linux/linux-5.18.11/drivers/mtd/spi-nor/micron-st.c

462 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/mtd/spi-nor.h>
#include "core.h"
/* flash_info mfr_flag. Used to read proprietary FSR register. */
#define USE_FSR BIT(0)
#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
#define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
#define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
#define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
#define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
#define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
#define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
#define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
#define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
#define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
/* Flag Status Register bits */
#define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
#define FSR_E_ERR BIT(5) /* Erase operation status */
#define FSR_P_ERR BIT(4) /* Program operation status */
#define FSR_PT_ERR BIT(1) /* Protection error bit */
static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
{
struct spi_mem_op op;
u8 *buf = nor->bouncebuf;
int ret;
if (enable) {
/* Use 20 dummy cycles for memory array reads. */
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
*buf = 20;
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(3, SPINOR_REG_MT_CFR1V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(1, buf, 1));
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
}
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
if (enable) {
buf[0] = SPINOR_MT_OCT_DTR;
} else {
/*
* The register is 1-byte wide, but 1-byte transactions are not
* allowed in 8D-8D-8D mode. The next register is the dummy
* cycle configuration register. Since the transaction needs to
* be at least 2 bytes wide, set the next register to its
* default value. This also makes sense because the value was
* changed when enabling 8D-8D-8D mode, it should be reset when
* disabling.
*/
buf[0] = SPINOR_MT_EXSPI;
buf[1] = SPINOR_REG_MT_CFR1V_DEF;
}
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
SPI_MEM_OP_ADDR(enable ? 3 : 4,
SPINOR_REG_MT_CFR0V, 1),
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_OUT(enable ? 1 : 2, buf, 1));
if (!enable)
spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
/* Read flash ID to make sure the switch was successful. */
op = (struct spi_mem_op)
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_DUMMY(enable ? 8 : 0, 1),
SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
buf, 1));
if (enable)
spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
ret = spi_mem_exec_op(nor->spimem, &op);
if (ret)
return ret;
if (memcmp(buf, nor->info->id, nor->info->id_len))
return -EINVAL;
return 0;
}
static void mt35xu512aba_default_init(struct spi_nor *nor)
{
nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
}
static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
{
/* Set the Fast Read settings. */
nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
0, 20, SPINOR_OP_MT_DTR_RD,
SNOR_PROTO_8_8_8_DTR);
nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
nor->params->rdsr_dummy = 8;
nor->params->rdsr_addr_nbytes = 0;
/*
* The BFPT quad enable field is set to a reserved value so the quad
* enable function is ignored by spi_nor_parse_bfpt(). Make sure we
* disable it.
*/
nor->params->quad_enable = NULL;
}
static const struct spi_nor_fixups mt35xu512aba_fixups = {
.default_init = mt35xu512aba_default_init,
.post_sfdp = mt35xu512aba_post_sfdp_fixup,
};
static const struct flash_info micron_nor_parts[] = {
{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
MFR_FLAGS(USE_FSR)
.fixups = &mt35xu512aba_fixups
},
{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
MFR_FLAGS(USE_FSR)
},
};
static const struct flash_info st_nor_parts[] = {
{ "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256)
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256)
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
MFR_FLAGS(USE_FSR)
},
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
MFR_FLAGS(USE_FSR)
},
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
MFR_FLAGS(USE_FSR)
},
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024)
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
MFR_FLAGS(USE_FSR)
},
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024)
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048)
FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048)
FLAGS(NO_CHIP_ERASE)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096)
FLAGS(NO_CHIP_ERASE)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096)
FLAGS(NO_CHIP_ERASE)
NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
SPI_NOR_QUAD_READ)
MFR_FLAGS(USE_FSR)
},
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32)
NO_SFDP_FLAGS(SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64)
NO_SFDP_FLAGS(SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128) },
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16) },
};
/**
* micron_st_nor_set_4byte_addr_mode() - Set 4-byte address mode for ST and
* Micron flashes.
* @nor: pointer to 'struct spi_nor'.
* @enable: true to enter the 4-byte address mode, false to exit the 4-byte
* address mode.
*
* Return: 0 on success, -errno otherwise.
*/
static int micron_st_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
{
int ret;
ret = spi_nor_write_enable(nor);
if (ret)
return ret;
ret = spi_nor_set_4byte_addr_mode(nor, enable);
if (ret)
return ret;
return spi_nor_write_disable(nor);
}
/**
* micron_st_nor_read_fsr() - Read the Flag Status Register.
* @nor: pointer to 'struct spi_nor'
* @fsr: pointer to a DMA-able buffer where the value of the
* Flag Status Register will be written. Should be at least 2
* bytes.
*
* Return: 0 on success, -errno otherwise.
*/
static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(1, fsr, 0));
if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
op.addr.nbytes = nor->params->rdsr_addr_nbytes;
op.dummy.nbytes = nor->params->rdsr_dummy;
/*
* We don't want to read only one byte in DTR mode. So,
* read 2 and then discard the second byte.
*/
op.data.nbytes = 2;
}
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
1);
}
if (ret)
dev_dbg(nor->dev, "error %d reading FSR\n", ret);
return ret;
}
/**
* micron_st_nor_clear_fsr() - Clear the Flag Status Register.
* @nor: pointer to 'struct spi_nor'.
*/
static void micron_st_nor_clear_fsr(struct spi_nor *nor)
{
int ret;
if (nor->spimem) {
struct spi_mem_op op =
SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_NO_DATA);
spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
ret = spi_mem_exec_op(nor->spimem, &op);
} else {
ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
NULL, 0);
}
if (ret)
dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
}
/**
* micron_st_nor_ready() - Query the Status Register as well as the Flag Status
* Register to see if the flash is ready for new commands. If there are any
* errors in the FSR clear them.
* @nor: pointer to 'struct spi_nor'.
*
* Return: 1 if ready, 0 if not ready, -errno on errors.
*/
static int micron_st_nor_ready(struct spi_nor *nor)
{
int sr_ready, ret;
sr_ready = spi_nor_sr_ready(nor);
if (sr_ready < 0)
return sr_ready;
ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
if (ret)
return ret;
if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
if (nor->bouncebuf[0] & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (nor->bouncebuf[0] & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
micron_st_nor_clear_fsr(nor);
/*
* WEL bit remains set to one when an erase or page program
* error occurs. Issue a Write Disable command to protect
* against inadvertent writes that can possibly corrupt the
* contents of the memory.
*/
ret = spi_nor_write_disable(nor);
if (ret)
return ret;
return -EIO;
}
return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
}
static void micron_st_nor_default_init(struct spi_nor *nor)
{
nor->flags |= SNOR_F_HAS_LOCK;
nor->flags &= ~SNOR_F_HAS_16BIT_SR;
nor->params->quad_enable = NULL;
nor->params->set_4byte_addr_mode = micron_st_nor_set_4byte_addr_mode;
}
static void micron_st_nor_late_init(struct spi_nor *nor)
{
if (nor->info->mfr_flags & USE_FSR)
nor->params->ready = micron_st_nor_ready;
}
static const struct spi_nor_fixups micron_st_nor_fixups = {
.default_init = micron_st_nor_default_init,
.late_init = micron_st_nor_late_init,
};
const struct spi_nor_manufacturer spi_nor_micron = {
.name = "micron",
.parts = micron_nor_parts,
.nparts = ARRAY_SIZE(micron_nor_parts),
.fixups = &micron_st_nor_fixups,
};
const struct spi_nor_manufacturer spi_nor_st = {
.name = "st",
.parts = st_nor_parts,
.nparts = ARRAY_SIZE(st_nor_parts),
.fixups = &micron_st_nor_fixups,
};