linux/linux-5.18.11/drivers/net/ethernet/fungible/funeth/funeth_main.c

2092 lines
52 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
#include <linux/bpf.h>
#include <linux/crash_dump.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/filter.h>
#include <linux/idr.h>
#include <linux/if_vlan.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/rtnetlink.h>
#include <linux/inetdevice.h>
#include "funeth.h"
#include "funeth_devlink.h"
#include "funeth_ktls.h"
#include "fun_port.h"
#include "fun_queue.h"
#include "funeth_txrx.h"
#define ADMIN_SQ_DEPTH 32
#define ADMIN_CQ_DEPTH 64
#define ADMIN_RQ_DEPTH 16
/* Default number of Tx/Rx queues. */
#define FUN_DFLT_QUEUES 16U
enum {
FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL,
FUN_SERV_DEL_PORTS,
};
static const struct pci_device_id funeth_id_table[] = {
{ PCI_VDEVICE(FUNGIBLE, 0x0101) },
{ PCI_VDEVICE(FUNGIBLE, 0x0181) },
{ 0, }
};
/* Issue a port write admin command with @n key/value pairs. */
static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n,
const int *keys, const u64 *data)
{
unsigned int cmd_size, i;
union {
struct fun_admin_port_req req;
struct fun_admin_port_rsp rsp;
u8 v[ADMIN_SQE_SIZE];
} cmd;
cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) +
n * sizeof(struct fun_admin_write48_req);
if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
return -EINVAL;
cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
cmd_size);
cmd.req.u.write =
FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0,
fp->netdev->dev_port);
for (i = 0; i < n; i++)
cmd.req.u.write.write48[i] =
FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]);
return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
&cmd.rsp, cmd_size, 0);
}
int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data)
{
return fun_port_write_cmds(fp, 1, &key, &data);
}
/* Issue a port read admin command with @n key/value pairs. */
static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n,
const int *keys, u64 *data)
{
const struct fun_admin_read48_rsp *r48rsp;
unsigned int cmd_size, i;
int rc;
union {
struct fun_admin_port_req req;
struct fun_admin_port_rsp rsp;
u8 v[ADMIN_SQE_SIZE];
} cmd;
cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) +
n * sizeof(struct fun_admin_read48_req);
if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN)
return -EINVAL;
cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
cmd_size);
cmd.req.u.read =
FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0,
fp->netdev->dev_port);
for (i = 0; i < n; i++)
cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]);
rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
&cmd.rsp, cmd_size, 0);
if (rc)
return rc;
for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) {
data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data);
dev_dbg(fp->fdev->dev,
"port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld",
fp->lport, r48rsp->key_to_data, keys[i], data[i],
FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data));
}
return 0;
}
int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data)
{
return fun_port_read_cmds(fp, 1, &key, data);
}
static void fun_report_link(struct net_device *netdev)
{
if (netif_carrier_ok(netdev)) {
const struct funeth_priv *fp = netdev_priv(netdev);
const char *fec = "", *pause = "";
int speed = fp->link_speed;
char unit = 'M';
if (fp->link_speed >= SPEED_1000) {
speed /= 1000;
unit = 'G';
}
if (fp->active_fec & FUN_PORT_FEC_RS)
fec = ", RS-FEC";
else if (fp->active_fec & FUN_PORT_FEC_FC)
fec = ", BASER-FEC";
if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK)
pause = ", Tx/Rx PAUSE";
else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE)
pause = ", Rx PAUSE";
else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE)
pause = ", Tx PAUSE";
netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n",
speed, unit, pause, fec);
} else {
netdev_info(netdev, "Link down\n");
}
}
static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr,
unsigned int adi_id, const struct fun_adi_param *param)
{
struct fun_admin_adi_req req = {
.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI,
sizeof(req)),
.u.write.subop = FUN_ADMIN_SUBOP_WRITE,
.u.write.attribute = attr,
.u.write.id = cpu_to_be32(adi_id),
.u.write.param = *param
};
return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0);
}
/* Configure RSS for the given port. @op determines whether a new RSS context
* is to be created or whether an existing one should be reconfigured. The
* remaining parameters specify the hashing algorithm, key, and indirection
* table.
*
* This initiates packet delivery to the Rx queues set in the indirection
* table.
*/
int fun_config_rss(struct net_device *dev, int algo, const u8 *key,
const u32 *qtable, u8 op)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned int table_len = fp->indir_table_nentries;
unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len;
struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
union {
struct {
struct fun_admin_rss_req req;
struct fun_dataop_gl gl;
};
struct fun_admin_generic_create_rsp rsp;
} cmd;
__be32 *indir_tab;
u16 flags;
int rc;
if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID)
return -EINVAL;
flags = op == FUN_ADMIN_SUBOP_CREATE ?
FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0;
cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS,
sizeof(cmd));
cmd.req.u.create =
FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id,
dev->dev_port, algo,
FUN_ETH_RSS_MAX_KEY_SIZE,
table_len, 0,
FUN_ETH_RSS_MAX_KEY_SIZE);
cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len);
fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr);
/* write the key and indirection table into the RSS DMA area */
memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE);
indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE;
for (rc = 0; rc < table_len; rc++)
*indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid);
rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common,
&cmd.rsp, sizeof(cmd.rsp), 0);
if (!rc && op == FUN_ADMIN_SUBOP_CREATE)
fp->rss_hw_id = be32_to_cpu(cmd.rsp.id);
return rc;
}
/* Destroy the HW RSS conntext associated with the given port. This also stops
* all packet delivery to our Rx queues.
*/
static void fun_destroy_rss(struct funeth_priv *fp)
{
if (fp->rss_hw_id != FUN_HCI_ID_INVALID) {
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id);
fp->rss_hw_id = FUN_HCI_ID_INVALID;
}
}
static void fun_irq_aff_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify);
cpumask_copy(&p->affinity_mask, mask);
}
static void fun_irq_aff_release(struct kref __always_unused *ref)
{
}
/* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it,
* and add it to the IRQ XArray.
*/
static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx,
int node, unsigned int xa_idx_offset)
{
struct fun_irq *irq;
int cpu, res;
cpu = cpumask_local_spread(idx, node);
node = cpu_to_mem(cpu);
irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node);
if (!irq)
return ERR_PTR(-ENOMEM);
res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx);
if (res != 1)
goto free_irq;
res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL);
if (res)
goto release_irq;
irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx);
cpumask_set_cpu(cpu, &irq->affinity_mask);
irq->aff_notify.notify = fun_irq_aff_notify;
irq->aff_notify.release = fun_irq_aff_release;
irq->state = FUN_IRQ_INIT;
return irq;
release_irq:
fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
free_irq:
kfree(irq);
return ERR_PTR(res);
}
static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq)
{
netif_napi_del(&irq->napi);
fun_release_irqs(fp->fdev, 1, &irq->irq_idx);
kfree(irq);
}
/* Release the IRQs reserved for Tx/Rx queues that aren't being used. */
static void fun_prune_queue_irqs(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned int nreleased = 0;
struct fun_irq *irq;
unsigned long idx;
xa_for_each(&fp->irqs, idx, irq) {
if (irq->txq || irq->rxq) /* skip those in use */
continue;
xa_erase(&fp->irqs, idx);
fun_free_qirq(fp, irq);
nreleased++;
if (idx < fp->rx_irq_ofst)
fp->num_tx_irqs--;
else
fp->num_rx_irqs--;
}
netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased);
}
/* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx
* and @nrx. IRQs are added incrementally to those we already have.
* We hold on to allocated IRQs until garbage collection of unused IRQs is
* separately requested.
*/
static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx,
unsigned int nrx)
{
struct funeth_priv *fp = netdev_priv(dev);
int node = dev_to_node(&fp->pdev->dev);
struct fun_irq *irq;
unsigned int i;
for (i = fp->num_tx_irqs; i < ntx; i++) {
irq = fun_alloc_qirq(fp, i, node, 0);
if (IS_ERR(irq))
return PTR_ERR(irq);
fp->num_tx_irqs++;
netif_tx_napi_add(dev, &irq->napi, fun_txq_napi_poll,
NAPI_POLL_WEIGHT);
}
for (i = fp->num_rx_irqs; i < nrx; i++) {
irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst);
if (IS_ERR(irq))
return PTR_ERR(irq);
fp->num_rx_irqs++;
netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll,
NAPI_POLL_WEIGHT);
}
netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n",
ntx, nrx);
return 0;
}
static void free_txqs(struct funeth_txq **txqs, unsigned int nqs,
unsigned int start, int state)
{
unsigned int i;
for (i = start; i < nqs && txqs[i]; i++)
txqs[i] = funeth_txq_free(txqs[i], state);
}
static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs,
unsigned int nqs, unsigned int depth, unsigned int start,
int state)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned int i;
int err;
for (i = start; i < nqs; i++) {
err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i),
state, &txqs[i]);
if (err) {
free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED);
return err;
}
}
return 0;
}
static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs,
unsigned int start, int state)
{
unsigned int i;
for (i = start; i < nqs && rxqs[i]; i++)
rxqs[i] = funeth_rxq_free(rxqs[i], state);
}
static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs,
unsigned int nqs, unsigned int ncqe, unsigned int nrqe,
unsigned int start, int state)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned int i;
int err;
for (i = start; i < nqs; i++) {
err = funeth_rxq_create(dev, i, ncqe, nrqe,
xa_load(&fp->irqs, i + fp->rx_irq_ofst),
state, &rxqs[i]);
if (err) {
free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED);
return err;
}
}
return 0;
}
static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs,
unsigned int start, int state)
{
unsigned int i;
for (i = start; i < nqs && xdpqs[i]; i++)
xdpqs[i] = funeth_txq_free(xdpqs[i], state);
if (state == FUN_QSTATE_DESTROYED)
kfree(xdpqs);
}
static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs,
unsigned int depth, unsigned int start,
int state)
{
struct funeth_txq **xdpqs;
unsigned int i;
int err;
xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL);
if (!xdpqs)
return ERR_PTR(-ENOMEM);
for (i = start; i < nqs; i++) {
err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]);
if (err) {
free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED);
return ERR_PTR(err);
}
}
return xdpqs;
}
static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset)
{
struct funeth_priv *fp = netdev_priv(netdev);
struct funeth_txq **xdpqs = qset->xdpqs;
struct funeth_rxq **rxqs = qset->rxqs;
/* qset may not specify any queues to operate on. In that case the
* currently installed queues are implied.
*/
if (!rxqs) {
rxqs = rtnl_dereference(fp->rxqs);
xdpqs = rtnl_dereference(fp->xdpqs);
qset->txqs = fp->txqs;
qset->nrxqs = netdev->real_num_rx_queues;
qset->ntxqs = netdev->real_num_tx_queues;
qset->nxdpqs = fp->num_xdpqs;
}
if (!rxqs)
return;
if (rxqs == rtnl_dereference(fp->rxqs)) {
rcu_assign_pointer(fp->rxqs, NULL);
rcu_assign_pointer(fp->xdpqs, NULL);
synchronize_net();
fp->txqs = NULL;
}
free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state);
free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state);
free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state);
if (qset->state == FUN_QSTATE_DESTROYED)
kfree(rxqs);
/* Tell the caller which queues were operated on. */
qset->rxqs = rxqs;
qset->xdpqs = xdpqs;
}
static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset)
{
struct funeth_txq **xdpqs = NULL, **txqs;
struct funeth_rxq **rxqs;
int err;
err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs);
if (err)
return err;
rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL);
if (!rxqs)
return -ENOMEM;
if (qset->nxdpqs) {
xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth,
qset->xdpq_start, qset->state);
if (IS_ERR(xdpqs)) {
err = PTR_ERR(xdpqs);
goto free_qvec;
}
}
txqs = (struct funeth_txq **)&rxqs[qset->nrxqs];
err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth,
qset->txq_start, qset->state);
if (err)
goto free_xdpqs;
err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth,
qset->rq_depth, qset->rxq_start, qset->state);
if (err)
goto free_txqs;
qset->rxqs = rxqs;
qset->txqs = txqs;
qset->xdpqs = xdpqs;
return 0;
free_txqs:
free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED);
free_xdpqs:
free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED);
free_qvec:
kfree(rxqs);
return err;
}
/* Take queues to the next level. Presently this means creating them on the
* device.
*/
static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset)
{
struct funeth_priv *fp = netdev_priv(dev);
int i, err;
for (i = 0; i < qset->nrxqs; i++) {
err = fun_rxq_create_dev(qset->rxqs[i],
xa_load(&fp->irqs,
i + fp->rx_irq_ofst));
if (err)
goto out;
}
for (i = 0; i < qset->ntxqs; i++) {
err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i));
if (err)
goto out;
}
for (i = 0; i < qset->nxdpqs; i++) {
err = fun_txq_create_dev(qset->xdpqs[i], NULL);
if (err)
goto out;
}
return 0;
out:
fun_free_rings(dev, qset);
return err;
}
static int fun_port_create(struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
union {
struct fun_admin_port_req req;
struct fun_admin_port_rsp rsp;
} cmd;
int rc;
if (fp->lport != INVALID_LPORT)
return 0;
cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT,
sizeof(cmd.req));
cmd.req.u.create =
FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0,
netdev->dev_port);
rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
sizeof(cmd.rsp), 0);
if (!rc)
fp->lport = be16_to_cpu(cmd.rsp.u.create.lport);
return rc;
}
static int fun_port_destroy(struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
if (fp->lport == INVALID_LPORT)
return 0;
fp->lport = INVALID_LPORT;
return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0,
netdev->dev_port);
}
static int fun_eth_create(struct funeth_priv *fp)
{
union {
struct fun_admin_eth_req req;
struct fun_admin_generic_create_rsp rsp;
} cmd;
int rc;
cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH,
sizeof(cmd.req));
cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT(
FUN_ADMIN_SUBOP_CREATE,
FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR,
0, fp->netdev->dev_port);
rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp,
sizeof(cmd.rsp), 0);
return rc ? rc : be32_to_cpu(cmd.rsp.id);
}
static int fun_vi_create(struct funeth_priv *fp)
{
struct fun_admin_vi_req req = {
.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI,
sizeof(req)),
.u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE,
0,
fp->netdev->dev_port,
fp->netdev->dev_port)
};
return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0);
}
/* Helper to create an ETH flow and bind an SQ to it.
* Returns the ETH id (>= 0) on success or a negative error.
*/
int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid)
{
int rc, ethid;
ethid = fun_eth_create(fp);
if (ethid >= 0) {
rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid,
FUN_ADMIN_BIND_TYPE_ETH, ethid);
if (rc) {
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid);
ethid = rc;
}
}
return ethid;
}
static irqreturn_t fun_queue_irq_handler(int irq, void *data)
{
struct fun_irq *p = data;
if (p->rxq) {
prefetch(p->rxq->next_cqe_info);
p->rxq->irq_cnt++;
}
napi_schedule_irqoff(&p->napi);
return IRQ_HANDLED;
}
static int fun_enable_irqs(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned long idx, last;
unsigned int qidx;
struct fun_irq *p;
const char *qtype;
int err;
xa_for_each(&fp->irqs, idx, p) {
if (p->txq) {
qtype = "tx";
qidx = p->txq->qidx;
} else if (p->rxq) {
qtype = "rx";
qidx = p->rxq->qidx;
} else {
continue;
}
if (p->state != FUN_IRQ_INIT)
continue;
snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name,
qtype, qidx);
err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p);
if (err) {
netdev_err(dev, "Failed to allocate IRQ %u, err %d\n",
p->irq, err);
goto unroll;
}
p->state = FUN_IRQ_REQUESTED;
}
xa_for_each(&fp->irqs, idx, p) {
if (p->state != FUN_IRQ_REQUESTED)
continue;
irq_set_affinity_notifier(p->irq, &p->aff_notify);
irq_set_affinity_and_hint(p->irq, &p->affinity_mask);
napi_enable(&p->napi);
p->state = FUN_IRQ_ENABLED;
}
return 0;
unroll:
last = idx - 1;
xa_for_each_range(&fp->irqs, idx, p, 0, last)
if (p->state == FUN_IRQ_REQUESTED) {
free_irq(p->irq, p);
p->state = FUN_IRQ_INIT;
}
return err;
}
static void fun_disable_one_irq(struct fun_irq *irq)
{
napi_disable(&irq->napi);
irq_set_affinity_notifier(irq->irq, NULL);
irq_update_affinity_hint(irq->irq, NULL);
free_irq(irq->irq, irq);
irq->state = FUN_IRQ_INIT;
}
static void fun_disable_irqs(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
struct fun_irq *p;
unsigned long idx;
xa_for_each(&fp->irqs, idx, p)
if (p->state == FUN_IRQ_ENABLED)
fun_disable_one_irq(p);
}
static void fun_down(struct net_device *dev, struct fun_qset *qset)
{
struct funeth_priv *fp = netdev_priv(dev);
/* If we don't have queues the data path is already down.
* Note netif_running(dev) may be true.
*/
if (!rcu_access_pointer(fp->rxqs))
return;
/* It is also down if the queues aren't on the device. */
if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) {
netif_info(fp, ifdown, dev,
"Tearing down data path on device\n");
fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0);
netif_carrier_off(dev);
netif_tx_disable(dev);
fun_destroy_rss(fp);
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
fun_disable_irqs(dev);
}
fun_free_rings(dev, qset);
}
static int fun_up(struct net_device *dev, struct fun_qset *qset)
{
static const int port_keys[] = {
FUN_ADMIN_PORT_KEY_STATS_DMA_LOW,
FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH,
FUN_ADMIN_PORT_KEY_ENABLE
};
struct funeth_priv *fp = netdev_priv(dev);
u64 vals[] = {
lower_32_bits(fp->stats_dma_addr),
upper_32_bits(fp->stats_dma_addr),
FUN_PORT_FLAG_ENABLE_NOTIFY
};
int err;
netif_info(fp, ifup, dev, "Setting up data path on device\n");
if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) {
err = fun_advance_ring_state(dev, qset);
if (err)
return err;
}
err = fun_vi_create(fp);
if (err)
goto free_queues;
fp->txqs = qset->txqs;
rcu_assign_pointer(fp->rxqs, qset->rxqs);
rcu_assign_pointer(fp->xdpqs, qset->xdpqs);
err = fun_enable_irqs(dev);
if (err)
goto destroy_vi;
if (fp->rss_cfg) {
err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
fp->indir_table, FUN_ADMIN_SUBOP_CREATE);
} else {
/* The non-RSS case has only 1 queue. */
err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port,
FUN_ADMIN_BIND_TYPE_EPCQ,
qset->rxqs[0]->hw_cqid);
}
if (err)
goto disable_irqs;
err = fun_port_write_cmds(fp, 3, port_keys, vals);
if (err)
goto free_rss;
netif_tx_start_all_queues(dev);
return 0;
free_rss:
fun_destroy_rss(fp);
disable_irqs:
fun_disable_irqs(dev);
destroy_vi:
fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port);
free_queues:
fun_free_rings(dev, qset);
return err;
}
static int funeth_open(struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
struct fun_qset qset = {
.nrxqs = netdev->real_num_rx_queues,
.ntxqs = netdev->real_num_tx_queues,
.nxdpqs = fp->num_xdpqs,
.cq_depth = fp->cq_depth,
.rq_depth = fp->rq_depth,
.sq_depth = fp->sq_depth,
.state = FUN_QSTATE_INIT_FULL,
};
int rc;
rc = fun_alloc_rings(netdev, &qset);
if (rc)
return rc;
rc = fun_up(netdev, &qset);
if (rc) {
qset.state = FUN_QSTATE_DESTROYED;
fun_free_rings(netdev, &qset);
}
return rc;
}
static int funeth_close(struct net_device *netdev)
{
struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED };
fun_down(netdev, &qset);
return 0;
}
static void fun_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct funeth_priv *fp = netdev_priv(netdev);
struct funeth_txq **xdpqs;
struct funeth_rxq **rxqs;
unsigned int i, start;
stats->tx_packets = fp->tx_packets;
stats->tx_bytes = fp->tx_bytes;
stats->tx_dropped = fp->tx_dropped;
stats->rx_packets = fp->rx_packets;
stats->rx_bytes = fp->rx_bytes;
stats->rx_dropped = fp->rx_dropped;
rcu_read_lock();
rxqs = rcu_dereference(fp->rxqs);
if (!rxqs)
goto unlock;
for (i = 0; i < netdev->real_num_tx_queues; i++) {
struct funeth_txq_stats txs;
FUN_QSTAT_READ(fp->txqs[i], start, txs);
stats->tx_packets += txs.tx_pkts;
stats->tx_bytes += txs.tx_bytes;
stats->tx_dropped += txs.tx_map_err;
}
for (i = 0; i < netdev->real_num_rx_queues; i++) {
struct funeth_rxq_stats rxs;
FUN_QSTAT_READ(rxqs[i], start, rxs);
stats->rx_packets += rxs.rx_pkts;
stats->rx_bytes += rxs.rx_bytes;
stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops;
}
xdpqs = rcu_dereference(fp->xdpqs);
if (!xdpqs)
goto unlock;
for (i = 0; i < fp->num_xdpqs; i++) {
struct funeth_txq_stats txs;
FUN_QSTAT_READ(xdpqs[i], start, txs);
stats->tx_packets += txs.tx_pkts;
stats->tx_bytes += txs.tx_bytes;
}
unlock:
rcu_read_unlock();
}
static int fun_change_mtu(struct net_device *netdev, int new_mtu)
{
struct funeth_priv *fp = netdev_priv(netdev);
int rc;
rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu);
if (!rc)
netdev->mtu = new_mtu;
return rc;
}
static int fun_set_macaddr(struct net_device *netdev, void *addr)
{
struct funeth_priv *fp = netdev_priv(netdev);
struct sockaddr *saddr = addr;
int rc;
if (!is_valid_ether_addr(saddr->sa_data))
return -EADDRNOTAVAIL;
if (ether_addr_equal(netdev->dev_addr, saddr->sa_data))
return 0;
rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
ether_addr_to_u64(saddr->sa_data));
if (!rc)
eth_hw_addr_set(netdev, saddr->sa_data);
return rc;
}
static int fun_get_port_attributes(struct net_device *netdev)
{
static const int keys[] = {
FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES,
FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU
};
static const int phys_keys[] = {
FUN_ADMIN_PORT_KEY_LANE_ATTRS,
};
struct funeth_priv *fp = netdev_priv(netdev);
u64 data[ARRAY_SIZE(keys)];
u8 mac[ETH_ALEN];
int i, rc;
rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data);
if (rc)
return rc;
for (i = 0; i < ARRAY_SIZE(keys); i++) {
switch (keys[i]) {
case FUN_ADMIN_PORT_KEY_MACADDR:
u64_to_ether_addr(data[i], mac);
if (is_zero_ether_addr(mac)) {
eth_hw_addr_random(netdev);
} else if (is_valid_ether_addr(mac)) {
eth_hw_addr_set(netdev, mac);
} else {
netdev_err(netdev,
"device provided a bad MAC address %pM\n",
mac);
return -EINVAL;
}
break;
case FUN_ADMIN_PORT_KEY_CAPABILITIES:
fp->port_caps = data[i];
break;
case FUN_ADMIN_PORT_KEY_ADVERT:
fp->advertising = data[i];
break;
case FUN_ADMIN_PORT_KEY_MTU:
netdev->mtu = data[i];
break;
}
}
if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) {
rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys,
data);
if (rc)
return rc;
fp->lane_attrs = data[0];
}
if (netdev->addr_assign_type == NET_ADDR_RANDOM)
return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR,
ether_addr_to_u64(netdev->dev_addr));
return 0;
}
static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
const struct funeth_priv *fp = netdev_priv(dev);
return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg,
sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0;
}
static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
struct funeth_priv *fp = netdev_priv(dev);
struct hwtstamp_config cfg;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
/* no TX HW timestamps */
cfg.tx_type = HWTSTAMP_TX_OFF;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
break;
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_SOME:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_NTP_ALL:
cfg.rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
return -ERANGE;
}
fp->hwtstamp_cfg = cfg;
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCSHWTSTAMP:
return fun_hwtstamp_set(dev, ifr);
case SIOCGHWTSTAMP:
return fun_hwtstamp_get(dev, ifr);
default:
return -EOPNOTSUPP;
}
}
/* Prepare the queues for XDP. */
static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog)
{
struct funeth_priv *fp = netdev_priv(dev);
unsigned int i, nqs = num_online_cpus();
struct funeth_txq **xdpqs;
struct funeth_rxq **rxqs;
int err;
xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL);
if (IS_ERR(xdpqs))
return PTR_ERR(xdpqs);
rxqs = rtnl_dereference(fp->rxqs);
for (i = 0; i < dev->real_num_rx_queues; i++) {
err = fun_rxq_set_bpf(rxqs[i], prog);
if (err)
goto out;
}
fp->num_xdpqs = nqs;
rcu_assign_pointer(fp->xdpqs, xdpqs);
return 0;
out:
while (i--)
fun_rxq_set_bpf(rxqs[i], NULL);
free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED);
return err;
}
/* Set the queues for non-XDP operation. */
static void fun_end_xdp(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
struct funeth_txq **xdpqs;
struct funeth_rxq **rxqs;
unsigned int i;
xdpqs = rtnl_dereference(fp->xdpqs);
rcu_assign_pointer(fp->xdpqs, NULL);
synchronize_net();
/* at this point both Rx and Tx XDP processing has ended */
free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED);
fp->num_xdpqs = 0;
rxqs = rtnl_dereference(fp->rxqs);
for (i = 0; i < dev->real_num_rx_queues; i++)
fun_rxq_set_bpf(rxqs[i], NULL);
}
#define XDP_MAX_MTU \
(PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM)
static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp)
{
struct bpf_prog *old_prog, *prog = xdp->prog;
struct funeth_priv *fp = netdev_priv(dev);
int i, err;
/* XDP uses at most one buffer */
if (prog && dev->mtu > XDP_MAX_MTU) {
netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu);
NL_SET_ERR_MSG_MOD(xdp->extack,
"Device MTU too large for XDP");
return -EINVAL;
}
if (!netif_running(dev)) {
fp->num_xdpqs = prog ? num_online_cpus() : 0;
} else if (prog && !fp->xdp_prog) {
err = fun_enter_xdp(dev, prog);
if (err) {
NL_SET_ERR_MSG_MOD(xdp->extack,
"Failed to set queues for XDP.");
return err;
}
} else if (!prog && fp->xdp_prog) {
fun_end_xdp(dev);
} else {
struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs);
for (i = 0; i < dev->real_num_rx_queues; i++)
WRITE_ONCE(rxqs[i]->xdp_prog, prog);
}
dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU;
old_prog = xchg(&fp->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
return 0;
}
static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return fun_xdp_setup(dev, xdp);
default:
return -EINVAL;
}
}
static struct devlink_port *fun_get_devlink_port(struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
return &fp->dl_port;
}
static int fun_init_vports(struct fun_ethdev *ed, unsigned int n)
{
if (ed->num_vports)
return -EINVAL;
ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL);
if (!ed->vport_info)
return -ENOMEM;
ed->num_vports = n;
return 0;
}
static void fun_free_vports(struct fun_ethdev *ed)
{
kvfree(ed->vport_info);
ed->vport_info = NULL;
ed->num_vports = 0;
}
static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed,
unsigned int vport)
{
if (!ed->vport_info || vport >= ed->num_vports)
return NULL;
return ed->vport_info + vport;
}
static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
{
struct funeth_priv *fp = netdev_priv(dev);
struct fun_adi_param mac_param = {};
struct fun_dev *fdev = fp->fdev;
struct fun_ethdev *ed = to_fun_ethdev(fdev);
struct fun_vport_info *vi;
int rc = -EINVAL;
if (is_multicast_ether_addr(mac))
return -EINVAL;
mutex_lock(&ed->state_mutex);
vi = fun_get_vport(ed, vf);
if (!vi)
goto unlock;
mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac));
rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1,
&mac_param);
if (!rc)
ether_addr_copy(vi->mac, mac);
unlock:
mutex_unlock(&ed->state_mutex);
return rc;
}
static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos,
__be16 vlan_proto)
{
struct funeth_priv *fp = netdev_priv(dev);
struct fun_adi_param vlan_param = {};
struct fun_dev *fdev = fp->fdev;
struct fun_ethdev *ed = to_fun_ethdev(fdev);
struct fun_vport_info *vi;
int rc = -EINVAL;
if (vlan > 4095 || qos > 7)
return -EINVAL;
if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) &&
vlan_proto != htons(ETH_P_8021AD))
return -EINVAL;
mutex_lock(&ed->state_mutex);
vi = fun_get_vport(ed, vf);
if (!vi)
goto unlock;
vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto),
((u16)qos << VLAN_PRIO_SHIFT) | vlan);
rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param);
if (!rc) {
vi->vlan = vlan;
vi->qos = qos;
vi->vlan_proto = vlan_proto;
}
unlock:
mutex_unlock(&ed->state_mutex);
return rc;
}
static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
int max_tx_rate)
{
struct funeth_priv *fp = netdev_priv(dev);
struct fun_adi_param rate_param = {};
struct fun_dev *fdev = fp->fdev;
struct fun_ethdev *ed = to_fun_ethdev(fdev);
struct fun_vport_info *vi;
int rc = -EINVAL;
if (min_tx_rate)
return -EINVAL;
mutex_lock(&ed->state_mutex);
vi = fun_get_vport(ed, vf);
if (!vi)
goto unlock;
rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate);
rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param);
if (!rc)
vi->max_rate = max_tx_rate;
unlock:
mutex_unlock(&ed->state_mutex);
return rc;
}
static int fun_get_vf_config(struct net_device *dev, int vf,
struct ifla_vf_info *ivi)
{
struct funeth_priv *fp = netdev_priv(dev);
struct fun_ethdev *ed = to_fun_ethdev(fp->fdev);
const struct fun_vport_info *vi;
mutex_lock(&ed->state_mutex);
vi = fun_get_vport(ed, vf);
if (!vi)
goto unlock;
memset(ivi, 0, sizeof(*ivi));
ivi->vf = vf;
ether_addr_copy(ivi->mac, vi->mac);
ivi->vlan = vi->vlan;
ivi->qos = vi->qos;
ivi->vlan_proto = vi->vlan_proto;
ivi->max_tx_rate = vi->max_rate;
ivi->spoofchk = vi->spoofchk;
unlock:
mutex_unlock(&ed->state_mutex);
return vi ? 0 : -EINVAL;
}
static void fun_uninit(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
fun_prune_queue_irqs(dev);
xa_destroy(&fp->irqs);
}
static const struct net_device_ops fun_netdev_ops = {
.ndo_open = funeth_open,
.ndo_stop = funeth_close,
.ndo_start_xmit = fun_start_xmit,
.ndo_get_stats64 = fun_get_stats64,
.ndo_change_mtu = fun_change_mtu,
.ndo_set_mac_address = fun_set_macaddr,
.ndo_validate_addr = eth_validate_addr,
.ndo_eth_ioctl = fun_ioctl,
.ndo_uninit = fun_uninit,
.ndo_bpf = fun_xdp,
.ndo_xdp_xmit = fun_xdp_xmit_frames,
.ndo_set_vf_mac = fun_set_vf_mac,
.ndo_set_vf_vlan = fun_set_vf_vlan,
.ndo_set_vf_rate = fun_set_vf_rate,
.ndo_get_vf_config = fun_get_vf_config,
.ndo_get_devlink_port = fun_get_devlink_port,
};
#define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \
NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \
NETIF_F_GSO_UDP_TUNNEL_CSUM)
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \
GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA)
static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx)
{
unsigned int i;
for (i = 0; i < fp->indir_table_nentries; i++)
fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx);
}
/* Reset the RSS indirection table to equal distribution across the current
* number of Rx queues. Called at init time and whenever the number of Rx
* queues changes subsequently. Note that this may also resize the indirection
* table.
*/
static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx)
{
struct funeth_priv *fp = netdev_priv(dev);
if (!fp->rss_cfg)
return;
/* Set the table size to the max possible that allows an equal number
* of occurrences of each CQ.
*/
fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx);
fun_dflt_rss_indir(fp, nrx);
}
/* Update the RSS LUT to contain only queues in [0, nrx). Normally this will
* update the LUT to an equal distribution among nrx queues, If @only_if_needed
* is set the LUT is left unchanged if it already does not reference any queues
* >= nrx.
*/
static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx,
bool only_if_needed)
{
struct funeth_priv *fp = netdev_priv(dev);
u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT];
unsigned int i, oldsz;
int err;
if (!fp->rss_cfg)
return 0;
if (only_if_needed) {
for (i = 0; i < fp->indir_table_nentries; i++)
if (fp->indir_table[i] >= nrx)
break;
if (i >= fp->indir_table_nentries)
return 0;
}
memcpy(old_lut, fp->indir_table, sizeof(old_lut));
oldsz = fp->indir_table_nentries;
fun_reset_rss_indir(dev, nrx);
err = fun_config_rss(dev, fp->hash_algo, fp->rss_key,
fp->indir_table, FUN_ADMIN_SUBOP_MODIFY);
if (!err)
return 0;
memcpy(fp->indir_table, old_lut, sizeof(old_lut));
fp->indir_table_nentries = oldsz;
return err;
}
/* Allocate the DMA area for the RSS configuration commands to the device, and
* initialize the hash, hash key, indirection table size and its entries to
* their defaults. The indirection table defaults to equal distribution across
* the Rx queues.
*/
static int fun_init_rss(struct net_device *dev)
{
struct funeth_priv *fp = netdev_priv(dev);
size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table);
fp->rss_hw_id = FUN_HCI_ID_INVALID;
if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS))
return 0;
fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size,
&fp->rss_dma_addr, GFP_KERNEL);
if (!fp->rss_cfg)
return -ENOMEM;
fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ;
netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key));
fun_reset_rss_indir(dev, dev->real_num_rx_queues);
return 0;
}
static void fun_free_rss(struct funeth_priv *fp)
{
if (fp->rss_cfg) {
dma_free_coherent(&fp->pdev->dev,
sizeof(fp->rss_key) + sizeof(fp->indir_table),
fp->rss_cfg, fp->rss_dma_addr);
fp->rss_cfg = NULL;
}
}
void fun_set_ring_count(struct net_device *netdev, unsigned int ntx,
unsigned int nrx)
{
netif_set_real_num_tx_queues(netdev, ntx);
if (nrx != netdev->real_num_rx_queues) {
netif_set_real_num_rx_queues(netdev, nrx);
fun_reset_rss_indir(netdev, nrx);
}
}
static int fun_init_stats_area(struct funeth_priv *fp)
{
unsigned int nstats;
if (!(fp->port_caps & FUN_PORT_CAP_STATS))
return 0;
nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX +
PORT_MAC_FEC_STATS_MAX;
fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64),
&fp->stats_dma_addr, GFP_KERNEL);
if (!fp->stats)
return -ENOMEM;
return 0;
}
static void fun_free_stats_area(struct funeth_priv *fp)
{
unsigned int nstats;
if (fp->stats) {
nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX;
dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64),
fp->stats, fp->stats_dma_addr);
fp->stats = NULL;
}
}
static int fun_dl_port_register(struct net_device *netdev)
{
struct funeth_priv *fp = netdev_priv(netdev);
struct devlink *dl = priv_to_devlink(fp->fdev);
struct devlink_port_attrs attrs = {};
unsigned int idx;
if (fp->port_caps & FUN_PORT_CAP_VPORT) {
attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL;
idx = fp->lport;
} else {
idx = netdev->dev_port;
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
attrs.lanes = fp->lane_attrs & 7;
if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) {
attrs.split = 1;
attrs.phys.port_number = fp->lport & ~3;
attrs.phys.split_subport_number = fp->lport & 3;
} else {
attrs.phys.port_number = fp->lport;
}
}
devlink_port_attrs_set(&fp->dl_port, &attrs);
return devlink_port_register(dl, &fp->dl_port, idx);
}
/* Determine the max Tx/Rx queues for a port. */
static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx,
unsigned int *nrx)
{
int neth;
if (ed->num_ports > 1 || is_kdump_kernel()) {
*ntx = 1;
*nrx = 1;
return 0;
}
neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH);
if (neth < 0)
return neth;
/* We determine the max number of queues based on the CPU
* cores, device interrupts and queues, RSS size, and device Tx flows.
*
* - At least 1 Rx and 1 Tx queues.
* - At most 1 Rx/Tx queue per core.
* - Each Rx/Tx queue needs 1 SQ.
*/
*ntx = min(ed->nsqs_per_port - 1, num_online_cpus());
*nrx = *ntx;
if (*ntx > neth)
*ntx = neth;
if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT)
*nrx = FUN_ETH_RSS_MAX_INDIR_ENT;
return 0;
}
static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs)
{
unsigned int ntx, nrx;
ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES);
nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES);
if (ntx <= nrx) {
ntx = min(ntx, nsqs / 2);
nrx = min(nrx, nsqs - ntx);
} else {
nrx = min(nrx, nsqs / 2);
ntx = min(ntx, nsqs - nrx);
}
netif_set_real_num_tx_queues(dev, ntx);
netif_set_real_num_rx_queues(dev, nrx);
}
/* Replace the existing Rx/Tx/XDP queues with equal number of queues with
* different settings, e.g. depth. This is a disruptive replacement that
* temporarily shuts down the data path and should be limited to changes that
* can't be applied to live queues. The old queues are always discarded.
*/
int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs,
struct netlink_ext_ack *extack)
{
struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED };
struct funeth_priv *fp = netdev_priv(dev);
int err;
newqs->nrxqs = dev->real_num_rx_queues;
newqs->ntxqs = dev->real_num_tx_queues;
newqs->nxdpqs = fp->num_xdpqs;
newqs->state = FUN_QSTATE_INIT_SW;
err = fun_alloc_rings(dev, newqs);
if (err) {
NL_SET_ERR_MSG_MOD(extack,
"Unable to allocate memory for new queues, keeping current settings");
return err;
}
fun_down(dev, &oldqs);
err = fun_up(dev, newqs);
if (!err)
return 0;
/* The new queues couldn't be installed. We do not retry the old queues
* as they are the same to the device as the new queues and would
* similarly fail.
*/
newqs->state = FUN_QSTATE_DESTROYED;
fun_free_rings(dev, newqs);
NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues.");
return err;
}
/* Change the number of Rx/Tx queues of a device while it is up. This is done
* by incrementally adding/removing queues to meet the new requirements while
* handling ongoing traffic.
*/
int fun_change_num_queues(struct net_device *dev, unsigned int ntx,
unsigned int nrx)
{
unsigned int keep_tx = min(dev->real_num_tx_queues, ntx);
unsigned int keep_rx = min(dev->real_num_rx_queues, nrx);
struct funeth_priv *fp = netdev_priv(dev);
struct fun_qset oldqs = {
.rxqs = rtnl_dereference(fp->rxqs),
.txqs = fp->txqs,
.nrxqs = dev->real_num_rx_queues,
.ntxqs = dev->real_num_tx_queues,
.rxq_start = keep_rx,
.txq_start = keep_tx,
.state = FUN_QSTATE_DESTROYED
};
struct fun_qset newqs = {
.nrxqs = nrx,
.ntxqs = ntx,
.rxq_start = keep_rx,
.txq_start = keep_tx,
.cq_depth = fp->cq_depth,
.rq_depth = fp->rq_depth,
.sq_depth = fp->sq_depth,
.state = FUN_QSTATE_INIT_FULL
};
int i, err;
err = fun_alloc_rings(dev, &newqs);
if (err)
goto free_irqs;
err = fun_enable_irqs(dev); /* of any newly added queues */
if (err)
goto free_rings;
/* copy the queues we are keeping to the new set */
memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs));
memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs));
if (nrx < dev->real_num_rx_queues) {
err = fun_rss_set_qnum(dev, nrx, true);
if (err)
goto disable_tx_irqs;
for (i = nrx; i < dev->real_num_rx_queues; i++)
fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi,
struct fun_irq, napi));
netif_set_real_num_rx_queues(dev, nrx);
}
if (ntx < dev->real_num_tx_queues)
netif_set_real_num_tx_queues(dev, ntx);
rcu_assign_pointer(fp->rxqs, newqs.rxqs);
fp->txqs = newqs.txqs;
synchronize_net();
if (ntx > dev->real_num_tx_queues)
netif_set_real_num_tx_queues(dev, ntx);
if (nrx > dev->real_num_rx_queues) {
netif_set_real_num_rx_queues(dev, nrx);
fun_rss_set_qnum(dev, nrx, false);
}
/* disable interrupts of any excess Tx queues */
for (i = keep_tx; i < oldqs.ntxqs; i++)
fun_disable_one_irq(oldqs.txqs[i]->irq);
fun_free_rings(dev, &oldqs);
fun_prune_queue_irqs(dev);
return 0;
disable_tx_irqs:
for (i = oldqs.ntxqs; i < ntx; i++)
fun_disable_one_irq(newqs.txqs[i]->irq);
free_rings:
newqs.state = FUN_QSTATE_DESTROYED;
fun_free_rings(dev, &newqs);
free_irqs:
fun_prune_queue_irqs(dev);
return err;
}
static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid)
{
struct fun_dev *fdev = &ed->fdev;
struct net_device *netdev;
struct funeth_priv *fp;
unsigned int ntx, nrx;
int rc;
rc = fun_max_qs(ed, &ntx, &nrx);
if (rc)
return rc;
netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx);
if (!netdev) {
rc = -ENOMEM;
goto done;
}
netdev->dev_port = portid;
fun_queue_defaults(netdev, ed->nsqs_per_port);
fp = netdev_priv(netdev);
fp->fdev = fdev;
fp->pdev = to_pci_dev(fdev->dev);
fp->netdev = netdev;
xa_init(&fp->irqs);
fp->rx_irq_ofst = ntx;
seqcount_init(&fp->link_seq);
fp->lport = INVALID_LPORT;
rc = fun_port_create(netdev);
if (rc)
goto free_netdev;
/* bind port to admin CQ for async events */
rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid,
FUN_ADMIN_BIND_TYPE_EPCQ, 0);
if (rc)
goto destroy_port;
rc = fun_get_port_attributes(netdev);
if (rc)
goto destroy_port;
rc = fun_init_rss(netdev);
if (rc)
goto destroy_port;
rc = fun_init_stats_area(fp);
if (rc)
goto free_rss;
SET_NETDEV_DEV(netdev, fdev->dev);
netdev->netdev_ops = &fun_netdev_ops;
netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM;
if (fp->port_caps & FUN_PORT_CAP_OFFLOADS)
netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS;
if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS)
netdev->hw_features |= GSO_ENCAP_FLAGS;
netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA;
netdev->vlan_features = netdev->features & VLAN_FEAT;
netdev->mpls_features = netdev->vlan_features;
netdev->hw_enc_features = netdev->hw_features;
netdev->min_mtu = ETH_MIN_MTU;
netdev->max_mtu = FUN_MAX_MTU;
fun_set_ethtool_ops(netdev);
/* configurable parameters */
fp->sq_depth = min(SQ_DEPTH, fdev->q_depth);
fp->cq_depth = min(CQ_DEPTH, fdev->q_depth);
fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth);
fp->rx_coal_usec = CQ_INTCOAL_USEC;
fp->rx_coal_count = CQ_INTCOAL_NPKT;
fp->tx_coal_usec = SQ_INTCOAL_USEC;
fp->tx_coal_count = SQ_INTCOAL_NPKT;
fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count);
rc = fun_dl_port_register(netdev);
if (rc)
goto free_stats;
fp->ktls_id = FUN_HCI_ID_INVALID;
fun_ktls_init(netdev); /* optional, failure OK */
netif_carrier_off(netdev);
ed->netdevs[portid] = netdev;
rc = register_netdev(netdev);
if (rc)
goto unreg_devlink;
if (fp->dl_port.devlink)
devlink_port_type_eth_set(&fp->dl_port, netdev);
return 0;
unreg_devlink:
ed->netdevs[portid] = NULL;
fun_ktls_cleanup(fp);
if (fp->dl_port.devlink)
devlink_port_unregister(&fp->dl_port);
free_stats:
fun_free_stats_area(fp);
free_rss:
fun_free_rss(fp);
destroy_port:
fun_port_destroy(netdev);
free_netdev:
free_netdev(netdev);
done:
dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc);
return rc;
}
static void fun_destroy_netdev(struct net_device *netdev)
{
struct funeth_priv *fp;
fp = netdev_priv(netdev);
if (fp->dl_port.devlink) {
devlink_port_type_clear(&fp->dl_port);
devlink_port_unregister(&fp->dl_port);
}
unregister_netdev(netdev);
fun_ktls_cleanup(fp);
fun_free_stats_area(fp);
fun_free_rss(fp);
fun_port_destroy(netdev);
free_netdev(netdev);
}
static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports)
{
struct fun_dev *fd = &ed->fdev;
int i, rc;
/* The admin queue takes 1 IRQ and 2 SQs. */
ed->nsqs_per_port = min(fd->num_irqs - 1,
fd->kern_end_qid - 2) / nports;
if (ed->nsqs_per_port < 2) {
dev_err(fd->dev, "Too few SQs for %u ports", nports);
return -EINVAL;
}
ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL);
if (!ed->netdevs)
return -ENOMEM;
ed->num_ports = nports;
for (i = 0; i < nports; i++) {
rc = fun_create_netdev(ed, i);
if (rc)
goto free_netdevs;
}
return 0;
free_netdevs:
while (i)
fun_destroy_netdev(ed->netdevs[--i]);
kfree(ed->netdevs);
ed->netdevs = NULL;
ed->num_ports = 0;
return rc;
}
static void fun_destroy_ports(struct fun_ethdev *ed)
{
unsigned int i;
for (i = 0; i < ed->num_ports; i++)
fun_destroy_netdev(ed->netdevs[i]);
kfree(ed->netdevs);
ed->netdevs = NULL;
ed->num_ports = 0;
}
static void fun_update_link_state(const struct fun_ethdev *ed,
const struct fun_admin_port_notif *notif)
{
unsigned int port_idx = be16_to_cpu(notif->id);
struct net_device *netdev;
struct funeth_priv *fp;
if (port_idx >= ed->num_ports)
return;
netdev = ed->netdevs[port_idx];
fp = netdev_priv(netdev);
write_seqcount_begin(&fp->link_seq);
fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */
fp->active_fc = notif->flow_ctrl;
fp->active_fec = notif->fec;
fp->xcvr_type = notif->xcvr_type;
fp->link_down_reason = notif->link_down_reason;
fp->lp_advertising = be64_to_cpu(notif->lp_advertising);
if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN)
netif_carrier_off(netdev);
if (notif->link_state & FUN_PORT_FLAG_MAC_UP)
netif_carrier_on(netdev);
write_seqcount_end(&fp->link_seq);
fun_report_link(netdev);
}
/* handler for async events delivered through the admin CQ */
static void fun_event_cb(struct fun_dev *fdev, void *entry)
{
u8 op = ((struct fun_admin_rsp_common *)entry)->op;
if (op == FUN_ADMIN_OP_PORT) {
const struct fun_admin_port_notif *rsp = entry;
if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) {
fun_update_link_state(to_fun_ethdev(fdev), rsp);
} else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) {
const struct fun_admin_res_count_rsp *r = entry;
if (r->count.data)
set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags);
else
set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags);
fun_serv_sched(fdev);
} else {
dev_info(fdev->dev, "adminq event unexpected op %u subop %u",
op, rsp->subop);
}
} else {
dev_info(fdev->dev, "adminq event unexpected op %u", op);
}
}
/* handler for pending work managed by the service task */
static void fun_service_cb(struct fun_dev *fdev)
{
struct fun_ethdev *ed = to_fun_ethdev(fdev);
int rc;
if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags))
fun_destroy_ports(ed);
if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags))
return;
rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
if (rc < 0 || rc == ed->num_ports)
return;
if (ed->num_ports)
fun_destroy_ports(ed);
if (rc)
fun_create_ports(ed, rc);
}
static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs)
{
struct fun_dev *fdev = pci_get_drvdata(pdev);
struct fun_ethdev *ed = to_fun_ethdev(fdev);
int rc;
if (nvfs == 0) {
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"Cannot disable SR-IOV while VFs are assigned\n");
return -EPERM;
}
mutex_lock(&ed->state_mutex);
fun_free_vports(ed);
mutex_unlock(&ed->state_mutex);
pci_disable_sriov(pdev);
return 0;
}
rc = pci_enable_sriov(pdev, nvfs);
if (rc)
return rc;
mutex_lock(&ed->state_mutex);
rc = fun_init_vports(ed, nvfs);
mutex_unlock(&ed->state_mutex);
if (rc) {
pci_disable_sriov(pdev);
return rc;
}
return nvfs;
}
static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct fun_dev_params aqreq = {
.cqe_size_log2 = ilog2(ADMIN_CQE_SIZE),
.sqe_size_log2 = ilog2(ADMIN_SQE_SIZE),
.cq_depth = ADMIN_CQ_DEPTH,
.sq_depth = ADMIN_SQ_DEPTH,
.rq_depth = ADMIN_RQ_DEPTH,
.min_msix = 2, /* 1 Rx + 1 Tx */
.event_cb = fun_event_cb,
.serv_cb = fun_service_cb,
};
struct devlink *devlink;
struct fun_ethdev *ed;
struct fun_dev *fdev;
int rc;
devlink = fun_devlink_alloc(&pdev->dev);
if (!devlink) {
dev_err(&pdev->dev, "devlink alloc failed\n");
return -ENOMEM;
}
ed = devlink_priv(devlink);
mutex_init(&ed->state_mutex);
fdev = &ed->fdev;
rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME);
if (rc)
goto free_devlink;
rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT);
if (rc > 0)
rc = fun_create_ports(ed, rc);
if (rc < 0)
goto disable_dev;
fun_serv_restart(fdev);
fun_devlink_register(devlink);
return 0;
disable_dev:
fun_dev_disable(fdev);
free_devlink:
mutex_destroy(&ed->state_mutex);
fun_devlink_free(devlink);
return rc;
}
static void funeth_remove(struct pci_dev *pdev)
{
struct fun_dev *fdev = pci_get_drvdata(pdev);
struct devlink *devlink;
struct fun_ethdev *ed;
ed = to_fun_ethdev(fdev);
devlink = priv_to_devlink(ed);
fun_devlink_unregister(devlink);
#ifdef CONFIG_PCI_IOV
funeth_sriov_configure(pdev, 0);
#endif
fun_serv_stop(fdev);
fun_destroy_ports(ed);
fun_dev_disable(fdev);
mutex_destroy(&ed->state_mutex);
fun_devlink_free(devlink);
}
static struct pci_driver funeth_driver = {
.name = KBUILD_MODNAME,
.id_table = funeth_id_table,
.probe = funeth_probe,
.remove = funeth_remove,
.shutdown = funeth_remove,
.sriov_configure = funeth_sriov_configure,
};
module_pci_driver(funeth_driver);
MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>");
MODULE_DESCRIPTION("Fungible Ethernet Network Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DEVICE_TABLE(pci, funeth_id_table);