reg & VPGEN_VFRSTAT_VFRD_M)
|
|
return true;
|
|
|
|
/* only sleep if the reset is not done */
|
|
usleep_range(10, 20);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_clear_reset_trigger - enable VF to access hardware
|
|
* @vf: VF to enabled hardware access for
|
|
*/
|
|
static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
|
|
{
|
|
struct ice_hw *hw = &vf->pf->hw;
|
|
u32 reg;
|
|
|
|
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
|
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
|
|
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
|
ice_flush(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_vsi_rebuild - release and rebuild VF's VSI
|
|
* @vf: VF to release and setup the VSI for
|
|
*
|
|
* This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
|
|
* configuration change, etc.).
|
|
*/
|
|
static int ice_sriov_vsi_rebuild(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
|
|
ice_vf_vsi_release(vf);
|
|
if (!ice_vf_vsi_setup(vf)) {
|
|
dev_err(ice_pf_to_dev(pf),
|
|
"Failed to release and setup the VF%u's VSI\n",
|
|
vf->vf_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
|
|
* @vf: VF to perform tasks on
|
|
*/
|
|
static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
|
|
{
|
|
ice_vf_rebuild_host_cfg(vf);
|
|
ice_vf_set_initialized(vf);
|
|
ice_ena_vf_mappings(vf);
|
|
wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
|
}
|
|
|
|
static const struct ice_vf_ops ice_sriov_vf_ops = {
|
|
.reset_type = ICE_VF_RESET,
|
|
.free = ice_sriov_free_vf,
|
|
.clear_mbx_register = ice_sriov_clear_mbx_register,
|
|
.trigger_reset_register = ice_sriov_trigger_reset_register,
|
|
.poll_reset_status = ice_sriov_poll_reset_status,
|
|
.clear_reset_trigger = ice_sriov_clear_reset_trigger,
|
|
.vsi_rebuild = ice_sriov_vsi_rebuild,
|
|
.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
|
|
};
|
|
|
|
/**
|
|
* ice_create_vf_entries - Allocate and insert VF entries
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: the number of VFs to allocate
|
|
*
|
|
* Allocate new VF entries and insert them into the hash table. Set some
|
|
* basic default fields for initializing the new VFs.
|
|
*
|
|
* After this function exits, the hash table will have num_vfs entries
|
|
* inserted.
|
|
*
|
|
* Returns 0 on success or an integer error code on failure.
|
|
*/
|
|
static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
|
|
{
|
|
struct ice_vfs *vfs = &pf->vfs;
|
|
struct ice_vf *vf;
|
|
u16 vf_id;
|
|
int err;
|
|
|
|
lockdep_assert_held(&vfs->table_lock);
|
|
|
|
for (vf_id = 0; vf_id < num_vfs; vf_id++) {
|
|
vf = kzalloc(sizeof(*vf), GFP_KERNEL);
|
|
if (!vf) {
|
|
err = -ENOMEM;
|
|
goto err_free_entries;
|
|
}
|
|
kref_init(&vf->refcnt);
|
|
|
|
vf->pf = pf;
|
|
vf->vf_id = vf_id;
|
|
|
|
/* set sriov vf ops for VFs created during SRIOV flow */
|
|
vf->vf_ops = &ice_sriov_vf_ops;
|
|
|
|
vf->vf_sw_id = pf->first_sw;
|
|
/* assign default capabilities */
|
|
vf->spoofchk = true;
|
|
vf->num_vf_qs = pf->vfs.num_qps_per;
|
|
ice_vc_set_default_allowlist(vf);
|
|
|
|
/* ctrl_vsi_idx will be set to a valid value only when VF
|
|
* creates its first fdir rule.
|
|
*/
|
|
ice_vf_ctrl_invalidate_vsi(vf);
|
|
ice_vf_fdir_init(vf);
|
|
|
|
ice_virtchnl_set_dflt_ops(vf);
|
|
|
|
mutex_init(&vf->cfg_lock);
|
|
|
|
hash_add_rcu(vfs->table, &vf->entry, vf_id);
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_entries:
|
|
ice_free_vf_entries(pf);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vfs - enable VFs so they are ready to be used
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: number of VFs to enable
|
|
*/
|
|
static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
int ret;
|
|
|
|
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
|
|
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
|
|
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
|
|
set_bit(ICE_OICR_INTR_DIS, pf->state);
|
|
ice_flush(hw);
|
|
|
|
ret = pci_enable_sriov(pf->pdev, num_vfs);
|
|
if (ret)
|
|
goto err_unroll_intr;
|
|
|
|
mutex_lock(&pf->vfs.table_lock);
|
|
|
|
ret = ice_set_per_vf_res(pf, num_vfs);
|
|
if (ret) {
|
|
dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
|
|
num_vfs, ret);
|
|
goto err_unroll_sriov;
|
|
}
|
|
|
|
ret = ice_create_vf_entries(pf, num_vfs);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
|
|
num_vfs);
|
|
goto err_unroll_sriov;
|
|
}
|
|
|
|
ret = ice_start_vfs(pf);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
|
|
ret = -EAGAIN;
|
|
goto err_unroll_vf_entries;
|
|
}
|
|
|
|
clear_bit(ICE_VF_DIS, pf->state);
|
|
|
|
ret = ice_eswitch_configure(pf);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
|
|
goto err_unroll_sriov;
|
|
}
|
|
|
|
/* rearm global interrupts */
|
|
if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
|
|
ice_irq_dynamic_ena(hw, NULL, NULL);
|
|
|
|
mutex_unlock(&pf->vfs.table_lock);
|
|
|
|
return 0;
|
|
|
|
err_unroll_vf_entries:
|
|
ice_free_vf_entries(pf);
|
|
err_unroll_sriov:
|
|
mutex_unlock(&pf->vfs.table_lock);
|
|
pci_disable_sriov(pf->pdev);
|
|
err_unroll_intr:
|
|
/* rearm interrupts here */
|
|
ice_irq_dynamic_ena(hw, NULL, NULL);
|
|
clear_bit(ICE_OICR_INTR_DIS, pf->state);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_pci_sriov_ena - Enable or change number of VFs
|
|
* @pf: pointer to the PF structure
|
|
* @num_vfs: number of VFs to allocate
|
|
*
|
|
* Returns 0 on success and negative on failure
|
|
*/
|
|
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
|
|
{
|
|
int pre_existing_vfs = pci_num_vf(pf->pdev);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
|
|
ice_free_vfs(pf);
|
|
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
|
|
return 0;
|
|
|
|
if (num_vfs > pf->vfs.num_supported) {
|
|
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
|
|
num_vfs, pf->vfs.num_supported);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
dev_info(dev, "Enabling %d VFs\n", num_vfs);
|
|
err = ice_ena_vfs(pf, num_vfs);
|
|
if (err) {
|
|
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
|
|
* @pf: PF to enabled SR-IOV on
|
|
*/
|
|
static int ice_check_sriov_allowed(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
|
|
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
|
|
dev_err(dev, "This device is not capable of SR-IOV\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (ice_is_safe_mode(pf)) {
|
|
dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!ice_pf_state_is_nominal(pf)) {
|
|
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ice_sriov_configure - Enable or change number of VFs via sysfs
|
|
* @pdev: pointer to a pci_dev structure
|
|
* @num_vfs: number of VFs to allocate or 0 to free VFs
|
|
*
|
|
* This function is called when the user updates the number of VFs in sysfs. On
|
|
* success return whatever num_vfs was set to by the caller. Return negative on
|
|
* failure.
|
|
*/
|
|
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
|
|
{
|
|
struct ice_pf *pf = pci_get_drvdata(pdev);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
int err;
|
|
|
|
err = ice_check_sriov_allowed(pf);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!num_vfs) {
|
|
if (!pci_vfs_assigned(pdev)) {
|
|
ice_free_vfs(pf);
|
|
ice_mbx_deinit_snapshot(&pf->hw);
|
|
if (pf->lag)
|
|
ice_enable_lag(pf->lag);
|
|
return 0;
|
|
}
|
|
|
|
dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ice_pci_sriov_ena(pf, num_vfs);
|
|
if (err) {
|
|
ice_mbx_deinit_snapshot(&pf->hw);
|
|
return err;
|
|
}
|
|
|
|
if (pf->lag)
|
|
ice_disable_lag(pf->lag);
|
|
return num_vfs;
|
|
}
|
|
|
|
/**
|
|
* ice_process_vflr_event - Free VF resources via IRQ calls
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* called from the VFLR IRQ handler to
|
|
* free up VF resources and state variables
|
|
*/
|
|
void ice_process_vflr_event(struct ice_pf *pf)
|
|
{
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
u32 reg;
|
|
|
|
if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
|
|
!ice_has_vfs(pf))
|
|
return;
|
|
|
|
mutex_lock(&pf->vfs.table_lock);
|
|
ice_for_each_vf(pf, bkt, vf) {
|
|
u32 reg_idx, bit_idx;
|
|
|
|
reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
|
|
bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
|
|
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
|
|
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
|
|
if (reg & BIT(bit_idx))
|
|
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
|
|
ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
|
|
}
|
|
mutex_unlock(&pf->vfs.table_lock);
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
|
|
* @pf: PF used to index all VFs
|
|
* @pfq: queue index relative to the PF's function space
|
|
*
|
|
* If no VF is found who owns the pfq then return NULL, otherwise return a
|
|
* pointer to the VF who owns the pfq
|
|
*
|
|
* If this function returns non-NULL, it acquires a reference count of the VF
|
|
* structure. The caller is responsible for calling ice_put_vf() to drop this
|
|
* reference.
|
|
*/
|
|
static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
|
|
{
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
|
|
rcu_read_lock();
|
|
ice_for_each_vf_rcu(pf, bkt, vf) {
|
|
struct ice_vsi *vsi;
|
|
u16 rxq_idx;
|
|
|
|
vsi = ice_get_vf_vsi(vf);
|
|
if (!vsi)
|
|
continue;
|
|
|
|
ice_for_each_rxq(vsi, rxq_idx)
|
|
if (vsi->rxq_map[rxq_idx] == pfq) {
|
|
struct ice_vf *found;
|
|
|
|
if (kref_get_unless_zero(&vf->refcnt))
|
|
found = vf;
|
|
else
|
|
found = NULL;
|
|
rcu_read_unlock();
|
|
return found;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ice_globalq_to_pfq - convert from global queue index to PF space queue index
|
|
* @pf: PF used for conversion
|
|
* @globalq: global queue index used to convert to PF space queue index
|
|
*/
|
|
static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
|
|
{
|
|
return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
|
|
}
|
|
|
|
/**
|
|
* ice_vf_lan_overflow_event - handle LAN overflow event for a VF
|
|
* @pf: PF that the LAN overflow event happened on
|
|
* @event: structure holding the event information for the LAN overflow event
|
|
*
|
|
* Determine if the LAN overflow event was caused by a VF queue. If it was not
|
|
* caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
|
|
* reset on the offending VF.
|
|
*/
|
|
void
|
|
ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
|
|
{
|
|
u32 gldcb_rtctq, queue;
|
|
struct ice_vf *vf;
|
|
|
|
gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
|
|
dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
|
|
|
|
/* event returns device global Rx queue number */
|
|
queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
|
|
GLDCB_RTCTQ_RXQNUM_S;
|
|
|
|
vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
|
|
if (!vf)
|
|
return;
|
|
|
|
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
|
|
ice_put_vf(vf);
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_spoofchk
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @ena: flag to enable or disable feature
|
|
*
|
|
* Enable or disable VF spoof checking
|
|
*/
|
|
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
|
|
{
|
|
struct ice_netdev_priv *np = netdev_priv(netdev);
|
|
struct ice_pf *pf = np->vsi->back;
|
|
struct ice_vsi *vf_vsi;
|
|
struct device *dev;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
vf_vsi = ice_get_vf_vsi(vf);
|
|
if (!vf_vsi) {
|
|
netdev_err(netdev, "VSI %d for VF %d is null\n",
|
|
vf->lan_vsi_idx, vf->vf_id);
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
if (vf_vsi->type != ICE_VSI_VF) {
|
|
netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
|
|
vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
|
|
ret = -ENODEV;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
if (ena == vf->spoofchk) {
|
|
dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
|
|
ret = 0;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
|
|
if (ret)
|
|
dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
|
|
ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
|
|
else
|
|
vf->spoofchk = ena;
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_cfg
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @ivi: VF configuration structure
|
|
*
|
|
* return VF configuration
|
|
*/
|
|
int
|
|
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
ivi->vf = vf_id;
|
|
ether_addr_copy(ivi->mac, vf->hw_lan_addr.addr);
|
|
|
|
/* VF configuration for VLAN and applicable QoS */
|
|
ivi->vlan = ice_vf_get_port_vlan_id(vf);
|
|
ivi->qos = ice_vf_get_port_vlan_prio(vf);
|
|
if (ice_vf_is_port_vlan_ena(vf))
|
|
ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
|
|
|
|
ivi->trusted = vf->trusted;
|
|
ivi->spoofchk = vf->spoofchk;
|
|
if (!vf->link_forced)
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
|
|
else if (vf->link_up)
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
|
|
else
|
|
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
|
|
ivi->max_tx_rate = vf->max_tx_rate;
|
|
ivi->min_tx_rate = vf->min_tx_rate;
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
|
|
* @pf: PF used to reference the switch's rules
|
|
* @umac: unicast MAC to compare against existing switch rules
|
|
*
|
|
* Return true on the first/any match, else return false
|
|
*/
|
|
static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
|
|
{
|
|
struct ice_sw_recipe *mac_recipe_list =
|
|
&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
|
|
struct ice_fltr_mgmt_list_entry *list_itr;
|
|
struct list_head *rule_head;
|
|
struct mutex *rule_lock; /* protect MAC filter list access */
|
|
|
|
rule_head = &mac_recipe_list->filt_rules;
|
|
rule_lock = &mac_recipe_list->filt_rule_lock;
|
|
|
|
mutex_lock(rule_lock);
|
|
list_for_each_entry(list_itr, rule_head, list_entry) {
|
|
u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
|
|
|
|
if (ether_addr_equal(existing_mac, umac)) {
|
|
mutex_unlock(rule_lock);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(rule_lock);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_mac
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @mac: MAC address
|
|
*
|
|
* program VF MAC address
|
|
*/
|
|
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (is_multicast_ether_addr(mac)) {
|
|
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
/* nothing left to do, unicast MAC already set */
|
|
if (ether_addr_equal(vf->dev_lan_addr.addr, mac) &&
|
|
ether_addr_equal(vf->hw_lan_addr.addr, mac)) {
|
|
ret = 0;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
if (ice_unicast_mac_exists(pf, mac)) {
|
|
netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
|
|
mac, vf_id, mac);
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
mutex_lock(&vf->cfg_lock);
|
|
|
|
/* VF is notified of its new MAC via the PF's response to the
|
|
* VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
|
|
*/
|
|
ether_addr_copy(vf->dev_lan_addr.addr, mac);
|
|
ether_addr_copy(vf->hw_lan_addr.addr, mac);
|
|
if (is_zero_ether_addr(mac)) {
|
|
/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
|
|
vf->pf_set_mac = false;
|
|
netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
|
|
vf->vf_id);
|
|
} else {
|
|
/* PF will add MAC rule for the VF */
|
|
vf->pf_set_mac = true;
|
|
netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
|
|
mac, vf_id);
|
|
}
|
|
|
|
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
|
|
mutex_unlock(&vf->cfg_lock);
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_trust
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @trusted: Boolean value to enable/disable trusted VF
|
|
*
|
|
* Enable or disable a given VF as trusted
|
|
*/
|
|
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
if (ice_is_eswitch_mode_switchdev(pf)) {
|
|
dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
/* Check if already trusted */
|
|
if (trusted == vf->trusted) {
|
|
ret = 0;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
mutex_lock(&vf->cfg_lock);
|
|
|
|
vf->trusted = trusted;
|
|
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
|
|
dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
|
|
vf_id, trusted ? "" : "un");
|
|
|
|
mutex_unlock(&vf->cfg_lock);
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_link_state
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @link_state: required link state
|
|
*
|
|
* Set VF's link state, irrespective of physical link state status
|
|
*/
|
|
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
switch (link_state) {
|
|
case IFLA_VF_LINK_STATE_AUTO:
|
|
vf->link_forced = false;
|
|
break;
|
|
case IFLA_VF_LINK_STATE_ENABLE:
|
|
vf->link_forced = true;
|
|
vf->link_up = true;
|
|
break;
|
|
case IFLA_VF_LINK_STATE_DISABLE:
|
|
vf->link_forced = true;
|
|
vf->link_up = false;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
ice_vc_notify_vf_link_state(vf);
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
|
|
* @pf: PF associated with VFs
|
|
*/
|
|
static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
|
|
{
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
int rate = 0;
|
|
|
|
rcu_read_lock();
|
|
ice_for_each_vf_rcu(pf, bkt, vf)
|
|
rate += vf->min_tx_rate;
|
|
rcu_read_unlock();
|
|
|
|
return rate;
|
|
}
|
|
|
|
/**
|
|
* ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
|
|
* @vf: VF trying to configure min_tx_rate
|
|
* @min_tx_rate: min Tx rate in Mbps
|
|
*
|
|
* Check if the min_tx_rate being passed in will cause oversubscription of total
|
|
* min_tx_rate based on the current link speed and all other VFs configured
|
|
* min_tx_rate
|
|
*
|
|
* Return true if the passed min_tx_rate would cause oversubscription, else
|
|
* return false
|
|
*/
|
|
static bool
|
|
ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
|
|
{
|
|
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
|
|
int all_vfs_min_tx_rate;
|
|
int link_speed_mbps;
|
|
|
|
if (WARN_ON(!vsi))
|
|
return false;
|
|
|
|
link_speed_mbps = ice_get_link_speed_mbps(vsi);
|
|
all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
|
|
|
|
/* this VF's previous rate is being overwritten */
|
|
all_vfs_min_tx_rate -= vf->min_tx_rate;
|
|
|
|
if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
|
|
dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
|
|
min_tx_rate, vf->vf_id,
|
|
all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
|
|
link_speed_mbps);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_bw - set min/max VF bandwidth
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @min_tx_rate: Minimum Tx rate in Mbps
|
|
* @max_tx_rate: Maximum Tx rate in Mbps
|
|
*/
|
|
int
|
|
ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
|
|
int max_tx_rate)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_vsi *vsi;
|
|
struct device *dev;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
vsi = ice_get_vf_vsi(vf);
|
|
if (!vsi) {
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
/* when max_tx_rate is zero that means no max Tx rate limiting, so only
|
|
* check if max_tx_rate is non-zero
|
|
*/
|
|
if (max_tx_rate && min_tx_rate > max_tx_rate) {
|
|
dev_err(dev, "Cannot set min Tx rate %d Mbps greater than max Tx rate %d Mbps\n",
|
|
min_tx_rate, max_tx_rate);
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
if (min_tx_rate && ice_is_dcb_active(pf)) {
|
|
dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
|
|
ret = -EOPNOTSUPP;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
|
|
ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
|
|
if (ret) {
|
|
dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
|
|
vf->vf_id);
|
|
goto out_put_vf;
|
|
}
|
|
|
|
vf->min_tx_rate = min_tx_rate;
|
|
}
|
|
|
|
if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
|
|
ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
|
|
if (ret) {
|
|
dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
|
|
vf->vf_id);
|
|
goto out_put_vf;
|
|
}
|
|
|
|
vf->max_tx_rate = max_tx_rate;
|
|
}
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_get_vf_stats - populate some stats for the VF
|
|
* @netdev: the netdev of the PF
|
|
* @vf_id: the host OS identifier (0-255)
|
|
* @vf_stats: pointer to the OS memory to be initialized
|
|
*/
|
|
int ice_get_vf_stats(struct net_device *netdev, int vf_id,
|
|
struct ifla_vf_stats *vf_stats)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
struct ice_eth_stats *stats;
|
|
struct ice_vsi *vsi;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
vsi = ice_get_vf_vsi(vf);
|
|
if (!vsi) {
|
|
ret = -EINVAL;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
ice_update_eth_stats(vsi);
|
|
stats = &vsi->eth_stats;
|
|
|
|
memset(vf_stats, 0, sizeof(*vf_stats));
|
|
|
|
vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
|
|
stats->rx_multicast;
|
|
vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
|
|
stats->tx_multicast;
|
|
vf_stats->rx_bytes = stats->rx_bytes;
|
|
vf_stats->tx_bytes = stats->tx_bytes;
|
|
vf_stats->broadcast = stats->rx_broadcast;
|
|
vf_stats->multicast = stats->rx_multicast;
|
|
vf_stats->rx_dropped = stats->rx_discards;
|
|
vf_stats->tx_dropped = stats->tx_discards;
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
|
|
* @hw: hardware structure used to check the VLAN mode
|
|
* @vlan_proto: VLAN TPID being checked
|
|
*
|
|
* If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
|
|
* and ETH_P_8021AD are supported. If the device is configured in Single VLAN
|
|
* Mode (SVM), then only ETH_P_8021Q is supported.
|
|
*/
|
|
static bool
|
|
ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
|
|
{
|
|
bool is_supported = false;
|
|
|
|
switch (vlan_proto) {
|
|
case ETH_P_8021Q:
|
|
is_supported = true;
|
|
break;
|
|
case ETH_P_8021AD:
|
|
if (ice_is_dvm_ena(hw))
|
|
is_supported = true;
|
|
break;
|
|
}
|
|
|
|
return is_supported;
|
|
}
|
|
|
|
/**
|
|
* ice_set_vf_port_vlan
|
|
* @netdev: network interface device structure
|
|
* @vf_id: VF identifier
|
|
* @vlan_id: VLAN ID being set
|
|
* @qos: priority setting
|
|
* @vlan_proto: VLAN protocol
|
|
*
|
|
* program VF Port VLAN ID and/or QoS
|
|
*/
|
|
int
|
|
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
|
|
__be16 vlan_proto)
|
|
{
|
|
struct ice_pf *pf = ice_netdev_to_pf(netdev);
|
|
u16 local_vlan_proto = ntohs(vlan_proto);
|
|
struct device *dev;
|
|
struct ice_vf *vf;
|
|
int ret;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
if (vlan_id >= VLAN_N_VID || qos > 7) {
|
|
dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
|
|
vf_id, vlan_id, qos);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
|
|
dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
|
|
local_vlan_proto);
|
|
return -EPROTONOSUPPORT;
|
|
}
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return -EINVAL;
|
|
|
|
ret = ice_check_vf_ready_for_cfg(vf);
|
|
if (ret)
|
|
goto out_put_vf;
|
|
|
|
if (ice_vf_get_port_vlan_prio(vf) == qos &&
|
|
ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
|
|
ice_vf_get_port_vlan_id(vf) == vlan_id) {
|
|
/* duplicate request, so just return success */
|
|
dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
|
|
vlan_id, qos, local_vlan_proto);
|
|
ret = 0;
|
|
goto out_put_vf;
|
|
}
|
|
|
|
mutex_lock(&vf->cfg_lock);
|
|
|
|
vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
|
|
if (ice_vf_is_port_vlan_ena(vf))
|
|
dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
|
|
vlan_id, qos, local_vlan_proto, vf_id);
|
|
else
|
|
dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
|
|
|
|
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
|
|
mutex_unlock(&vf->cfg_lock);
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
|
|
* @vf: pointer to the VF structure
|
|
*/
|
|
void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
|
|
{
|
|
struct ice_pf *pf = vf->pf;
|
|
struct device *dev;
|
|
|
|
dev = ice_pf_to_dev(pf);
|
|
|
|
dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
|
|
vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
|
|
vf->dev_lan_addr.addr,
|
|
test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
|
|
? "on" : "off");
|
|
}
|
|
|
|
/**
|
|
* ice_print_vfs_mdd_events - print VFs malicious driver detect event
|
|
* @pf: pointer to the PF structure
|
|
*
|
|
* Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
|
|
*/
|
|
void ice_print_vfs_mdd_events(struct ice_pf *pf)
|
|
{
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_hw *hw = &pf->hw;
|
|
struct ice_vf *vf;
|
|
unsigned int bkt;
|
|
|
|
/* check that there are pending MDD events to print */
|
|
if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
|
|
return;
|
|
|
|
/* VF MDD event logs are rate limited to one second intervals */
|
|
if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
|
|
return;
|
|
|
|
pf->vfs.last_printed_mdd_jiffies = jiffies;
|
|
|
|
mutex_lock(&pf->vfs.table_lock);
|
|
ice_for_each_vf(pf, bkt, vf) {
|
|
/* only print Rx MDD event message if there are new events */
|
|
if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
|
|
vf->mdd_rx_events.last_printed =
|
|
vf->mdd_rx_events.count;
|
|
ice_print_vf_rx_mdd_event(vf);
|
|
}
|
|
|
|
/* only print Tx MDD event message if there are new events */
|
|
if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
|
|
vf->mdd_tx_events.last_printed =
|
|
vf->mdd_tx_events.count;
|
|
|
|
dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
|
|
vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
|
|
vf->dev_lan_addr.addr);
|
|
}
|
|
}
|
|
mutex_unlock(&pf->vfs.table_lock);
|
|
}
|
|
|
|
/**
|
|
* ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
|
|
* @pdev: pointer to a pci_dev structure
|
|
*
|
|
* Called when recovering from a PF FLR to restore interrupt capability to
|
|
* the VFs.
|
|
*/
|
|
void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
|
|
{
|
|
u16 vf_id;
|
|
int pos;
|
|
|
|
if (!pci_num_vf(pdev))
|
|
return;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
|
|
if (pos) {
|
|
struct pci_dev *vfdev;
|
|
|
|
pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
|
|
&vf_id);
|
|
vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
|
|
while (vfdev) {
|
|
if (vfdev->is_virtfn && vfdev->physfn == pdev)
|
|
pci_restore_msi_state(vfdev);
|
|
vfdev = pci_get_device(pdev->vendor, vf_id,
|
|
vfdev);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_is_malicious_vf - helper function to detect a malicious VF
|
|
* @pf: ptr to struct ice_pf
|
|
* @event: pointer to the AQ event
|
|
* @num_msg_proc: the number of messages processed so far
|
|
* @num_msg_pending: the number of messages peinding in admin queue
|
|
*/
|
|
bool
|
|
ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
|
|
u16 num_msg_proc, u16 num_msg_pending)
|
|
{
|
|
s16 vf_id = le16_to_cpu(event->desc.retval);
|
|
struct device *dev = ice_pf_to_dev(pf);
|
|
struct ice_mbx_data mbxdata;
|
|
bool malvf = false;
|
|
struct ice_vf *vf;
|
|
int status;
|
|
|
|
vf = ice_get_vf_by_id(pf, vf_id);
|
|
if (!vf)
|
|
return false;
|
|
|
|
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
|
|
goto out_put_vf;
|
|
|
|
mbxdata.num_msg_proc = num_msg_proc;
|
|
mbxdata.num_pending_arq = num_msg_pending;
|
|
mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
|
|
#define ICE_MBX_OVERFLOW_WATERMARK 64
|
|
mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
|
|
|
|
/* check to see if we have a malicious VF */
|
|
status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
|
|
if (status)
|
|
goto out_put_vf;
|
|
|
|
if (malvf) {
|
|
bool report_vf = false;
|
|
|
|
/* if the VF is malicious and we haven't let the user
|
|
* know about it, then let them know now
|
|
*/
|
|
status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
|
|
ICE_MAX_SRIOV_VFS, vf_id,
|
|
&report_vf);
|
|
if (status)
|
|
dev_dbg(dev, "Error reporting malicious VF\n");
|
|
|
|
if (report_vf) {
|
|
struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
|
|
|
|
if (pf_vsi)
|
|
dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
|
|
&vf->dev_lan_addr.addr[0],
|
|
pf_vsi->netdev->dev_addr);
|
|
}
|
|
}
|
|
|
|
out_put_vf:
|
|
ice_put_vf(vf);
|
|
return malvf;
|
|
}
|