linux/linux-5.18.11/drivers/net/ethernet/fungible/funeth/funeth_rx.c

827 lines
22 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
#include <linux/bpf_trace.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/filter.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/skbuff.h>
#include "funeth_txrx.h"
#include "funeth.h"
#include "fun_queue.h"
#define CREATE_TRACE_POINTS
#include "funeth_trace.h"
/* Given the device's max supported MTU and pages of at least 4KB a packet can
* be scattered into at most 4 buffers.
*/
#define RX_MAX_FRAGS 4
/* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */
#define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
/* We try to reuse pages for our buffers. To avoid frequent page ref writes we
* take EXTRA_PAGE_REFS references at once and then hand them out one per packet
* occupying the buffer.
*/
#define EXTRA_PAGE_REFS 1000000
#define MIN_PAGE_REFS 1000
enum {
FUN_XDP_FLUSH_REDIR = 1,
FUN_XDP_FLUSH_TX = 2,
};
/* See if a page is running low on refs we are holding and if so take more. */
static void refresh_refs(struct funeth_rxbuf *buf)
{
if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) {
buf->pg_refs += EXTRA_PAGE_REFS;
page_ref_add(buf->page, EXTRA_PAGE_REFS);
}
}
/* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its
* page is worth retaining and there's room for it. Otherwise the page is
* unmapped and our references released.
*/
static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf)
{
struct funeth_rx_cache *c = &q->cache;
if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) {
c->bufs[c->prod_cnt & c->mask] = *buf;
c->prod_cnt++;
} else {
dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
__page_frag_cache_drain(buf->page, buf->pg_refs);
}
}
/* Get a page from the Rx buffer cache. We only consider the next available
* page and return it if we own all its references.
*/
static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
struct funeth_rx_cache *c = &q->cache;
struct funeth_rxbuf *buf;
if (c->prod_cnt == c->cons_cnt)
return false; /* empty cache */
buf = &c->bufs[c->cons_cnt & c->mask];
if (page_ref_count(buf->page) == buf->pg_refs) {
dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
*rb = *buf;
buf->page = NULL;
refresh_refs(rb);
c->cons_cnt++;
return true;
}
/* Page can't be reused. If the cache is full drop this page. */
if (c->prod_cnt - c->cons_cnt > c->mask) {
dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
__page_frag_cache_drain(buf->page, buf->pg_refs);
buf->page = NULL;
c->cons_cnt++;
}
return false;
}
/* Allocate and DMA-map a page for receive. */
static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb,
int node, gfp_t gfp)
{
struct page *p;
if (cache_get(q, rb))
return 0;
p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0);
if (unlikely(!p))
return -ENOMEM;
rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) {
FUN_QSTAT_INC(q, rx_map_err);
__free_page(p);
return -ENOMEM;
}
FUN_QSTAT_INC(q, rx_page_alloc);
rb->page = p;
rb->pg_refs = 1;
refresh_refs(rb);
rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p);
return 0;
}
static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb)
{
if (rb->page) {
dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE,
DMA_FROM_DEVICE);
__page_frag_cache_drain(rb->page, rb->pg_refs);
rb->page = NULL;
}
}
/* Run the XDP program assigned to an Rx queue.
* Return %NULL if the buffer is consumed, or the virtual address of the packet
* to turn into an skb.
*/
static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va,
int ref_ok, struct funeth_txq *xdp_q)
{
struct bpf_prog *xdp_prog;
struct xdp_buff xdp;
u32 act;
/* VA includes the headroom, frag size includes headroom + tailroom */
xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN),
&q->xdp_rxq);
xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) -
(FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false);
xdp_prog = READ_ONCE(q->xdp_prog);
act = bpf_prog_run_xdp(xdp_prog, &xdp);
switch (act) {
case XDP_PASS:
/* remove headroom, which may not be FUN_XDP_HEADROOM now */
skb_frag_size_set(frags, xdp.data_end - xdp.data);
skb_frag_off_add(frags, xdp.data - xdp.data_hard_start);
goto pass;
case XDP_TX:
if (unlikely(!ref_ok))
goto pass;
if (!fun_xdp_tx(xdp_q, xdp.data, xdp.data_end - xdp.data))
goto xdp_error;
FUN_QSTAT_INC(q, xdp_tx);
q->xdp_flush |= FUN_XDP_FLUSH_TX;
break;
case XDP_REDIRECT:
if (unlikely(!ref_ok))
goto pass;
if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog)))
goto xdp_error;
FUN_QSTAT_INC(q, xdp_redir);
q->xdp_flush |= FUN_XDP_FLUSH_REDIR;
break;
default:
bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(q->netdev, xdp_prog, act);
xdp_error:
q->cur_buf->pg_refs++; /* return frags' page reference */
FUN_QSTAT_INC(q, xdp_err);
break;
case XDP_DROP:
q->cur_buf->pg_refs++;
FUN_QSTAT_INC(q, xdp_drops);
break;
}
return NULL;
pass:
return xdp.data;
}
/* A CQE contains a fixed completion structure along with optional metadata and
* even packet data. Given the start address of a CQE return the start of the
* contained fixed structure, which lies at the end.
*/
static const void *cqe_to_info(const void *cqe)
{
return cqe + FUNETH_CQE_INFO_OFFSET;
}
/* The inverse of cqe_to_info(). */
static const void *info_to_cqe(const void *cqe_info)
{
return cqe_info - FUNETH_CQE_INFO_OFFSET;
}
/* Return the type of hash provided by the device based on the L3 and L4
* protocols it parsed for the packet.
*/
static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse)
{
static const enum pkt_hash_types htype_map[] = {
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3,
PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3
};
u16 key;
/* Build the key from the TCP/UDP and IP/IPv6 bits */
key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) |
((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1);
return htype_map[key];
}
/* Each received packet can be scattered across several Rx buffers or can
* share a buffer with previously received packets depending on the buffer
* and packet sizes and the room available in the most recently used buffer.
*
* The rules are:
* - If the buffer at the head of an RQ has not been used it gets (part of) the
* next incoming packet.
* - Otherwise, if the packet fully fits in the buffer's remaining space the
* packet is written there.
* - Otherwise, the packet goes into the next Rx buffer.
*
* This function returns the Rx buffer for a packet or fragment thereof of the
* given length. If it isn't @buf it either recycles or frees that buffer
* before advancing the queue to the next buffer.
*
* If called repeatedly with the remaining length of a packet it will walk
* through all the buffers containing the packet.
*/
static struct funeth_rxbuf *
get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len)
{
if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset)
return buf; /* @buf holds (part of) the packet */
/* The packet occupies part of the next buffer. Move there after
* replenishing the current buffer slot either with the spare page or
* by reusing the slot's existing page. Note that if a spare page isn't
* available and the current packet occupies @buf it is a multi-frag
* packet that will be dropped leaving @buf available for reuse.
*/
if ((page_ref_count(buf->page) == buf->pg_refs &&
buf->node == numa_mem_id()) || !q->spare_buf.page) {
dma_sync_single_for_device(q->dma_dev, buf->dma_addr,
PAGE_SIZE, DMA_FROM_DEVICE);
refresh_refs(buf);
} else {
cache_offer(q, buf);
*buf = q->spare_buf;
q->spare_buf.page = NULL;
q->rqes[q->rq_cons & q->rq_mask] =
FUN_EPRQ_RQBUF_INIT(buf->dma_addr);
}
q->buf_offset = 0;
q->rq_cons++;
return &q->bufs[q->rq_cons & q->rq_mask];
}
/* Gather the page fragments making up the first Rx packet on @q. Its total
* length @tot_len includes optional head- and tail-rooms.
*
* Return 0 if the device retains ownership of at least some of the pages.
* In this case the caller may only copy the packet.
*
* A non-zero return value gives the caller permission to use references to the
* pages, e.g., attach them to skbs. Additionally, if the value is <0 at least
* one of the pages is PF_MEMALLOC.
*
* Regardless of outcome the caller is granted a reference to each of the pages.
*/
static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len,
skb_frag_t *frags)
{
struct funeth_rxbuf *buf = q->cur_buf;
unsigned int frag_len;
int ref_ok = 1;
for (;;) {
buf = get_buf(q, buf, tot_len);
/* We always keep the RQ full of buffers so before we can give
* one of our pages to the stack we require that we can obtain
* a replacement page. If we can't the packet will either be
* copied or dropped so we can retain ownership of the page and
* reuse it.
*/
if (!q->spare_buf.page &&
funeth_alloc_page(q, &q->spare_buf, numa_mem_id(),
GFP_ATOMIC | __GFP_MEMALLOC))
ref_ok = 0;
frag_len = min_t(unsigned int, tot_len,
PAGE_SIZE - q->buf_offset);
dma_sync_single_for_cpu(q->dma_dev,
buf->dma_addr + q->buf_offset,
frag_len, DMA_FROM_DEVICE);
buf->pg_refs--;
if (ref_ok)
ref_ok |= buf->node;
__skb_frag_set_page(frags, buf->page);
skb_frag_off_set(frags, q->buf_offset);
skb_frag_size_set(frags++, frag_len);
tot_len -= frag_len;
if (!tot_len)
break;
q->buf_offset = PAGE_SIZE;
}
q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN);
q->cur_buf = buf;
return ref_ok;
}
static bool rx_hwtstamp_enabled(const struct net_device *dev)
{
const struct funeth_priv *d = netdev_priv(dev);
return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL;
}
/* Advance the CQ pointers and phase tag to the next CQE. */
static void advance_cq(struct funeth_rxq *q)
{
if (unlikely(q->cq_head == q->cq_mask)) {
q->cq_head = 0;
q->phase ^= 1;
q->next_cqe_info = cqe_to_info(q->cqes);
} else {
q->cq_head++;
q->next_cqe_info += FUNETH_CQE_SIZE;
}
prefetch(q->next_cqe_info);
}
/* Process the packet represented by the head CQE of @q. Gather the packet's
* fragments, run it through the optional XDP program, and if needed construct
* an skb and pass it to the stack.
*/
static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q)
{
const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info);
unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len);
struct net_device *ndev = q->netdev;
skb_frag_t frags[RX_MAX_FRAGS];
struct skb_shared_info *si;
unsigned int headroom;
gro_result_t gro_res;
struct sk_buff *skb;
int ref_ok;
void *va;
u16 cv;
u64_stats_update_begin(&q->syncp);
q->stats.rx_pkts++;
q->stats.rx_bytes += pkt_len;
u64_stats_update_end(&q->syncp);
advance_cq(q);
/* account for head- and tail-room, present only for 1-buffer packets */
tot_len = pkt_len;
headroom = be16_to_cpu(rxreq->headroom);
if (likely(headroom))
tot_len += FUN_RX_TAILROOM + headroom;
ref_ok = fun_gather_pkt(q, tot_len, frags);
va = skb_frag_address(frags);
if (xdp_q && headroom == FUN_XDP_HEADROOM) {
va = fun_run_xdp(q, frags, va, ref_ok, xdp_q);
if (!va)
return;
headroom = 0; /* XDP_PASS trims it */
}
if (unlikely(!ref_ok))
goto no_mem;
if (likely(headroom)) {
/* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */
prefetch(va + headroom);
skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN));
if (unlikely(!skb))
goto no_mem;
skb_reserve(skb, headroom);
__skb_put(skb, pkt_len);
skb->protocol = eth_type_trans(skb, ndev);
} else {
prefetch(va);
skb = napi_get_frags(q->napi);
if (unlikely(!skb))
goto no_mem;
if (ref_ok < 0)
skb->pfmemalloc = 1;
si = skb_shinfo(skb);
si->nr_frags = rxreq->nsgl;
for (i = 0; i < si->nr_frags; i++)
si->frags[i] = frags[i];
skb->len = pkt_len;
skb->data_len = pkt_len;
skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN);
}
skb_record_rx_queue(skb, q->qidx);
cv = be16_to_cpu(rxreq->pkt_cv);
if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash))
skb_set_hash(skb, be32_to_cpu(rxreq->hash),
cqe_to_pkt_hash_type(cv));
if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) {
FUN_QSTAT_INC(q, rx_cso);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = be16_to_cpu(rxreq->csum) - 1;
}
if (unlikely(rx_hwtstamp_enabled(q->netdev)))
skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp);
trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv);
gro_res = skb->data_len ? napi_gro_frags(q->napi) :
napi_gro_receive(q->napi, skb);
if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE)
FUN_QSTAT_INC(q, gro_merged);
else if (gro_res == GRO_HELD)
FUN_QSTAT_INC(q, gro_pkts);
return;
no_mem:
FUN_QSTAT_INC(q, rx_mem_drops);
/* Release the references we've been granted for the frag pages.
* We return the ref of the last frag and free the rest.
*/
q->cur_buf->pg_refs++;
for (i = 0; i < rxreq->nsgl - 1; i++)
__free_page(skb_frag_page(frags + i));
}
/* Return 0 if the phase tag of the CQE at the CQ's head matches expectations
* indicating the CQE is new.
*/
static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase)
{
u16 sf_p = be16_to_cpu(ci->sf_p);
return (sf_p & 1) ^ phase;
}
/* Walk through a CQ identifying and processing fresh CQEs up to the given
* budget. Return the remaining budget.
*/
static int fun_process_cqes(struct funeth_rxq *q, int budget)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct funeth_txq **xdpqs, *xdp_q = NULL;
xdpqs = rcu_dereference_bh(fp->xdpqs);
if (xdpqs)
xdp_q = xdpqs[smp_processor_id()];
while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) {
/* access other descriptor fields after the phase check */
dma_rmb();
fun_handle_cqe_pkt(q, xdp_q);
budget--;
}
if (unlikely(q->xdp_flush)) {
if (q->xdp_flush & FUN_XDP_FLUSH_TX)
fun_txq_wr_db(xdp_q);
if (q->xdp_flush & FUN_XDP_FLUSH_REDIR)
xdp_do_flush();
q->xdp_flush = 0;
}
return budget;
}
/* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ
* doorbells as needed.
*/
int fun_rxq_napi_poll(struct napi_struct *napi, int budget)
{
struct fun_irq *irq = container_of(napi, struct fun_irq, napi);
struct funeth_rxq *q = irq->rxq;
int work_done = budget - fun_process_cqes(q, budget);
u32 cq_db_val = q->cq_head;
if (unlikely(work_done >= budget))
FUN_QSTAT_INC(q, rx_budget);
else if (napi_complete_done(napi, work_done))
cq_db_val |= q->irq_db_val;
/* check whether to post new Rx buffers */
if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) {
u64_stats_update_begin(&q->syncp);
q->stats.rx_bufs += q->rq_cons - q->rq_cons_db;
u64_stats_update_end(&q->syncp);
q->rq_cons_db = q->rq_cons;
writel((q->rq_cons - 1) & q->rq_mask, q->rq_db);
}
writel(cq_db_val, q->cq_db);
return work_done;
}
/* Free the Rx buffers of an Rx queue. */
static void fun_rxq_free_bufs(struct funeth_rxq *q)
{
struct funeth_rxbuf *b = q->bufs;
unsigned int i;
for (i = 0; i <= q->rq_mask; i++, b++)
funeth_free_page(q, b);
funeth_free_page(q, &q->spare_buf);
q->cur_buf = NULL;
}
/* Initially provision an Rx queue with Rx buffers. */
static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node)
{
struct funeth_rxbuf *b = q->bufs;
unsigned int i;
for (i = 0; i <= q->rq_mask; i++, b++) {
if (funeth_alloc_page(q, b, node, GFP_KERNEL)) {
fun_rxq_free_bufs(q);
return -ENOMEM;
}
q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr);
}
q->cur_buf = q->bufs;
return 0;
}
/* Initialize a used-buffer cache of the given depth. */
static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth,
int node)
{
c->mask = depth - 1;
c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node);
return c->bufs ? 0 : -ENOMEM;
}
/* Deallocate an Rx queue's used-buffer cache and its contents. */
static void fun_rxq_free_cache(struct funeth_rxq *q)
{
struct funeth_rxbuf *b = q->cache.bufs;
unsigned int i;
for (i = 0; i <= q->cache.mask; i++, b++)
funeth_free_page(q, b);
kvfree(q->cache.bufs);
q->cache.bufs = NULL;
}
int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct fun_admin_epcq_req cmd;
u16 headroom;
int err;
headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
if (headroom != q->headroom) {
cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ,
sizeof(cmd));
cmd.u.modify =
FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY,
0, q->hw_cqid, headroom);
err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0,
0);
if (err)
return err;
q->headroom = headroom;
}
WRITE_ONCE(q->xdp_prog, prog);
return 0;
}
/* Create an Rx queue, allocating the host memory it needs. */
static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev,
unsigned int qidx,
unsigned int ncqe,
unsigned int nrqe,
struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_rxq *q;
int err = -ENOMEM;
int numa_node;
numa_node = fun_irq_node(irq);
q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node);
if (!q)
goto err;
q->qidx = qidx;
q->netdev = dev;
q->cq_mask = ncqe - 1;
q->rq_mask = nrqe - 1;
q->numa_node = numa_node;
q->rq_db_thres = nrqe / 4;
u64_stats_init(&q->syncp);
q->dma_dev = &fp->pdev->dev;
q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes),
sizeof(*q->bufs), false, numa_node,
&q->rq_dma_addr, (void **)&q->bufs, NULL);
if (!q->rqes)
goto free_q;
q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0,
false, numa_node, &q->cq_dma_addr, NULL,
NULL);
if (!q->cqes)
goto free_rqes;
err = fun_rxq_init_cache(&q->cache, nrqe, numa_node);
if (err)
goto free_cqes;
err = fun_rxq_alloc_bufs(q, numa_node);
if (err)
goto free_cache;
q->stats.rx_bufs = q->rq_mask;
q->init_state = FUN_QSTATE_INIT_SW;
return q;
free_cache:
fun_rxq_free_cache(q);
free_cqes:
dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes,
q->cq_dma_addr);
free_rqes:
fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes,
q->rq_dma_addr, q->bufs);
free_q:
kfree(q);
err:
netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx);
return ERR_PTR(err);
}
static void fun_rxq_free_sw(struct funeth_rxq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
fun_rxq_free_cache(q);
fun_rxq_free_bufs(q);
fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false,
q->rqes, q->rq_dma_addr, q->bufs);
dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE,
q->cqes, q->cq_dma_addr);
/* Before freeing the queue transfer key counters to the device. */
fp->rx_packets += q->stats.rx_pkts;
fp->rx_bytes += q->stats.rx_bytes;
fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops;
kfree(q);
}
/* Create an Rx queue's resources on the device. */
int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
unsigned int ncqe = q->cq_mask + 1;
unsigned int nrqe = q->rq_mask + 1;
int err;
err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx,
irq->napi.napi_id);
if (err)
goto out;
err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED,
NULL);
if (err)
goto xdp_unreg;
q->phase = 1;
q->irq_cnt = 0;
q->cq_head = 0;
q->rq_cons = 0;
q->rq_cons_db = 0;
q->buf_offset = 0;
q->napi = &irq->napi;
q->irq_db_val = fp->cq_irq_db;
q->next_cqe_info = cqe_to_info(q->cqes);
q->xdp_prog = fp->xdp_prog;
q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM;
err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0,
FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0,
0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT,
&q->hw_sqid, &q->rq_db);
if (err)
goto xdp_unreg;
err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR |
FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0,
q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe,
q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0,
irq->irq_idx, 0, fp->fdev->kern_end_qid,
&q->hw_cqid, &q->cq_db);
if (err)
goto free_rq;
irq->rxq = q;
writel(q->rq_mask, q->rq_db);
q->init_state = FUN_QSTATE_INIT_FULL;
netif_info(fp, ifup, q->netdev,
"Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n",
q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx,
q->numa_node, q->headroom);
return 0;
free_rq:
fun_destroy_sq(fp->fdev, q->hw_sqid);
xdp_unreg:
xdp_rxq_info_unreg(&q->xdp_rxq);
out:
netdev_err(q->netdev,
"Failed to create Rx queue %u on device, error %d\n",
q->qidx, err);
return err;
}
static void fun_rxq_free_dev(struct funeth_rxq *q)
{
struct funeth_priv *fp = netdev_priv(q->netdev);
struct fun_irq *irq;
if (q->init_state < FUN_QSTATE_INIT_FULL)
return;
irq = container_of(q->napi, struct fun_irq, napi);
netif_info(fp, ifdown, q->netdev,
"Freeing Rx queue %u (id %u/%u), IRQ %u\n",
q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx);
irq->rxq = NULL;
xdp_rxq_info_unreg(&q->xdp_rxq);
fun_destroy_sq(fp->fdev, q->hw_sqid);
fun_destroy_cq(fp->fdev, q->hw_cqid);
q->init_state = FUN_QSTATE_INIT_SW;
}
/* Create or advance an Rx queue, allocating all the host and device resources
* needed to reach the target state.
*/
int funeth_rxq_create(struct net_device *dev, unsigned int qidx,
unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq,
int state, struct funeth_rxq **qp)
{
struct funeth_rxq *q = *qp;
int err;
if (!q) {
q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq);
if (IS_ERR(q))
return PTR_ERR(q);
}
if (q->init_state >= state)
goto out;
err = fun_rxq_create_dev(q, irq);
if (err) {
if (!*qp)
fun_rxq_free_sw(q);
return err;
}
out:
*qp = q;
return 0;
}
/* Free Rx queue resources until it reaches the target state. */
struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state)
{
if (state < FUN_QSTATE_INIT_FULL)
fun_rxq_free_dev(q);
if (state == FUN_QSTATE_DESTROYED) {
fun_rxq_free_sw(q);
q = NULL;
}
return q;
}