linux/linux-5.18.11/drivers/net/ethernet/intel/iavf/iavf_ethtool.c

2012 lines
59 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2018 Intel Corporation. */
/* ethtool support for iavf */
#include "iavf.h"
#include <linux/uaccess.h>
/* ethtool statistics helpers */
/**
* struct iavf_stats - definition for an ethtool statistic
* @stat_string: statistic name to display in ethtool -S output
* @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
* @stat_offset: offsetof() the stat from a base pointer
*
* This structure defines a statistic to be added to the ethtool stats buffer.
* It defines a statistic as offset from a common base pointer. Stats should
* be defined in constant arrays using the IAVF_STAT macro, with every element
* of the array using the same _type for calculating the sizeof_stat and
* stat_offset.
*
* The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
* sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
* the iavf_add_ethtool_stat() helper function.
*
* The @stat_string is interpreted as a format string, allowing formatted
* values to be inserted while looping over multiple structures for a given
* statistics array. Thus, every statistic string in an array should have the
* same type and number of format specifiers, to be formatted by variadic
* arguments to the iavf_add_stat_string() helper function.
**/
struct iavf_stats {
char stat_string[ETH_GSTRING_LEN];
int sizeof_stat;
int stat_offset;
};
/* Helper macro to define an iavf_stat structure with proper size and type.
* Use this when defining constant statistics arrays. Note that @_type expects
* only a type name and is used multiple times.
*/
#define IAVF_STAT(_type, _name, _stat) { \
.stat_string = _name, \
.sizeof_stat = sizeof_field(_type, _stat), \
.stat_offset = offsetof(_type, _stat) \
}
/* Helper macro for defining some statistics related to queues */
#define IAVF_QUEUE_STAT(_name, _stat) \
IAVF_STAT(struct iavf_ring, _name, _stat)
/* Stats associated with a Tx or Rx ring */
static const struct iavf_stats iavf_gstrings_queue_stats[] = {
IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
};
/**
* iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
* @data: location to store the stat value
* @pointer: basis for where to copy from
* @stat: the stat definition
*
* Copies the stat data defined by the pointer and stat structure pair into
* the memory supplied as data. Used to implement iavf_add_ethtool_stats and
* iavf_add_queue_stats. If the pointer is null, data will be zero'd.
*/
static void
iavf_add_one_ethtool_stat(u64 *data, void *pointer,
const struct iavf_stats *stat)
{
char *p;
if (!pointer) {
/* ensure that the ethtool data buffer is zero'd for any stats
* which don't have a valid pointer.
*/
*data = 0;
return;
}
p = (char *)pointer + stat->stat_offset;
switch (stat->sizeof_stat) {
case sizeof(u64):
*data = *((u64 *)p);
break;
case sizeof(u32):
*data = *((u32 *)p);
break;
case sizeof(u16):
*data = *((u16 *)p);
break;
case sizeof(u8):
*data = *((u8 *)p);
break;
default:
WARN_ONCE(1, "unexpected stat size for %s",
stat->stat_string);
*data = 0;
}
}
/**
* __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
* @data: ethtool stats buffer
* @pointer: location to copy stats from
* @stats: array of stats to copy
* @size: the size of the stats definition
*
* Copy the stats defined by the stats array using the pointer as a base into
* the data buffer supplied by ethtool. Updates the data pointer to point to
* the next empty location for successive calls to __iavf_add_ethtool_stats.
* If pointer is null, set the data values to zero and update the pointer to
* skip these stats.
**/
static void
__iavf_add_ethtool_stats(u64 **data, void *pointer,
const struct iavf_stats stats[],
const unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++)
iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
}
/**
* iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
* @data: ethtool stats buffer
* @pointer: location where stats are stored
* @stats: static const array of stat definitions
*
* Macro to ease the use of __iavf_add_ethtool_stats by taking a static
* constant stats array and passing the ARRAY_SIZE(). This avoids typos by
* ensuring that we pass the size associated with the given stats array.
*
* The parameter @stats is evaluated twice, so parameters with side effects
* should be avoided.
**/
#define iavf_add_ethtool_stats(data, pointer, stats) \
__iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
/**
* iavf_add_queue_stats - copy queue statistics into supplied buffer
* @data: ethtool stats buffer
* @ring: the ring to copy
*
* Queue statistics must be copied while protected by
* u64_stats_fetch_begin_irq, so we can't directly use iavf_add_ethtool_stats.
* Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
* ring pointer is null, zero out the queue stat values and update the data
* pointer. Otherwise safely copy the stats from the ring into the supplied
* buffer and update the data pointer when finished.
*
* This function expects to be called while under rcu_read_lock().
**/
static void
iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
{
const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
const struct iavf_stats *stats = iavf_gstrings_queue_stats;
unsigned int start;
unsigned int i;
/* To avoid invalid statistics values, ensure that we keep retrying
* the copy until we get a consistent value according to
* u64_stats_fetch_retry_irq. But first, make sure our ring is
* non-null before attempting to access its syncp.
*/
do {
start = !ring ? 0 : u64_stats_fetch_begin_irq(&ring->syncp);
for (i = 0; i < size; i++)
iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
} while (ring && u64_stats_fetch_retry_irq(&ring->syncp, start));
/* Once we successfully copy the stats in, update the data pointer */
*data += size;
}
/**
* __iavf_add_stat_strings - copy stat strings into ethtool buffer
* @p: ethtool supplied buffer
* @stats: stat definitions array
* @size: size of the stats array
*
* Format and copy the strings described by stats into the buffer pointed at
* by p.
**/
static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
const unsigned int size, ...)
{
unsigned int i;
for (i = 0; i < size; i++) {
va_list args;
va_start(args, size);
vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
*p += ETH_GSTRING_LEN;
va_end(args);
}
}
/**
* iavf_add_stat_strings - copy stat strings into ethtool buffer
* @p: ethtool supplied buffer
* @stats: stat definitions array
*
* Format and copy the strings described by the const static stats value into
* the buffer pointed at by p.
*
* The parameter @stats is evaluated twice, so parameters with side effects
* should be avoided. Additionally, stats must be an array such that
* ARRAY_SIZE can be called on it.
**/
#define iavf_add_stat_strings(p, stats, ...) \
__iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
#define VF_STAT(_name, _stat) \
IAVF_STAT(struct iavf_adapter, _name, _stat)
static const struct iavf_stats iavf_gstrings_stats[] = {
VF_STAT("rx_bytes", current_stats.rx_bytes),
VF_STAT("rx_unicast", current_stats.rx_unicast),
VF_STAT("rx_multicast", current_stats.rx_multicast),
VF_STAT("rx_broadcast", current_stats.rx_broadcast),
VF_STAT("rx_discards", current_stats.rx_discards),
VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
VF_STAT("tx_bytes", current_stats.tx_bytes),
VF_STAT("tx_unicast", current_stats.tx_unicast),
VF_STAT("tx_multicast", current_stats.tx_multicast),
VF_STAT("tx_broadcast", current_stats.tx_broadcast),
VF_STAT("tx_discards", current_stats.tx_discards),
VF_STAT("tx_errors", current_stats.tx_errors),
};
#define IAVF_STATS_LEN ARRAY_SIZE(iavf_gstrings_stats)
#define IAVF_QUEUE_STATS_LEN ARRAY_SIZE(iavf_gstrings_queue_stats)
/* For now we have one and only one private flag and it is only defined
* when we have support for the SKIP_CPU_SYNC DMA attribute. Instead
* of leaving all this code sitting around empty we will strip it unless
* our one private flag is actually available.
*/
struct iavf_priv_flags {
char flag_string[ETH_GSTRING_LEN];
u32 flag;
bool read_only;
};
#define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
.flag_string = _name, \
.flag = _flag, \
.read_only = _read_only, \
}
static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
};
#define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
/**
* iavf_get_link_ksettings - Get Link Speed and Duplex settings
* @netdev: network interface device structure
* @cmd: ethtool command
*
* Reports speed/duplex settings. Because this is a VF, we don't know what
* kind of link we really have, so we fake it.
**/
static int iavf_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *cmd)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
ethtool_link_ksettings_zero_link_mode(cmd, supported);
cmd->base.autoneg = AUTONEG_DISABLE;
cmd->base.port = PORT_NONE;
cmd->base.duplex = DUPLEX_FULL;
if (ADV_LINK_SUPPORT(adapter)) {
if (adapter->link_speed_mbps &&
adapter->link_speed_mbps < U32_MAX)
cmd->base.speed = adapter->link_speed_mbps;
else
cmd->base.speed = SPEED_UNKNOWN;
return 0;
}
switch (adapter->link_speed) {
case VIRTCHNL_LINK_SPEED_40GB:
cmd->base.speed = SPEED_40000;
break;
case VIRTCHNL_LINK_SPEED_25GB:
cmd->base.speed = SPEED_25000;
break;
case VIRTCHNL_LINK_SPEED_20GB:
cmd->base.speed = SPEED_20000;
break;
case VIRTCHNL_LINK_SPEED_10GB:
cmd->base.speed = SPEED_10000;
break;
case VIRTCHNL_LINK_SPEED_5GB:
cmd->base.speed = SPEED_5000;
break;
case VIRTCHNL_LINK_SPEED_2_5GB:
cmd->base.speed = SPEED_2500;
break;
case VIRTCHNL_LINK_SPEED_1GB:
cmd->base.speed = SPEED_1000;
break;
case VIRTCHNL_LINK_SPEED_100MB:
cmd->base.speed = SPEED_100;
break;
default:
break;
}
return 0;
}
/**
* iavf_get_sset_count - Get length of string set
* @netdev: network interface device structure
* @sset: id of string set
*
* Reports size of various string tables.
**/
static int iavf_get_sset_count(struct net_device *netdev, int sset)
{
/* Report the maximum number queues, even if not every queue is
* currently configured. Since allocation of queues is in pairs,
* use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set
* at device creation and never changes.
*/
if (sset == ETH_SS_STATS)
return IAVF_STATS_LEN +
(IAVF_QUEUE_STATS_LEN * 2 *
netdev->real_num_tx_queues);
else if (sset == ETH_SS_PRIV_FLAGS)
return IAVF_PRIV_FLAGS_STR_LEN;
else
return -EINVAL;
}
/**
* iavf_get_ethtool_stats - report device statistics
* @netdev: network interface device structure
* @stats: ethtool statistics structure
* @data: pointer to data buffer
*
* All statistics are added to the data buffer as an array of u64.
**/
static void iavf_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
unsigned int i;
/* Explicitly request stats refresh */
iavf_schedule_request_stats(adapter);
iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
rcu_read_lock();
/* As num_active_queues describe both tx and rx queues, we can use
* it to iterate over rings' stats.
*/
for (i = 0; i < adapter->num_active_queues; i++) {
struct iavf_ring *ring;
/* Tx rings stats */
ring = &adapter->tx_rings[i];
iavf_add_queue_stats(&data, ring);
/* Rx rings stats */
ring = &adapter->rx_rings[i];
iavf_add_queue_stats(&data, ring);
}
rcu_read_unlock();
}
/**
* iavf_get_priv_flag_strings - Get private flag strings
* @netdev: network interface device structure
* @data: buffer for string data
*
* Builds the private flags string table
**/
static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
{
unsigned int i;
for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
snprintf(data, ETH_GSTRING_LEN, "%s",
iavf_gstrings_priv_flags[i].flag_string);
data += ETH_GSTRING_LEN;
}
}
/**
* iavf_get_stat_strings - Get stat strings
* @netdev: network interface device structure
* @data: buffer for string data
*
* Builds the statistics string table
**/
static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
{
unsigned int i;
iavf_add_stat_strings(&data, iavf_gstrings_stats);
/* Queues are always allocated in pairs, so we just use
* real_num_tx_queues for both Tx and Rx queues.
*/
for (i = 0; i < netdev->real_num_tx_queues; i++) {
iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
"tx", i);
iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
"rx", i);
}
}
/**
* iavf_get_strings - Get string set
* @netdev: network interface device structure
* @sset: id of string set
* @data: buffer for string data
*
* Builds string tables for various string sets
**/
static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
{
switch (sset) {
case ETH_SS_STATS:
iavf_get_stat_strings(netdev, data);
break;
case ETH_SS_PRIV_FLAGS:
iavf_get_priv_flag_strings(netdev, data);
break;
default:
break;
}
}
/**
* iavf_get_priv_flags - report device private flags
* @netdev: network interface device structure
*
* The get string set count and the string set should be matched for each
* flag returned. Add new strings for each flag to the iavf_gstrings_priv_flags
* array.
*
* Returns a u32 bitmap of flags.
**/
static u32 iavf_get_priv_flags(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 i, ret_flags = 0;
for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
const struct iavf_priv_flags *priv_flags;
priv_flags = &iavf_gstrings_priv_flags[i];
if (priv_flags->flag & adapter->flags)
ret_flags |= BIT(i);
}
return ret_flags;
}
/**
* iavf_set_priv_flags - set private flags
* @netdev: network interface device structure
* @flags: bit flags to be set
**/
static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 orig_flags, new_flags, changed_flags;
u32 i;
orig_flags = READ_ONCE(adapter->flags);
new_flags = orig_flags;
for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
const struct iavf_priv_flags *priv_flags;
priv_flags = &iavf_gstrings_priv_flags[i];
if (flags & BIT(i))
new_flags |= priv_flags->flag;
else
new_flags &= ~(priv_flags->flag);
if (priv_flags->read_only &&
((orig_flags ^ new_flags) & ~BIT(i)))
return -EOPNOTSUPP;
}
/* Before we finalize any flag changes, any checks which we need to
* perform to determine if the new flags will be supported should go
* here...
*/
/* Compare and exchange the new flags into place. If we failed, that
* is if cmpxchg returns anything but the old value, this means
* something else must have modified the flags variable since we
* copied it. We'll just punt with an error and log something in the
* message buffer.
*/
if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
dev_warn(&adapter->pdev->dev,
"Unable to update adapter->flags as it was modified by another thread...\n");
return -EAGAIN;
}
changed_flags = orig_flags ^ new_flags;
/* Process any additional changes needed as a result of flag changes.
* The changed_flags value reflects the list of bits that were changed
* in the code above.
*/
/* issue a reset to force legacy-rx change to take effect */
if (changed_flags & IAVF_FLAG_LEGACY_RX) {
if (netif_running(netdev)) {
adapter->flags |= IAVF_FLAG_RESET_NEEDED;
queue_work(iavf_wq, &adapter->reset_task);
}
}
return 0;
}
/**
* iavf_get_msglevel - Get debug message level
* @netdev: network interface device structure
*
* Returns current debug message level.
**/
static u32 iavf_get_msglevel(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
/**
* iavf_set_msglevel - Set debug message level
* @netdev: network interface device structure
* @data: message level
*
* Set current debug message level. Higher values cause the driver to
* be noisier.
**/
static void iavf_set_msglevel(struct net_device *netdev, u32 data)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
if (IAVF_DEBUG_USER & data)
adapter->hw.debug_mask = data;
adapter->msg_enable = data;
}
/**
* iavf_get_drvinfo - Get driver info
* @netdev: network interface device structure
* @drvinfo: ethool driver info structure
*
* Returns information about the driver and device for display to the user.
**/
static void iavf_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
strlcpy(drvinfo->driver, iavf_driver_name, 32);
strlcpy(drvinfo->fw_version, "N/A", 4);
strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
}
/**
* iavf_get_ringparam - Get ring parameters
* @netdev: network interface device structure
* @ring: ethtool ringparam structure
* @kernel_ring: ethtool extenal ringparam structure
* @extack: netlink extended ACK report struct
*
* Returns current ring parameters. TX and RX rings are reported separately,
* but the number of rings is not reported.
**/
static void iavf_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
ring->rx_max_pending = IAVF_MAX_RXD;
ring->tx_max_pending = IAVF_MAX_TXD;
ring->rx_pending = adapter->rx_desc_count;
ring->tx_pending = adapter->tx_desc_count;
}
/**
* iavf_set_ringparam - Set ring parameters
* @netdev: network interface device structure
* @ring: ethtool ringparam structure
* @kernel_ring: ethtool external ringparam structure
* @extack: netlink extended ACK report struct
*
* Sets ring parameters. TX and RX rings are controlled separately, but the
* number of rings is not specified, so all rings get the same settings.
**/
static int iavf_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 new_rx_count, new_tx_count;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
if (ring->tx_pending > IAVF_MAX_TXD ||
ring->tx_pending < IAVF_MIN_TXD ||
ring->rx_pending > IAVF_MAX_RXD ||
ring->rx_pending < IAVF_MIN_RXD) {
netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
return -EINVAL;
}
new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
if (new_tx_count != ring->tx_pending)
netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
new_tx_count);
new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
if (new_rx_count != ring->rx_pending)
netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
new_rx_count);
/* if nothing to do return success */
if ((new_tx_count == adapter->tx_desc_count) &&
(new_rx_count == adapter->rx_desc_count)) {
netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
return 0;
}
if (new_tx_count != adapter->tx_desc_count) {
netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
adapter->tx_desc_count, new_tx_count);
adapter->tx_desc_count = new_tx_count;
}
if (new_rx_count != adapter->rx_desc_count) {
netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
adapter->rx_desc_count, new_rx_count);
adapter->rx_desc_count = new_rx_count;
}
if (netif_running(netdev)) {
adapter->flags |= IAVF_FLAG_RESET_NEEDED;
queue_work(iavf_wq, &adapter->reset_task);
}
return 0;
}
/**
* __iavf_get_coalesce - get per-queue coalesce settings
* @netdev: the netdev to check
* @ec: ethtool coalesce data structure
* @queue: which queue to pick
*
* Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
* are per queue. If queue is <0 then we default to queue 0 as the
* representative value.
**/
static int __iavf_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec, int queue)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_vsi *vsi = &adapter->vsi;
struct iavf_ring *rx_ring, *tx_ring;
ec->tx_max_coalesced_frames = vsi->work_limit;
ec->rx_max_coalesced_frames = vsi->work_limit;
/* Rx and Tx usecs per queue value. If user doesn't specify the
* queue, return queue 0's value to represent.
*/
if (queue < 0)
queue = 0;
else if (queue >= adapter->num_active_queues)
return -EINVAL;
rx_ring = &adapter->rx_rings[queue];
tx_ring = &adapter->tx_rings[queue];
if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
ec->use_adaptive_rx_coalesce = 1;
if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
ec->use_adaptive_tx_coalesce = 1;
ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
return 0;
}
/**
* iavf_get_coalesce - Get interrupt coalescing settings
* @netdev: network interface device structure
* @ec: ethtool coalesce structure
* @kernel_coal: ethtool CQE mode setting structure
* @extack: extack for reporting error messages
*
* Returns current coalescing settings. This is referred to elsewhere in the
* driver as Interrupt Throttle Rate, as this is how the hardware describes
* this functionality. Note that if per-queue settings have been modified this
* only represents the settings of queue 0.
**/
static int iavf_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
return __iavf_get_coalesce(netdev, ec, -1);
}
/**
* iavf_get_per_queue_coalesce - get coalesce values for specific queue
* @netdev: netdev to read
* @ec: coalesce settings from ethtool
* @queue: the queue to read
*
* Read specific queue's coalesce settings.
**/
static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
struct ethtool_coalesce *ec)
{
return __iavf_get_coalesce(netdev, ec, queue);
}
/**
* iavf_set_itr_per_queue - set ITR values for specific queue
* @adapter: the VF adapter struct to set values for
* @ec: coalesce settings from ethtool
* @queue: the queue to modify
*
* Change the ITR settings for a specific queue.
**/
static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
struct ethtool_coalesce *ec, int queue)
{
struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
struct iavf_q_vector *q_vector;
u16 itr_setting;
itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
if (ec->rx_coalesce_usecs != itr_setting &&
ec->use_adaptive_rx_coalesce) {
netif_info(adapter, drv, adapter->netdev,
"Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
return -EINVAL;
}
itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
if (ec->tx_coalesce_usecs != itr_setting &&
ec->use_adaptive_tx_coalesce) {
netif_info(adapter, drv, adapter->netdev,
"Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
return -EINVAL;
}
rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
if (!ec->use_adaptive_rx_coalesce)
rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
if (!ec->use_adaptive_tx_coalesce)
tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
q_vector = rx_ring->q_vector;
q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
q_vector = tx_ring->q_vector;
q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
/* The interrupt handler itself will take care of programming
* the Tx and Rx ITR values based on the values we have entered
* into the q_vector, no need to write the values now.
*/
return 0;
}
/**
* __iavf_set_coalesce - set coalesce settings for particular queue
* @netdev: the netdev to change
* @ec: ethtool coalesce settings
* @queue: the queue to change
*
* Sets the coalesce settings for a particular queue.
**/
static int __iavf_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec, int queue)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
struct iavf_vsi *vsi = &adapter->vsi;
int i;
if (ec->tx_max_coalesced_frames_irq || ec->rx_max_coalesced_frames_irq)
vsi->work_limit = ec->tx_max_coalesced_frames_irq;
if (ec->rx_coalesce_usecs == 0) {
if (ec->use_adaptive_rx_coalesce)
netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
} else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
(ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
return -EINVAL;
} else if (ec->tx_coalesce_usecs == 0) {
if (ec->use_adaptive_tx_coalesce)
netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
} else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
(ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
return -EINVAL;
}
/* Rx and Tx usecs has per queue value. If user doesn't specify the
* queue, apply to all queues.
*/
if (queue < 0) {
for (i = 0; i < adapter->num_active_queues; i++)
if (iavf_set_itr_per_queue(adapter, ec, i))
return -EINVAL;
} else if (queue < adapter->num_active_queues) {
if (iavf_set_itr_per_queue(adapter, ec, queue))
return -EINVAL;
} else {
netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
adapter->num_active_queues - 1);
return -EINVAL;
}
return 0;
}
/**
* iavf_set_coalesce - Set interrupt coalescing settings
* @netdev: network interface device structure
* @ec: ethtool coalesce structure
* @kernel_coal: ethtool CQE mode setting structure
* @extack: extack for reporting error messages
*
* Change current coalescing settings for every queue.
**/
static int iavf_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
return __iavf_set_coalesce(netdev, ec, -1);
}
/**
* iavf_set_per_queue_coalesce - set specific queue's coalesce settings
* @netdev: the netdev to change
* @ec: ethtool's coalesce settings
* @queue: the queue to modify
*
* Modifies a specific queue's coalesce settings.
*/
static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
struct ethtool_coalesce *ec)
{
return __iavf_set_coalesce(netdev, ec, queue);
}
/**
* iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
* flow type values
* @flow: filter type to be converted
*
* Returns the corresponding ethtool flow type.
*/
static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
{
switch (flow) {
case IAVF_FDIR_FLOW_IPV4_TCP:
return TCP_V4_FLOW;
case IAVF_FDIR_FLOW_IPV4_UDP:
return UDP_V4_FLOW;
case IAVF_FDIR_FLOW_IPV4_SCTP:
return SCTP_V4_FLOW;
case IAVF_FDIR_FLOW_IPV4_AH:
return AH_V4_FLOW;
case IAVF_FDIR_FLOW_IPV4_ESP:
return ESP_V4_FLOW;
case IAVF_FDIR_FLOW_IPV4_OTHER:
return IPV4_USER_FLOW;
case IAVF_FDIR_FLOW_IPV6_TCP:
return TCP_V6_FLOW;
case IAVF_FDIR_FLOW_IPV6_UDP:
return UDP_V6_FLOW;
case IAVF_FDIR_FLOW_IPV6_SCTP:
return SCTP_V6_FLOW;
case IAVF_FDIR_FLOW_IPV6_AH:
return AH_V6_FLOW;
case IAVF_FDIR_FLOW_IPV6_ESP:
return ESP_V6_FLOW;
case IAVF_FDIR_FLOW_IPV6_OTHER:
return IPV6_USER_FLOW;
case IAVF_FDIR_FLOW_NON_IP_L2:
return ETHER_FLOW;
default:
/* 0 is undefined ethtool flow */
return 0;
}
}
/**
* iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
* @eth: Ethtool flow type to be converted
*
* Returns flow enum
*/
static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
{
switch (eth) {
case TCP_V4_FLOW:
return IAVF_FDIR_FLOW_IPV4_TCP;
case UDP_V4_FLOW:
return IAVF_FDIR_FLOW_IPV4_UDP;
case SCTP_V4_FLOW:
return IAVF_FDIR_FLOW_IPV4_SCTP;
case AH_V4_FLOW:
return IAVF_FDIR_FLOW_IPV4_AH;
case ESP_V4_FLOW:
return IAVF_FDIR_FLOW_IPV4_ESP;
case IPV4_USER_FLOW:
return IAVF_FDIR_FLOW_IPV4_OTHER;
case TCP_V6_FLOW:
return IAVF_FDIR_FLOW_IPV6_TCP;
case UDP_V6_FLOW:
return IAVF_FDIR_FLOW_IPV6_UDP;
case SCTP_V6_FLOW:
return IAVF_FDIR_FLOW_IPV6_SCTP;
case AH_V6_FLOW:
return IAVF_FDIR_FLOW_IPV6_AH;
case ESP_V6_FLOW:
return IAVF_FDIR_FLOW_IPV6_ESP;
case IPV6_USER_FLOW:
return IAVF_FDIR_FLOW_IPV6_OTHER;
case ETHER_FLOW:
return IAVF_FDIR_FLOW_NON_IP_L2;
default:
return IAVF_FDIR_FLOW_NONE;
}
}
/**
* iavf_is_mask_valid - check mask field set
* @mask: full mask to check
* @field: field for which mask should be valid
*
* If the mask is fully set return true. If it is not valid for field return
* false.
*/
static bool iavf_is_mask_valid(u64 mask, u64 field)
{
return (mask & field) == field;
}
/**
* iavf_parse_rx_flow_user_data - deconstruct user-defined data
* @fsp: pointer to ethtool Rx flow specification
* @fltr: pointer to Flow Director filter for userdef data storage
*
* Returns 0 on success, negative error value on failure
*/
static int
iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
struct iavf_fdir_fltr *fltr)
{
struct iavf_flex_word *flex;
int i, cnt = 0;
if (!(fsp->flow_type & FLOW_EXT))
return 0;
for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
#define IAVF_USERDEF_FLEX_WORD_M GENMASK(15, 0)
#define IAVF_USERDEF_FLEX_OFFS_S 16
#define IAVF_USERDEF_FLEX_OFFS_M GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
#define IAVF_USERDEF_FLEX_FLTR_M GENMASK(31, 0)
u32 value = be32_to_cpu(fsp->h_ext.data[i]);
u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
if (!value || !mask)
continue;
if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
return -EINVAL;
/* 504 is the maximum value for offsets, and offset is measured
* from the start of the MAC address.
*/
#define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
flex = &fltr->flex_words[cnt++];
flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
IAVF_USERDEF_FLEX_OFFS_S;
if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
return -EINVAL;
}
fltr->flex_cnt = cnt;
return 0;
}
/**
* iavf_fill_rx_flow_ext_data - fill the additional data
* @fsp: pointer to ethtool Rx flow specification
* @fltr: pointer to Flow Director filter to get additional data
*/
static void
iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
struct iavf_fdir_fltr *fltr)
{
if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
return;
fsp->flow_type |= FLOW_EXT;
memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
}
/**
* iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
* @adapter: the VF adapter structure that contains filter list
* @cmd: ethtool command data structure to receive the filter data
*
* Returns 0 as expected for success by ethtool
*/
static int
iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
struct iavf_fdir_fltr *rule = NULL;
int ret = 0;
if (!FDIR_FLTR_SUPPORT(adapter))
return -EOPNOTSUPP;
spin_lock_bh(&adapter->fdir_fltr_lock);
rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
if (!rule) {
ret = -EINVAL;
goto release_lock;
}
fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
memset(&fsp->m_u, 0, sizeof(fsp->m_u));
memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
switch (fsp->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
break;
case IPV4_USER_FLOW:
fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
break;
case AH_V6_FLOW:
case ESP_V6_FLOW:
memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
break;
case IPV6_USER_FLOW:
memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
sizeof(struct in6_addr));
memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
sizeof(struct in6_addr));
fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
break;
case ETHER_FLOW:
fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
break;
default:
ret = -EINVAL;
break;
}
iavf_fill_rx_flow_ext_data(fsp, rule);
if (rule->action == VIRTCHNL_ACTION_DROP)
fsp->ring_cookie = RX_CLS_FLOW_DISC;
else
fsp->ring_cookie = rule->q_index;
release_lock:
spin_unlock_bh(&adapter->fdir_fltr_lock);
return ret;
}
/**
* iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
* @adapter: the VF adapter structure containing the filter list
* @cmd: ethtool command data structure
* @rule_locs: ethtool array passed in from OS to receive filter IDs
*
* Returns 0 as expected for success by ethtool
*/
static int
iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct iavf_fdir_fltr *fltr;
unsigned int cnt = 0;
int val = 0;
if (!FDIR_FLTR_SUPPORT(adapter))
return -EOPNOTSUPP;
cmd->data = IAVF_MAX_FDIR_FILTERS;
spin_lock_bh(&adapter->fdir_fltr_lock);
list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
if (cnt == cmd->rule_cnt) {
val = -EMSGSIZE;
goto release_lock;
}
rule_locs[cnt] = fltr->loc;
cnt++;
}
release_lock:
spin_unlock_bh(&adapter->fdir_fltr_lock);
if (!val)
cmd->rule_cnt = cnt;
return val;
}
/**
* iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
* @adapter: pointer to the VF adapter structure
* @fsp: pointer to ethtool Rx flow specification
* @fltr: filter structure
*/
static int
iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
struct iavf_fdir_fltr *fltr)
{
u32 flow_type, q_index = 0;
enum virtchnl_action act;
int err;
if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
act = VIRTCHNL_ACTION_DROP;
} else {
q_index = fsp->ring_cookie;
if (q_index >= adapter->num_active_queues)
return -EINVAL;
act = VIRTCHNL_ACTION_QUEUE;
}
fltr->action = act;
fltr->loc = fsp->location;
fltr->q_index = q_index;
if (fsp->flow_type & FLOW_EXT) {
memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
sizeof(fltr->ext_data.usr_def));
memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
sizeof(fltr->ext_mask.usr_def));
}
flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
switch (flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
break;
case IPV4_USER_FLOW:
fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
break;
case AH_V6_FLOW:
case ESP_V6_FLOW:
memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
break;
case IPV6_USER_FLOW:
memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
sizeof(struct in6_addr));
memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
sizeof(struct in6_addr));
fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
break;
case ETHER_FLOW:
fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
break;
default:
/* not doing un-parsed flow types */
return -EINVAL;
}
if (iavf_fdir_is_dup_fltr(adapter, fltr))
return -EEXIST;
err = iavf_parse_rx_flow_user_data(fsp, fltr);
if (err)
return err;
return iavf_fill_fdir_add_msg(adapter, fltr);
}
/**
* iavf_add_fdir_ethtool - add Flow Director filter
* @adapter: pointer to the VF adapter structure
* @cmd: command to add Flow Director filter
*
* Returns 0 on success and negative values for failure
*/
static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp = &cmd->fs;
struct iavf_fdir_fltr *fltr;
int count = 50;
int err;
if (!FDIR_FLTR_SUPPORT(adapter))
return -EOPNOTSUPP;
if (fsp->flow_type & FLOW_MAC_EXT)
return -EINVAL;
if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
dev_err(&adapter->pdev->dev,
"Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
IAVF_MAX_FDIR_FILTERS);
return -ENOSPC;
}
spin_lock_bh(&adapter->fdir_fltr_lock);
if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
spin_unlock_bh(&adapter->fdir_fltr_lock);
return -EEXIST;
}
spin_unlock_bh(&adapter->fdir_fltr_lock);
fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
if (!fltr)
return -ENOMEM;
while (!mutex_trylock(&adapter->crit_lock)) {
if (--count == 0) {
kfree(fltr);
return -EINVAL;
}
udelay(1);
}
err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
if (err)
goto ret;
spin_lock_bh(&adapter->fdir_fltr_lock);
iavf_fdir_list_add_fltr(adapter, fltr);
adapter->fdir_active_fltr++;
fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
spin_unlock_bh(&adapter->fdir_fltr_lock);
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
ret:
if (err && fltr)
kfree(fltr);
mutex_unlock(&adapter->crit_lock);
return err;
}
/**
* iavf_del_fdir_ethtool - delete Flow Director filter
* @adapter: pointer to the VF adapter structure
* @cmd: command to delete Flow Director filter
*
* Returns 0 on success and negative values for failure
*/
static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
{
struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
struct iavf_fdir_fltr *fltr = NULL;
int err = 0;
if (!FDIR_FLTR_SUPPORT(adapter))
return -EOPNOTSUPP;
spin_lock_bh(&adapter->fdir_fltr_lock);
fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
if (fltr) {
if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
} else {
err = -EBUSY;
}
} else if (adapter->fdir_active_fltr) {
err = -EINVAL;
}
spin_unlock_bh(&adapter->fdir_fltr_lock);
if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
return err;
}
/**
* iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
* @cmd: ethtool rxnfc command
*
* This function parses the rxnfc command and returns intended
* header types for RSS configuration
*/
static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
{
u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
switch (cmd->flow_type) {
case TCP_V4_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
break;
case UDP_V4_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
break;
case SCTP_V4_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
break;
case TCP_V6_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
break;
case UDP_V6_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
break;
case SCTP_V6_FLOW:
hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
break;
default:
break;
}
return hdrs;
}
/**
* iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
* @cmd: ethtool rxnfc command
*
* This function parses the rxnfc command and returns intended hash fields for
* RSS configuration
*/
static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
{
u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
switch (cmd->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
if (cmd->data & RXH_IP_SRC)
hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
if (cmd->data & RXH_IP_DST)
hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
if (cmd->data & RXH_IP_SRC)
hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
if (cmd->data & RXH_IP_DST)
hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
break;
default:
break;
}
}
if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
switch (cmd->flow_type) {
case TCP_V4_FLOW:
case TCP_V6_FLOW:
if (cmd->data & RXH_L4_B_0_1)
hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
if (cmd->data & RXH_L4_B_2_3)
hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
break;
case UDP_V4_FLOW:
case UDP_V6_FLOW:
if (cmd->data & RXH_L4_B_0_1)
hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
if (cmd->data & RXH_L4_B_2_3)
hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
break;
case SCTP_V4_FLOW:
case SCTP_V6_FLOW:
if (cmd->data & RXH_L4_B_0_1)
hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
if (cmd->data & RXH_L4_B_2_3)
hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
break;
default:
break;
}
}
return hfld;
}
/**
* iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
* @adapter: pointer to the VF adapter structure
* @cmd: ethtool rxnfc command
*
* Returns Success if the flow input set is supported.
*/
static int
iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
struct ethtool_rxnfc *cmd)
{
struct iavf_adv_rss *rss_old, *rss_new;
bool rss_new_add = false;
int count = 50, err = 0;
u64 hash_flds;
u32 hdrs;
if (!ADV_RSS_SUPPORT(adapter))
return -EOPNOTSUPP;
hdrs = iavf_adv_rss_parse_hdrs(cmd);
if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
return -EINVAL;
hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
return -EINVAL;
rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
if (!rss_new)
return -ENOMEM;
if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
kfree(rss_new);
return -EINVAL;
}
while (!mutex_trylock(&adapter->crit_lock)) {
if (--count == 0) {
kfree(rss_new);
return -EINVAL;
}
udelay(1);
}
spin_lock_bh(&adapter->adv_rss_lock);
rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
if (rss_old) {
if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
err = -EBUSY;
} else if (rss_old->hash_flds != hash_flds) {
rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
rss_old->hash_flds = hash_flds;
memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
sizeof(rss_new->cfg_msg));
adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
} else {
err = -EEXIST;
}
} else {
rss_new_add = true;
rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
rss_new->packet_hdrs = hdrs;
rss_new->hash_flds = hash_flds;
list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
}
spin_unlock_bh(&adapter->adv_rss_lock);
if (!err)
mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
mutex_unlock(&adapter->crit_lock);
if (!rss_new_add)
kfree(rss_new);
return err;
}
/**
* iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
* @adapter: pointer to the VF adapter structure
* @cmd: ethtool rxnfc command
*
* Returns Success if the flow input set is supported.
*/
static int
iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
struct ethtool_rxnfc *cmd)
{
struct iavf_adv_rss *rss;
u64 hash_flds;
u32 hdrs;
if (!ADV_RSS_SUPPORT(adapter))
return -EOPNOTSUPP;
cmd->data = 0;
hdrs = iavf_adv_rss_parse_hdrs(cmd);
if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
return -EINVAL;
spin_lock_bh(&adapter->adv_rss_lock);
rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
if (rss)
hash_flds = rss->hash_flds;
else
hash_flds = IAVF_ADV_RSS_HASH_INVALID;
spin_unlock_bh(&adapter->adv_rss_lock);
if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
return -EINVAL;
if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
cmd->data |= (u64)RXH_IP_SRC;
if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
cmd->data |= (u64)RXH_IP_DST;
if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
cmd->data |= (u64)RXH_L4_B_0_1;
if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
cmd->data |= (u64)RXH_L4_B_2_3;
return 0;
}
/**
* iavf_set_rxnfc - command to set Rx flow rules.
* @netdev: network interface device structure
* @cmd: ethtool rxnfc command
*
* Returns 0 for success and negative values for errors
*/
static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_SRXCLSRLINS:
ret = iavf_add_fdir_ethtool(adapter, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = iavf_del_fdir_ethtool(adapter, cmd);
break;
case ETHTOOL_SRXFH:
ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
break;
default:
break;
}
return ret;
}
/**
* iavf_get_rxnfc - command to get RX flow classification rules
* @netdev: network interface device structure
* @cmd: ethtool rxnfc command
* @rule_locs: pointer to store rule locations
*
* Returns Success if the command is supported.
**/
static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
int ret = -EOPNOTSUPP;
switch (cmd->cmd) {
case ETHTOOL_GRXRINGS:
cmd->data = adapter->num_active_queues;
ret = 0;
break;
case ETHTOOL_GRXCLSRLCNT:
if (!FDIR_FLTR_SUPPORT(adapter))
break;
cmd->rule_cnt = adapter->fdir_active_fltr;
cmd->data = IAVF_MAX_FDIR_FILTERS;
ret = 0;
break;
case ETHTOOL_GRXCLSRULE:
ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
break;
case ETHTOOL_GRXFH:
ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
break;
default:
break;
}
return ret;
}
/**
* iavf_get_channels: get the number of channels supported by the device
* @netdev: network interface device structure
* @ch: channel information structure
*
* For the purposes of our device, we only use combined channels, i.e. a tx/rx
* queue pair. Report one extra channel to match our "other" MSI-X vector.
**/
static void iavf_get_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
/* Report maximum channels */
ch->max_combined = adapter->vsi_res->num_queue_pairs;
ch->max_other = NONQ_VECS;
ch->other_count = NONQ_VECS;
ch->combined_count = adapter->num_active_queues;
}
/**
* iavf_set_channels: set the new channel count
* @netdev: network interface device structure
* @ch: channel information structure
*
* Negotiate a new number of channels with the PF then do a reset. During
* reset we'll realloc queues and fix the RSS table. Returns 0 on success,
* negative on failure.
**/
static int iavf_set_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u32 num_req = ch->combined_count;
int i;
if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
adapter->num_tc) {
dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
return -EINVAL;
}
/* All of these should have already been checked by ethtool before this
* even gets to us, but just to be sure.
*/
if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
return -EINVAL;
if (num_req == adapter->num_active_queues)
return 0;
if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
return -EINVAL;
adapter->num_req_queues = num_req;
adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
iavf_schedule_reset(adapter);
/* wait for the reset is done */
for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
msleep(IAVF_RESET_WAIT_MS);
if (adapter->flags & IAVF_FLAG_RESET_PENDING)
continue;
break;
}
if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
adapter->num_active_queues = num_req;
return -EOPNOTSUPP;
}
return 0;
}
/**
* iavf_get_rxfh_key_size - get the RSS hash key size
* @netdev: network interface device structure
*
* Returns the table size.
**/
static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
return adapter->rss_key_size;
}
/**
* iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
* @netdev: network interface device structure
*
* Returns the table size.
**/
static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
return adapter->rss_lut_size;
}
/**
* iavf_get_rxfh - get the rx flow hash indirection table
* @netdev: network interface device structure
* @indir: indirection table
* @key: hash key
* @hfunc: hash function in use
*
* Reads the indirection table directly from the hardware. Always returns 0.
**/
static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
u8 *hfunc)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u16 i;
if (hfunc)
*hfunc = ETH_RSS_HASH_TOP;
if (key)
memcpy(key, adapter->rss_key, adapter->rss_key_size);
if (indir)
/* Each 32 bits pointed by 'indir' is stored with a lut entry */
for (i = 0; i < adapter->rss_lut_size; i++)
indir[i] = (u32)adapter->rss_lut[i];
return 0;
}
/**
* iavf_set_rxfh - set the rx flow hash indirection table
* @netdev: network interface device structure
* @indir: indirection table
* @key: hash key
* @hfunc: hash function to use
*
* Returns -EINVAL if the table specifies an invalid queue id, otherwise
* returns 0 after programming the table.
**/
static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct iavf_adapter *adapter = netdev_priv(netdev);
u16 i;
/* Only support toeplitz hash function */
if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
return -EOPNOTSUPP;
if (!key && !indir)
return 0;
if (key)
memcpy(adapter->rss_key, key, adapter->rss_key_size);
if (indir) {
/* Each 32 bits pointed by 'indir' is stored with a lut entry */
for (i = 0; i < adapter->rss_lut_size; i++)
adapter->rss_lut[i] = (u8)(indir[i]);
}
return iavf_config_rss(adapter);
}
static const struct ethtool_ops iavf_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES |
ETHTOOL_COALESCE_MAX_FRAMES_IRQ |
ETHTOOL_COALESCE_USE_ADAPTIVE,
.get_drvinfo = iavf_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_ringparam = iavf_get_ringparam,
.set_ringparam = iavf_set_ringparam,
.get_strings = iavf_get_strings,
.get_ethtool_stats = iavf_get_ethtool_stats,
.get_sset_count = iavf_get_sset_count,
.get_priv_flags = iavf_get_priv_flags,
.set_priv_flags = iavf_set_priv_flags,
.get_msglevel = iavf_get_msglevel,
.set_msglevel = iavf_set_msglevel,
.get_coalesce = iavf_get_coalesce,
.set_coalesce = iavf_set_coalesce,
.get_per_queue_coalesce = iavf_get_per_queue_coalesce,
.set_per_queue_coalesce = iavf_set_per_queue_coalesce,
.set_rxnfc = iavf_set_rxnfc,
.get_rxnfc = iavf_get_rxnfc,
.get_rxfh_indir_size = iavf_get_rxfh_indir_size,
.get_rxfh = iavf_get_rxfh,
.set_rxfh = iavf_set_rxfh,
.get_channels = iavf_get_channels,
.set_channels = iavf_set_channels,
.get_rxfh_key_size = iavf_get_rxfh_key_size,
.get_link_ksettings = iavf_get_link_ksettings,
};
/**
* iavf_set_ethtool_ops - Initialize ethtool ops struct
* @netdev: network interface device structure
*
* Sets ethtool ops struct in our netdev so that ethtool can call
* our functions.
**/
void iavf_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &iavf_ethtool_ops;
}