linux/linux-5.18.11/drivers/mtd/nand/spi/micron.c

310 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
#define SPINAND_MFR_MICRON 0x2c
#define MICRON_STATUS_ECC_MASK GENMASK(7, 4)
#define MICRON_STATUS_ECC_NO_BITFLIPS (0 << 4)
#define MICRON_STATUS_ECC_1TO3_BITFLIPS (1 << 4)
#define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4)
#define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4)
#define MICRON_CFG_CR BIT(0)
/*
* As per datasheet, die selection is done by the 6th bit of Die
* Select Register (Address 0xD0).
*/
#define MICRON_DIE_SELECT_REG 0xD0
#define MICRON_SELECT_DIE(x) ((x) << 6)
static SPINAND_OP_VARIANTS(quadio_read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(x4_write_cache_variants,
SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
SPINAND_PROG_LOAD(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(x4_update_cache_variants,
SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
SPINAND_PROG_LOAD(false, 0, NULL, 0));
/* Micron MT29F2G01AAAED Device */
static SPINAND_OP_VARIANTS(x4_read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(x1_write_cache_variants,
SPINAND_PROG_LOAD(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(x1_update_cache_variants,
SPINAND_PROG_LOAD(false, 0, NULL, 0));
static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
region->offset = mtd->oobsize / 2;
region->length = mtd->oobsize / 2;
return 0;
}
static int micron_8_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = (mtd->oobsize / 2) - 2;
return 0;
}
static const struct mtd_ooblayout_ops micron_8_ooblayout = {
.ecc = micron_8_ooblayout_ecc,
.free = micron_8_ooblayout_free,
};
static int micron_4_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
if (section >= spinand->base.memorg.pagesize /
mtd->ecc_step_size)
return -ERANGE;
region->offset = (section * 16) + 8;
region->length = 8;
return 0;
}
static int micron_4_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
if (section >= spinand->base.memorg.pagesize /
mtd->ecc_step_size)
return -ERANGE;
if (section) {
region->offset = 16 * section;
region->length = 8;
} else {
/* section 0 has two bytes reserved for the BBM */
region->offset = 2;
region->length = 6;
}
return 0;
}
static const struct mtd_ooblayout_ops micron_4_ooblayout = {
.ecc = micron_4_ooblayout_ecc,
.free = micron_4_ooblayout_free,
};
static int micron_select_target(struct spinand_device *spinand,
unsigned int target)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_OP(MICRON_DIE_SELECT_REG,
spinand->scratchbuf);
if (target > 1)
return -EINVAL;
*spinand->scratchbuf = MICRON_SELECT_DIE(target);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int micron_8_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
switch (status & MICRON_STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
case MICRON_STATUS_ECC_1TO3_BITFLIPS:
return 3;
case MICRON_STATUS_ECC_4TO6_BITFLIPS:
return 6;
case MICRON_STATUS_ECC_7TO8_BITFLIPS:
return 8;
default:
break;
}
return -EINVAL;
}
static const struct spinand_info micron_spinand_table[] = {
/* M79A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01ABAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 2Gb 1.8V */
SPINAND_INFO("MT29F2G01ABBGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 3.3V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 1.8V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ADAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 4Gb 1.8V */
SPINAND_INFO("MT29F4G01ABBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 8Gb 3.3V */
SPINAND_INFO("MT29F8G01ADAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 8Gb 1.8V */
SPINAND_INFO("MT29F8G01ADBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M69A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01AAAED",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9F),
NAND_MEMORG(1, 2048, 64, 64, 2048, 80, 2, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&x4_read_cache_variants,
&x1_write_cache_variants,
&x1_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_4_ooblayout, NULL)),
};
static int micron_spinand_init(struct spinand_device *spinand)
{
/*
* M70A device series enable Continuous Read feature at Power-up,
* which is not supported. Disable this bit to avoid any possible
* failure.
*/
if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT)
return spinand_upd_cfg(spinand, MICRON_CFG_CR, 0);
return 0;
}
static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
.init = micron_spinand_init,
};
const struct spinand_manufacturer micron_spinand_manufacturer = {
.id = SPINAND_MFR_MICRON,
.name = "Micron",
.chips = micron_spinand_table,
.nchips = ARRAY_SIZE(micron_spinand_table),
.ops = &micron_spinand_manuf_ops,
};