linux/linux-5.18.11/drivers/net/ethernet/intel/ice/ice_ptp.h

284 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2021, Intel Corporation. */
#ifndef _ICE_PTP_H_
#define _ICE_PTP_H_
#include <linux/ptp_clock_kernel.h>
#include <linux/kthread.h>
#include "ice_ptp_hw.h"
enum ice_ptp_pin_e810 {
GPIO_20 = 0,
GPIO_21,
GPIO_22,
GPIO_23,
NUM_PTP_PIN_E810
};
enum ice_ptp_pin_e810t {
GNSS = 0,
SMA1,
UFL1,
SMA2,
UFL2,
NUM_PTP_PINS_E810T
};
struct ice_perout_channel {
bool ena;
u32 gpio_pin;
u64 period;
u64 start_time;
};
/* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp
* is stored in a buffer of registers. Depending on the specific hardware,
* this buffer might be shared across multiple PHY ports.
*
* On transmit of a packet to be timestamped, software is responsible for
* selecting an open index. Hardware makes no attempt to lock or prevent
* re-use of an index for multiple packets.
*
* To handle this, timestamp indexes must be tracked by software to ensure
* that an index is not re-used for multiple transmitted packets. The
* structures and functions declared in this file track the available Tx
* register indexes, as well as provide storage for the SKB pointers.
*
* To allow multiple ports to access the shared register block independently,
* the blocks are split up so that indexes are assigned to each port based on
* hardware logical port number.
*
* The timestamp blocks are handled differently for E810- and E822-based
* devices. In E810 devices, each port has its own block of timestamps, while in
* E822 there is a need to logically break the block of registers into smaller
* chunks based on the port number to avoid collisions.
*
* Example for port 5 in E810:
* +--------+--------+--------+--------+--------+--------+--------+--------+
* |register|register|register|register|register|register|register|register|
* | block | block | block | block | block | block | block | block |
* | for | for | for | for | for | for | for | for |
* | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 |
* +--------+--------+--------+--------+--------+--------+--------+--------+
* ^^
* ||
* |--- quad offset is always 0
* ---- quad number
*
* Example for port 5 in E822:
* +-----------------------------+-----------------------------+
* | register block for quad 0 | register block for quad 1 |
* |+------+------+------+------+|+------+------+------+------+|
* ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3||
* |+------+------+------+------+|+------+------+------+------+|
* +-----------------------------+-------^---------------------+
* ^ |
* | --- quad offset*
* ---- quad number
*
* * PHY port 5 is port 1 in quad 1
*
*/
/**
* struct ice_tx_tstamp - Tracking for a single Tx timestamp
* @skb: pointer to the SKB for this timestamp request
* @start: jiffies when the timestamp was first requested
* @cached_tstamp: last read timestamp
*
* This structure tracks a single timestamp request. The SKB pointer is
* provided when initiating a request. The start time is used to ensure that
* we discard old requests that were not fulfilled within a 2 second time
* window.
* Timestamp values in the PHY are read only and do not get cleared except at
* hardware reset or when a new timestamp value is captured. The cached_tstamp
* field is used to detect the case where a new timestamp has not yet been
* captured, ensuring that we avoid sending stale timestamp data to the stack.
*/
struct ice_tx_tstamp {
struct sk_buff *skb;
unsigned long start;
u64 cached_tstamp;
};
/**
* struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port
* @work: work function to handle processing of Tx timestamps
* @lock: lock to prevent concurrent write to in_use bitmap
* @tstamps: array of len to store outstanding requests
* @in_use: bitmap of len to indicate which slots are in use
* @quad: which quad the timestamps are captured in
* @quad_offset: offset into timestamp block of the quad to get the real index
* @len: length of the tstamps and in_use fields.
* @init: if true, the tracker is initialized;
* @calibrating: if true, the PHY is calibrating the Tx offset. During this
* window, timestamps are temporarily disabled.
*/
struct ice_ptp_tx {
struct kthread_work work;
spinlock_t lock; /* lock protecting in_use bitmap */
struct ice_tx_tstamp *tstamps;
unsigned long *in_use;
u8 quad;
u8 quad_offset;
u8 len;
u8 init;
u8 calibrating;
};
/* Quad and port information for initializing timestamp blocks */
#define INDEX_PER_QUAD 64
#define INDEX_PER_PORT (INDEX_PER_QUAD / ICE_PORTS_PER_QUAD)
/**
* struct ice_ptp_port - data used to initialize an external port for PTP
*
* This structure contains data indicating whether a single external port is
* ready for PTP functionality. It is used to track the port initialization
* and determine when the port's PHY offset is valid.
*
* @tx: Tx timestamp tracking for this port
* @ov_work: delayed work task for tracking when PHY offset is valid
* @ps_lock: mutex used to protect the overall PTP PHY start procedure
* @link_up: indicates whether the link is up
* @tx_fifo_busy_cnt: number of times the Tx FIFO was busy
* @port_num: the port number this structure represents
*/
struct ice_ptp_port {
struct ice_ptp_tx tx;
struct kthread_delayed_work ov_work;
struct mutex ps_lock; /* protects overall PTP PHY start procedure */
bool link_up;
u8 tx_fifo_busy_cnt;
u8 port_num;
};
#define GLTSYN_TGT_H_IDX_MAX 4
/**
* struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK
* @port: data for the PHY port initialization procedure
* @work: delayed work function for periodic tasks
* @extts_work: work function for handling external Tx timestamps
* @cached_phc_time: a cached copy of the PHC time for timestamp extension
* @ext_ts_chan: the external timestamp channel in use
* @ext_ts_irq: the external timestamp IRQ in use
* @kworker: kwork thread for handling periodic work
* @perout_channels: periodic output data
* @info: structure defining PTP hardware capabilities
* @clock: pointer to registered PTP clock device
* @tstamp_config: hardware timestamping configuration
* @reset_time: kernel time after clock stop on reset
*/
struct ice_ptp {
struct ice_ptp_port port;
struct kthread_delayed_work work;
struct kthread_work extts_work;
u64 cached_phc_time;
u8 ext_ts_chan;
u8 ext_ts_irq;
struct kthread_worker *kworker;
struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX];
struct ptp_clock_info info;
struct ptp_clock *clock;
struct hwtstamp_config tstamp_config;
u64 reset_time;
};
#define __ptp_port_to_ptp(p) \
container_of((p), struct ice_ptp, port)
#define ptp_port_to_pf(p) \
container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp)
#define __ptp_info_to_ptp(i) \
container_of((i), struct ice_ptp, info)
#define ptp_info_to_pf(i) \
container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp)
#define PFTSYN_SEM_BYTES 4
#define PTP_SHARED_CLK_IDX_VALID BIT(31)
#define TS_CMD_MASK 0xF
#define SYNC_EXEC_CMD 0x3
#define ICE_PTP_TS_VALID BIT(0)
#define FIFO_EMPTY BIT(2)
#define FIFO_OK 0xFF
#define ICE_PTP_FIFO_NUM_CHECKS 5
/* Per-channel register definitions */
#define GLTSYN_AUX_OUT(_chan, _idx) (GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8))
#define GLTSYN_AUX_IN(_chan, _idx) (GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8))
#define GLTSYN_CLKO(_chan, _idx) (GLTSYN_CLKO_0(_idx) + ((_chan) * 8))
#define GLTSYN_TGT_L(_chan, _idx) (GLTSYN_TGT_L_0(_idx) + ((_chan) * 16))
#define GLTSYN_TGT_H(_chan, _idx) (GLTSYN_TGT_H_0(_idx) + ((_chan) * 16))
#define GLTSYN_EVNT_L(_chan, _idx) (GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16))
#define GLTSYN_EVNT_H(_chan, _idx) (GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16))
#define GLTSYN_EVNT_H_IDX_MAX 3
/* Pin definitions for PTP PPS out */
#define PPS_CLK_GEN_CHAN 3
#define PPS_CLK_SRC_CHAN 2
#define PPS_PIN_INDEX 5
#define TIME_SYNC_PIN_INDEX 4
#define N_EXT_TS_E810 3
#define N_PER_OUT_E810 4
#define N_PER_OUT_E810T 3
#define N_PER_OUT_E810T_NO_SMA 2
#define N_EXT_TS_E810_NO_SMA 2
#define ETH_GLTSYN_ENA(_i) (0x03000348 + ((_i) * 4))
#if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
struct ice_pf;
int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr);
int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr);
void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena);
int ice_get_ptp_clock_index(struct ice_pf *pf);
s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb);
void ice_ptp_process_ts(struct ice_pf *pf);
void
ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb);
void ice_ptp_reset(struct ice_pf *pf);
void ice_ptp_prepare_for_reset(struct ice_pf *pf);
void ice_ptp_init(struct ice_pf *pf);
void ice_ptp_release(struct ice_pf *pf);
int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup);
#else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
return -EOPNOTSUPP;
}
static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
{
return -EOPNOTSUPP;
}
static inline void ice_ptp_cfg_timestamp(struct ice_pf *pf, bool ena) { }
static inline int ice_get_ptp_clock_index(struct ice_pf *pf)
{
return -1;
}
static inline s8
ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
{
return -1;
}
static inline void ice_ptp_process_ts(struct ice_pf *pf) { }
static inline void
ice_ptp_rx_hwtstamp(struct ice_rx_ring *rx_ring,
union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb) { }
static inline void ice_ptp_reset(struct ice_pf *pf) { }
static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf) { }
static inline void ice_ptp_init(struct ice_pf *pf) { }
static inline void ice_ptp_release(struct ice_pf *pf) { }
static inline int ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
{ return 0; }
#endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */
#endif /* _ICE_PTP_H_ */