1495 lines
37 KiB
C
1495 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR MIT
|
|
/*
|
|
* Rockchip NAND Flash controller driver.
|
|
* Copyright (C) 2020 Rockchip Inc.
|
|
* Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* NFC Page Data Layout:
|
|
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
|
|
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
|
|
* ......
|
|
* NAND Page Data Layout:
|
|
* 1024 * n data + m Bytes oob
|
|
* Original Bad Block Mask Location:
|
|
* First byte of oob(spare).
|
|
* nand_chip->oob_poi data layout:
|
|
* 4Bytes sys data + .... + 4Bytes sys data + ECC data.
|
|
*/
|
|
|
|
/* NAND controller register definition */
|
|
#define NFC_READ (0)
|
|
#define NFC_WRITE (1)
|
|
|
|
#define NFC_FMCTL (0x00)
|
|
#define FMCTL_CE_SEL_M 0xFF
|
|
#define FMCTL_CE_SEL(x) (1 << (x))
|
|
#define FMCTL_WP BIT(8)
|
|
#define FMCTL_RDY BIT(9)
|
|
|
|
#define NFC_FMWAIT (0x04)
|
|
#define FLCTL_RST BIT(0)
|
|
#define FLCTL_WR (1) /* 0: read, 1: write */
|
|
#define FLCTL_XFER_ST BIT(2)
|
|
#define FLCTL_XFER_EN BIT(3)
|
|
#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
|
|
#define FLCTL_XFER_READY BIT(20)
|
|
#define FLCTL_XFER_SECTOR (22)
|
|
#define FLCTL_TOG_FIX BIT(29)
|
|
|
|
#define BCHCTL_BANK_M (7 << 5)
|
|
#define BCHCTL_BANK (5)
|
|
|
|
#define DMA_ST BIT(0)
|
|
#define DMA_WR (1) /* 0: write, 1: read */
|
|
#define DMA_EN BIT(2)
|
|
#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
|
|
#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
|
|
#define DMA_INC_NUM (9) /* 1 - 16 */
|
|
|
|
#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
|
|
(((x) >> (e).high) & (e).high_mask) << (e).low_bn)
|
|
#define INT_DMA BIT(0)
|
|
#define NFC_BANK (0x800)
|
|
#define NFC_BANK_STEP (0x100)
|
|
#define BANK_DATA (0x00)
|
|
#define BANK_ADDR (0x04)
|
|
#define BANK_CMD (0x08)
|
|
#define NFC_SRAM0 (0x1000)
|
|
#define NFC_SRAM1 (0x1400)
|
|
#define NFC_SRAM_SIZE (0x400)
|
|
#define NFC_TIMEOUT (500000)
|
|
#define NFC_MAX_OOB_PER_STEP 128
|
|
#define NFC_MIN_OOB_PER_STEP 64
|
|
#define MAX_DATA_SIZE 0xFFFC
|
|
#define MAX_ADDRESS_CYC 6
|
|
#define NFC_ECC_MAX_MODES 4
|
|
#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
|
|
#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
|
|
#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
|
|
#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
|
|
|
|
enum nfc_type {
|
|
NFC_V6,
|
|
NFC_V8,
|
|
NFC_V9,
|
|
};
|
|
|
|
/**
|
|
* struct rk_ecc_cnt_status: represent a ecc status data.
|
|
* @err_flag_bit: error flag bit index at register.
|
|
* @low: ECC count low bit index at register.
|
|
* @low_mask: mask bit.
|
|
* @low_bn: ECC count low bit number.
|
|
* @high: ECC count high bit index at register.
|
|
* @high_mask: mask bit
|
|
*/
|
|
struct ecc_cnt_status {
|
|
u8 err_flag_bit;
|
|
u8 low;
|
|
u8 low_mask;
|
|
u8 low_bn;
|
|
u8 high;
|
|
u8 high_mask;
|
|
};
|
|
|
|
/**
|
|
* @type: NFC version
|
|
* @ecc_strengths: ECC strengths
|
|
* @ecc_cfgs: ECC config values
|
|
* @flctl_off: FLCTL register offset
|
|
* @bchctl_off: BCHCTL register offset
|
|
* @dma_data_buf_off: DMA_DATA_BUF register offset
|
|
* @dma_oob_buf_off: DMA_OOB_BUF register offset
|
|
* @dma_cfg_off: DMA_CFG register offset
|
|
* @dma_st_off: DMA_ST register offset
|
|
* @bch_st_off: BCG_ST register offset
|
|
* @randmz_off: RANDMZ register offset
|
|
* @int_en_off: interrupt enable register offset
|
|
* @int_clr_off: interrupt clean register offset
|
|
* @int_st_off: interrupt status register offset
|
|
* @oob0_off: oob0 register offset
|
|
* @oob1_off: oob1 register offset
|
|
* @ecc0: represent ECC0 status data
|
|
* @ecc1: represent ECC1 status data
|
|
*/
|
|
struct nfc_cfg {
|
|
enum nfc_type type;
|
|
u8 ecc_strengths[NFC_ECC_MAX_MODES];
|
|
u32 ecc_cfgs[NFC_ECC_MAX_MODES];
|
|
u32 flctl_off;
|
|
u32 bchctl_off;
|
|
u32 dma_cfg_off;
|
|
u32 dma_data_buf_off;
|
|
u32 dma_oob_buf_off;
|
|
u32 dma_st_off;
|
|
u32 bch_st_off;
|
|
u32 randmz_off;
|
|
u32 int_en_off;
|
|
u32 int_clr_off;
|
|
u32 int_st_off;
|
|
u32 oob0_off;
|
|
u32 oob1_off;
|
|
struct ecc_cnt_status ecc0;
|
|
struct ecc_cnt_status ecc1;
|
|
};
|
|
|
|
struct rk_nfc_nand_chip {
|
|
struct list_head node;
|
|
struct nand_chip chip;
|
|
|
|
u16 boot_blks;
|
|
u16 metadata_size;
|
|
u32 boot_ecc;
|
|
u32 timing;
|
|
|
|
u8 nsels;
|
|
u8 sels[];
|
|
/* Nothing after this field. */
|
|
};
|
|
|
|
struct rk_nfc {
|
|
struct nand_controller controller;
|
|
const struct nfc_cfg *cfg;
|
|
struct device *dev;
|
|
|
|
struct clk *nfc_clk;
|
|
struct clk *ahb_clk;
|
|
void __iomem *regs;
|
|
|
|
u32 selected_bank;
|
|
u32 band_offset;
|
|
u32 cur_ecc;
|
|
u32 cur_timing;
|
|
|
|
struct completion done;
|
|
struct list_head chips;
|
|
|
|
u8 *page_buf;
|
|
u32 *oob_buf;
|
|
u32 page_buf_size;
|
|
u32 oob_buf_size;
|
|
|
|
unsigned long assigned_cs;
|
|
};
|
|
|
|
static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct rk_nfc_nand_chip, chip);
|
|
}
|
|
|
|
static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
|
|
{
|
|
return (u8 *)p + i * chip->ecc.size;
|
|
}
|
|
|
|
static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
u8 *poi;
|
|
|
|
poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
|
|
|
|
return poi;
|
|
}
|
|
|
|
static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
u8 *poi;
|
|
|
|
poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
|
|
|
|
return poi;
|
|
}
|
|
|
|
static inline int rk_nfc_data_len(struct nand_chip *chip)
|
|
{
|
|
return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
|
|
}
|
|
|
|
static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
|
|
return nfc->page_buf + i * rk_nfc_data_len(chip);
|
|
}
|
|
|
|
static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
|
|
{
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
|
|
return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
|
|
}
|
|
|
|
static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
|
|
{
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
u32 reg, i;
|
|
|
|
for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
|
|
if (strength == nfc->cfg->ecc_strengths[i]) {
|
|
reg = nfc->cfg->ecc_cfgs[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i >= NFC_ECC_MAX_MODES)
|
|
return -EINVAL;
|
|
|
|
writel(reg, nfc->regs + nfc->cfg->bchctl_off);
|
|
|
|
/* Save chip ECC setting */
|
|
nfc->cur_ecc = strength;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
|
|
{
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
u32 val;
|
|
|
|
if (cs < 0) {
|
|
nfc->selected_bank = -1;
|
|
/* Deselect the currently selected target. */
|
|
val = readl_relaxed(nfc->regs + NFC_FMCTL);
|
|
val &= ~FMCTL_CE_SEL_M;
|
|
writel(val, nfc->regs + NFC_FMCTL);
|
|
return;
|
|
}
|
|
|
|
nfc->selected_bank = rknand->sels[cs];
|
|
nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
|
|
|
|
val = readl_relaxed(nfc->regs + NFC_FMCTL);
|
|
val &= ~FMCTL_CE_SEL_M;
|
|
val |= FMCTL_CE_SEL(nfc->selected_bank);
|
|
|
|
writel(val, nfc->regs + NFC_FMCTL);
|
|
|
|
/*
|
|
* Compare current chip timing with selected chip timing and
|
|
* change if needed.
|
|
*/
|
|
if (nfc->cur_timing != rknand->timing) {
|
|
writel(rknand->timing, nfc->regs + NFC_FMWAIT);
|
|
nfc->cur_timing = rknand->timing;
|
|
}
|
|
|
|
/*
|
|
* Compare current chip ECC setting with selected chip ECC setting and
|
|
* change if needed.
|
|
*/
|
|
if (nfc->cur_ecc != ecc->strength)
|
|
rk_nfc_hw_ecc_setup(chip, ecc->strength);
|
|
}
|
|
|
|
static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
|
|
{
|
|
int rc;
|
|
u32 val;
|
|
|
|
rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
|
|
val & FMCTL_RDY, 10, NFC_TIMEOUT);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
|
|
BANK_DATA);
|
|
}
|
|
|
|
static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
|
|
}
|
|
|
|
static int rk_nfc_cmd(struct nand_chip *chip,
|
|
const struct nand_subop *subop)
|
|
{
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
unsigned int i, j, remaining, start;
|
|
int reg_offset = nfc->band_offset;
|
|
u8 *inbuf = NULL;
|
|
const u8 *outbuf;
|
|
u32 cnt = 0;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < subop->ninstrs; i++) {
|
|
const struct nand_op_instr *instr = &subop->instrs[i];
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
writeb(instr->ctx.cmd.opcode,
|
|
nfc->regs + reg_offset + BANK_CMD);
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
remaining = nand_subop_get_num_addr_cyc(subop, i);
|
|
start = nand_subop_get_addr_start_off(subop, i);
|
|
|
|
for (j = 0; j < 8 && j + start < remaining; j++)
|
|
writeb(instr->ctx.addr.addrs[j + start],
|
|
nfc->regs + reg_offset + BANK_ADDR);
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
start = nand_subop_get_data_start_off(subop, i);
|
|
cnt = nand_subop_get_data_len(subop, i);
|
|
|
|
if (instr->type == NAND_OP_DATA_OUT_INSTR) {
|
|
outbuf = instr->ctx.data.buf.out + start;
|
|
rk_nfc_write_buf(nfc, outbuf, cnt);
|
|
} else {
|
|
inbuf = instr->ctx.data.buf.in + start;
|
|
rk_nfc_read_buf(nfc, inbuf, cnt);
|
|
}
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
if (rk_nfc_wait_ioready(nfc) < 0) {
|
|
ret = -ETIMEDOUT;
|
|
dev_err(nfc->dev, "IO not ready\n");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
|
|
NAND_OP_PARSER_PATTERN(
|
|
rk_nfc_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
|
|
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
|
|
NAND_OP_PARSER_PATTERN(
|
|
rk_nfc_cmd,
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
|
|
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
|
|
NAND_OP_PARSER_PAT_CMD_ELEM(true),
|
|
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
|
|
);
|
|
|
|
static int rk_nfc_exec_op(struct nand_chip *chip,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
if (!check_only)
|
|
rk_nfc_select_chip(chip, op->cs);
|
|
|
|
return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
|
|
check_only);
|
|
}
|
|
|
|
static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
|
|
const struct nand_interface_config *conf)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
const struct nand_sdr_timings *timings;
|
|
u32 rate, tc2rw, trwpw, trw2c;
|
|
u32 temp;
|
|
|
|
if (target < 0)
|
|
return 0;
|
|
|
|
timings = nand_get_sdr_timings(conf);
|
|
if (IS_ERR(timings))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (IS_ERR(nfc->nfc_clk))
|
|
rate = clk_get_rate(nfc->ahb_clk);
|
|
else
|
|
rate = clk_get_rate(nfc->nfc_clk);
|
|
|
|
/* Turn clock rate into kHz. */
|
|
rate /= 1000;
|
|
|
|
tc2rw = 1;
|
|
trw2c = 1;
|
|
|
|
trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
|
|
trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
|
|
|
|
temp = timings->tREA_max / 1000;
|
|
temp = DIV_ROUND_UP(temp * rate, 1000000);
|
|
|
|
if (trwpw < temp)
|
|
trwpw = temp;
|
|
|
|
/*
|
|
* ACCON: access timing control register
|
|
* -------------------------------------
|
|
* 31:18: reserved
|
|
* 17:12: csrw, clock cycles from the falling edge of CSn to the
|
|
* falling edge of RDn or WRn
|
|
* 11:11: reserved
|
|
* 10:05: rwpw, the width of RDn or WRn in processor clock cycles
|
|
* 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
|
|
* rising edge of CSn
|
|
*/
|
|
|
|
/* Save chip timing */
|
|
rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
|
|
dma_addr_t dma_data, dma_addr_t dma_oob)
|
|
{
|
|
u32 dma_reg, fl_reg, bch_reg;
|
|
|
|
dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
|
|
(7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
|
|
|
|
fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
|
|
(n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
|
|
|
|
if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
|
|
bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
|
|
bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
|
|
(nfc->selected_bank << BCHCTL_BANK);
|
|
writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
|
|
}
|
|
|
|
writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
|
|
writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
|
|
writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
|
|
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
|
|
fl_reg |= FLCTL_XFER_ST;
|
|
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
|
|
}
|
|
|
|
static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
|
|
{
|
|
void __iomem *ptr;
|
|
u32 reg;
|
|
|
|
ptr = nfc->regs + nfc->cfg->flctl_off;
|
|
|
|
return readl_relaxed_poll_timeout(ptr, reg,
|
|
reg & FLCTL_XFER_READY,
|
|
10, NFC_TIMEOUT);
|
|
}
|
|
|
|
static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
int oob_on, int page)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int i, pages_per_blk;
|
|
|
|
pages_per_blk = mtd->erasesize / mtd->writesize;
|
|
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
|
|
(page < (pages_per_blk * rknand->boot_blks)) &&
|
|
rknand->boot_ecc != ecc->strength) {
|
|
/*
|
|
* There's currently no method to notify the MTD framework that
|
|
* a different ECC strength is in use for the boot blocks.
|
|
*/
|
|
return -EIO;
|
|
}
|
|
|
|
if (!buf)
|
|
memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
|
|
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
/* Copy data to the NFC buffer. */
|
|
if (buf)
|
|
memcpy(rk_nfc_data_ptr(chip, i),
|
|
rk_nfc_buf_to_data_ptr(chip, buf, i),
|
|
ecc->size);
|
|
/*
|
|
* The first four bytes of OOB are reserved for the
|
|
* boot ROM. In some debugging cases, such as with a
|
|
* read, erase and write back test these 4 bytes stored
|
|
* in OOB also need to be written back.
|
|
*
|
|
* The function nand_block_bad detects bad blocks like:
|
|
*
|
|
* bad = chip->oob_poi[chip->badblockpos];
|
|
*
|
|
* chip->badblockpos == 0 for a large page NAND Flash,
|
|
* so chip->oob_poi[0] is the bad block mask (BBM).
|
|
*
|
|
* The OOB data layout on the NFC is:
|
|
*
|
|
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
|
|
*
|
|
* or
|
|
*
|
|
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
|
|
*
|
|
* The code here just swaps the first 4 bytes with the last
|
|
* 4 bytes without losing any data.
|
|
*
|
|
* The chip->oob_poi data layout:
|
|
*
|
|
* BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
|
|
*
|
|
* The rk_nfc_ooblayout_free() function already has reserved
|
|
* these 4 bytes with:
|
|
*
|
|
* oob_region->offset = NFC_SYS_DATA_SIZE + 2;
|
|
*/
|
|
if (!i)
|
|
memcpy(rk_nfc_oob_ptr(chip, i),
|
|
rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
|
|
NFC_SYS_DATA_SIZE);
|
|
else
|
|
memcpy(rk_nfc_oob_ptr(chip, i),
|
|
rk_nfc_buf_to_oob_ptr(chip, i - 1),
|
|
NFC_SYS_DATA_SIZE);
|
|
/* Copy ECC data to the NFC buffer. */
|
|
memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
|
|
rk_nfc_buf_to_oob_ecc_ptr(chip, i),
|
|
ecc->bytes);
|
|
}
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
|
|
int oob_on, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
|
|
NFC_MIN_OOB_PER_STEP;
|
|
int pages_per_blk = mtd->erasesize / mtd->writesize;
|
|
int ret = 0, i, boot_rom_mode = 0;
|
|
dma_addr_t dma_data, dma_oob;
|
|
u32 reg;
|
|
u8 *oob;
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
if (buf)
|
|
memcpy(nfc->page_buf, buf, mtd->writesize);
|
|
else
|
|
memset(nfc->page_buf, 0xFF, mtd->writesize);
|
|
|
|
/*
|
|
* The first blocks (4, 8 or 16 depending on the device) are used
|
|
* by the boot ROM and the first 32 bits of OOB need to link to
|
|
* the next page address in the same block. We can't directly copy
|
|
* OOB data from the MTD framework, because this page address
|
|
* conflicts for example with the bad block marker (BBM),
|
|
* so we shift all OOB data including the BBM with 4 byte positions.
|
|
* As a consequence the OOB size available to the MTD framework is
|
|
* also reduced with 4 bytes.
|
|
*
|
|
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
|
|
*
|
|
* If a NAND is not a boot medium or the page is not a boot block,
|
|
* the first 4 bytes are left untouched by writing 0xFF to them.
|
|
*
|
|
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
|
|
*
|
|
* Configure the ECC algorithm supported by the boot ROM.
|
|
*/
|
|
if ((page < (pages_per_blk * rknand->boot_blks)) &&
|
|
(chip->options & NAND_IS_BOOT_MEDIUM)) {
|
|
boot_rom_mode = 1;
|
|
if (rknand->boot_ecc != ecc->strength)
|
|
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
|
|
}
|
|
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
if (!i) {
|
|
reg = 0xFFFFFFFF;
|
|
} else {
|
|
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
|
|
reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
|
|
oob[3] << 24;
|
|
}
|
|
|
|
if (!i && boot_rom_mode)
|
|
reg = (page & (pages_per_blk - 1)) * 4;
|
|
|
|
if (nfc->cfg->type == NFC_V9)
|
|
nfc->oob_buf[i] = reg;
|
|
else
|
|
nfc->oob_buf[i * (oob_step / 4)] = reg;
|
|
}
|
|
|
|
dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
|
|
mtd->writesize, DMA_TO_DEVICE);
|
|
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
|
|
ecc->steps * oob_step,
|
|
DMA_TO_DEVICE);
|
|
|
|
reinit_completion(&nfc->done);
|
|
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
|
|
|
|
rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
|
|
dma_oob);
|
|
ret = wait_for_completion_timeout(&nfc->done,
|
|
msecs_to_jiffies(100));
|
|
if (!ret)
|
|
dev_warn(nfc->dev, "write: wait dma done timeout.\n");
|
|
/*
|
|
* Whether the DMA transfer is completed or not. The driver
|
|
* needs to check the NFC`s status register to see if the data
|
|
* transfer was completed.
|
|
*/
|
|
ret = rk_nfc_wait_for_xfer_done(nfc);
|
|
|
|
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
|
|
rk_nfc_hw_ecc_setup(chip, ecc->strength);
|
|
|
|
if (ret) {
|
|
dev_err(nfc->dev, "write: wait transfer done timeout.\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
static int rk_nfc_write_oob(struct nand_chip *chip, int page)
|
|
{
|
|
return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
|
|
}
|
|
|
|
static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
|
|
int page)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int i, pages_per_blk;
|
|
|
|
pages_per_blk = mtd->erasesize / mtd->writesize;
|
|
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
|
|
(page < (pages_per_blk * rknand->boot_blks)) &&
|
|
rknand->boot_ecc != ecc->strength) {
|
|
/*
|
|
* There's currently no method to notify the MTD framework that
|
|
* a different ECC strength is in use for the boot blocks.
|
|
*/
|
|
return -EIO;
|
|
}
|
|
|
|
nand_read_page_op(chip, page, 0, NULL, 0);
|
|
rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
|
|
for (i = 0; i < ecc->steps; i++) {
|
|
/*
|
|
* The first four bytes of OOB are reserved for the
|
|
* boot ROM. In some debugging cases, such as with a read,
|
|
* erase and write back test, these 4 bytes also must be
|
|
* saved somewhere, otherwise this information will be
|
|
* lost during a write back.
|
|
*/
|
|
if (!i)
|
|
memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
|
|
rk_nfc_oob_ptr(chip, i),
|
|
NFC_SYS_DATA_SIZE);
|
|
else
|
|
memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
|
|
rk_nfc_oob_ptr(chip, i),
|
|
NFC_SYS_DATA_SIZE);
|
|
|
|
/* Copy ECC data from the NFC buffer. */
|
|
memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
|
|
rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
|
|
ecc->bytes);
|
|
|
|
/* Copy data from the NFC buffer. */
|
|
if (buf)
|
|
memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
|
|
rk_nfc_data_ptr(chip, i),
|
|
ecc->size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
|
|
int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
|
|
NFC_MIN_OOB_PER_STEP;
|
|
int pages_per_blk = mtd->erasesize / mtd->writesize;
|
|
dma_addr_t dma_data, dma_oob;
|
|
int ret = 0, i, cnt, boot_rom_mode = 0;
|
|
int max_bitflips = 0, bch_st, ecc_fail = 0;
|
|
u8 *oob;
|
|
u32 tmp;
|
|
|
|
nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
dma_data = dma_map_single(nfc->dev, nfc->page_buf,
|
|
mtd->writesize,
|
|
DMA_FROM_DEVICE);
|
|
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
|
|
ecc->steps * oob_step,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/*
|
|
* The first blocks (4, 8 or 16 depending on the device)
|
|
* are used by the boot ROM.
|
|
* Configure the ECC algorithm supported by the boot ROM.
|
|
*/
|
|
if ((page < (pages_per_blk * rknand->boot_blks)) &&
|
|
(chip->options & NAND_IS_BOOT_MEDIUM)) {
|
|
boot_rom_mode = 1;
|
|
if (rknand->boot_ecc != ecc->strength)
|
|
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
|
|
}
|
|
|
|
reinit_completion(&nfc->done);
|
|
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
|
|
rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
|
|
dma_oob);
|
|
ret = wait_for_completion_timeout(&nfc->done,
|
|
msecs_to_jiffies(100));
|
|
if (!ret)
|
|
dev_warn(nfc->dev, "read: wait dma done timeout.\n");
|
|
/*
|
|
* Whether the DMA transfer is completed or not. The driver
|
|
* needs to check the NFC`s status register to see if the data
|
|
* transfer was completed.
|
|
*/
|
|
ret = rk_nfc_wait_for_xfer_done(nfc);
|
|
|
|
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
|
|
DMA_FROM_DEVICE);
|
|
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (ret) {
|
|
ret = -ETIMEDOUT;
|
|
dev_err(nfc->dev, "read: wait transfer done timeout.\n");
|
|
goto timeout_err;
|
|
}
|
|
|
|
for (i = 1; i < ecc->steps; i++) {
|
|
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
|
|
if (nfc->cfg->type == NFC_V9)
|
|
tmp = nfc->oob_buf[i];
|
|
else
|
|
tmp = nfc->oob_buf[i * (oob_step / 4)];
|
|
*oob++ = (u8)tmp;
|
|
*oob++ = (u8)(tmp >> 8);
|
|
*oob++ = (u8)(tmp >> 16);
|
|
*oob++ = (u8)(tmp >> 24);
|
|
}
|
|
|
|
for (i = 0; i < (ecc->steps / 2); i++) {
|
|
bch_st = readl_relaxed(nfc->regs +
|
|
nfc->cfg->bch_st_off + i * 4);
|
|
if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
|
|
bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
|
|
mtd->ecc_stats.failed++;
|
|
ecc_fail = 1;
|
|
} else {
|
|
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
|
|
mtd->ecc_stats.corrected += cnt;
|
|
max_bitflips = max_t(u32, max_bitflips, cnt);
|
|
|
|
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
|
|
mtd->ecc_stats.corrected += cnt;
|
|
max_bitflips = max_t(u32, max_bitflips, cnt);
|
|
}
|
|
}
|
|
|
|
if (buf)
|
|
memcpy(buf, nfc->page_buf, mtd->writesize);
|
|
|
|
timeout_err:
|
|
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
|
|
rk_nfc_hw_ecc_setup(chip, ecc->strength);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (ecc_fail) {
|
|
dev_err(nfc->dev, "read page: %x ecc error!\n", page);
|
|
return 0;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int rk_nfc_read_oob(struct nand_chip *chip, int page)
|
|
{
|
|
return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
|
|
}
|
|
|
|
static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
|
|
{
|
|
/* Disable flash wp. */
|
|
writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
|
|
/* Config default timing 40ns at 150 Mhz NFC clock. */
|
|
writel(0x1081, nfc->regs + NFC_FMWAIT);
|
|
nfc->cur_timing = 0x1081;
|
|
/* Disable randomizer and DMA. */
|
|
writel(0, nfc->regs + nfc->cfg->randmz_off);
|
|
writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
|
|
writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
|
|
}
|
|
|
|
static irqreturn_t rk_nfc_irq(int irq, void *id)
|
|
{
|
|
struct rk_nfc *nfc = id;
|
|
u32 sta, ien;
|
|
|
|
sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
|
|
ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
|
|
|
|
if (!(sta & ien))
|
|
return IRQ_NONE;
|
|
|
|
writel(sta, nfc->regs + nfc->cfg->int_clr_off);
|
|
writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
|
|
|
|
complete(&nfc->done);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
|
|
{
|
|
int ret;
|
|
|
|
if (!IS_ERR(nfc->nfc_clk)) {
|
|
ret = clk_prepare_enable(nfc->nfc_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable NFC clk\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = clk_prepare_enable(nfc->ahb_clk);
|
|
if (ret) {
|
|
dev_err(dev, "failed to enable ahb clk\n");
|
|
if (!IS_ERR(nfc->nfc_clk))
|
|
clk_disable_unprepare(nfc->nfc_clk);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rk_nfc_disable_clks(struct rk_nfc *nfc)
|
|
{
|
|
if (!IS_ERR(nfc->nfc_clk))
|
|
clk_disable_unprepare(nfc->nfc_clk);
|
|
clk_disable_unprepare(nfc->ahb_clk);
|
|
}
|
|
|
|
static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oob_region)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
/*
|
|
* The beginning of the OOB area stores the reserved data for the NFC,
|
|
* the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
|
|
*/
|
|
oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
|
|
oob_region->offset = NFC_SYS_DATA_SIZE + 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oob_region)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oob_region->length = mtd->oobsize - rknand->metadata_size;
|
|
oob_region->offset = rknand->metadata_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
|
|
.free = rk_nfc_ooblayout_free,
|
|
.ecc = rk_nfc_ooblayout_ecc,
|
|
};
|
|
|
|
static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
const u8 *strengths = nfc->cfg->ecc_strengths;
|
|
u8 max_strength, nfc_max_strength;
|
|
int i;
|
|
|
|
nfc_max_strength = nfc->cfg->ecc_strengths[0];
|
|
/* If optional dt settings not present. */
|
|
if (!ecc->size || !ecc->strength ||
|
|
ecc->strength > nfc_max_strength) {
|
|
chip->ecc.size = 1024;
|
|
ecc->steps = mtd->writesize / ecc->size;
|
|
|
|
/*
|
|
* HW ECC always requests the number of ECC bytes per 1024 byte
|
|
* blocks. The first 4 OOB bytes are reserved for sys data.
|
|
*/
|
|
max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
|
|
fls(8 * 1024);
|
|
if (max_strength > nfc_max_strength)
|
|
max_strength = nfc_max_strength;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (max_strength >= strengths[i])
|
|
break;
|
|
}
|
|
|
|
if (i >= 4) {
|
|
dev_err(nfc->dev, "unsupported ECC strength\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
ecc->strength = strengths[i];
|
|
}
|
|
ecc->steps = mtd->writesize / ecc->size;
|
|
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rk_nfc_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct device *dev = mtd->dev.parent;
|
|
struct rk_nfc *nfc = nand_get_controller_data(chip);
|
|
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int new_page_len, new_oob_len;
|
|
void *buf;
|
|
int ret;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
dev_err(dev, "16 bits bus width not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
|
|
return 0;
|
|
|
|
ret = rk_nfc_ecc_init(dev, mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
|
|
|
|
if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
|
|
dev_err(dev,
|
|
"driver needs at least %d bytes of meta data\n",
|
|
NFC_SYS_DATA_SIZE + 2);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Check buffer first, avoid duplicate alloc buffer. */
|
|
new_page_len = mtd->writesize + mtd->oobsize;
|
|
if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
|
|
buf = krealloc(nfc->page_buf, new_page_len,
|
|
GFP_KERNEL | GFP_DMA);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
nfc->page_buf = buf;
|
|
nfc->page_buf_size = new_page_len;
|
|
}
|
|
|
|
new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
|
|
if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
|
|
buf = krealloc(nfc->oob_buf, new_oob_len,
|
|
GFP_KERNEL | GFP_DMA);
|
|
if (!buf) {
|
|
kfree(nfc->page_buf);
|
|
nfc->page_buf = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
nfc->oob_buf = buf;
|
|
nfc->oob_buf_size = new_oob_len;
|
|
}
|
|
|
|
if (!nfc->page_buf) {
|
|
nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
|
|
if (!nfc->page_buf)
|
|
return -ENOMEM;
|
|
nfc->page_buf_size = new_page_len;
|
|
}
|
|
|
|
if (!nfc->oob_buf) {
|
|
nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
|
|
if (!nfc->oob_buf) {
|
|
kfree(nfc->page_buf);
|
|
nfc->page_buf = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
nfc->oob_buf_size = new_oob_len;
|
|
}
|
|
|
|
chip->ecc.write_page_raw = rk_nfc_write_page_raw;
|
|
chip->ecc.write_page = rk_nfc_write_page_hwecc;
|
|
chip->ecc.write_oob = rk_nfc_write_oob;
|
|
|
|
chip->ecc.read_page_raw = rk_nfc_read_page_raw;
|
|
chip->ecc.read_page = rk_nfc_read_page_hwecc;
|
|
chip->ecc.read_oob = rk_nfc_read_oob;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops rk_nfc_controller_ops = {
|
|
.attach_chip = rk_nfc_attach_chip,
|
|
.exec_op = rk_nfc_exec_op,
|
|
.setup_interface = rk_nfc_setup_interface,
|
|
};
|
|
|
|
static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
|
|
struct device_node *np)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand;
|
|
struct nand_chip *chip;
|
|
struct mtd_info *mtd;
|
|
int nsels;
|
|
u32 tmp;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!of_get_property(np, "reg", &nsels))
|
|
return -ENODEV;
|
|
nsels /= sizeof(u32);
|
|
if (!nsels || nsels > NFC_MAX_NSELS) {
|
|
dev_err(dev, "invalid reg property size %d\n", nsels);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
|
|
GFP_KERNEL);
|
|
if (!rknand)
|
|
return -ENOMEM;
|
|
|
|
rknand->nsels = nsels;
|
|
for (i = 0; i < nsels; i++) {
|
|
ret = of_property_read_u32_index(np, "reg", i, &tmp);
|
|
if (ret) {
|
|
dev_err(dev, "reg property failure : %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (tmp >= NFC_MAX_NSELS) {
|
|
dev_err(dev, "invalid CS: %u\n", tmp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
|
|
dev_err(dev, "CS %u already assigned\n", tmp);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rknand->sels[i] = tmp;
|
|
}
|
|
|
|
chip = &rknand->chip;
|
|
chip->controller = &nfc->controller;
|
|
|
|
nand_set_flash_node(chip, np);
|
|
|
|
nand_set_controller_data(chip, nfc);
|
|
|
|
chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
|
|
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
|
|
|
|
/* Set default mode in case dt entry is missing. */
|
|
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
|
|
|
|
mtd = nand_to_mtd(chip);
|
|
mtd->owner = THIS_MODULE;
|
|
mtd->dev.parent = dev;
|
|
|
|
if (!mtd->name) {
|
|
dev_err(nfc->dev, "NAND label property is mandatory\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
|
|
rk_nfc_hw_init(nfc);
|
|
ret = nand_scan(chip, nsels);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->options & NAND_IS_BOOT_MEDIUM) {
|
|
ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
|
|
rknand->boot_blks = ret ? 0 : tmp;
|
|
|
|
ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
|
|
&tmp);
|
|
rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
|
|
}
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(dev, "MTD parse partition error\n");
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&rknand->node, &nfc->chips);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
|
|
{
|
|
struct rk_nfc_nand_chip *rknand, *tmp;
|
|
struct nand_chip *chip;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
|
|
chip = &rknand->chip;
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
list_del(&rknand->node);
|
|
}
|
|
}
|
|
|
|
static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
|
|
{
|
|
struct device_node *np = dev->of_node, *nand_np;
|
|
int nchips = of_get_child_count(np);
|
|
int ret;
|
|
|
|
if (!nchips || nchips > NFC_MAX_NSELS) {
|
|
dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
|
|
nchips);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
|
|
if (ret) {
|
|
of_node_put(nand_np);
|
|
rk_nfc_chips_cleanup(nfc);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct nfc_cfg nfc_v6_cfg = {
|
|
.type = NFC_V6,
|
|
.ecc_strengths = {60, 40, 24, 16},
|
|
.ecc_cfgs = {
|
|
0x00040011, 0x00040001, 0x00000011, 0x00000001,
|
|
},
|
|
.flctl_off = 0x08,
|
|
.bchctl_off = 0x0C,
|
|
.dma_cfg_off = 0x10,
|
|
.dma_data_buf_off = 0x14,
|
|
.dma_oob_buf_off = 0x18,
|
|
.dma_st_off = 0x1C,
|
|
.bch_st_off = 0x20,
|
|
.randmz_off = 0x150,
|
|
.int_en_off = 0x16C,
|
|
.int_clr_off = 0x170,
|
|
.int_st_off = 0x174,
|
|
.oob0_off = 0x200,
|
|
.oob1_off = 0x230,
|
|
.ecc0 = {
|
|
.err_flag_bit = 2,
|
|
.low = 3,
|
|
.low_mask = 0x1F,
|
|
.low_bn = 5,
|
|
.high = 27,
|
|
.high_mask = 0x1,
|
|
},
|
|
.ecc1 = {
|
|
.err_flag_bit = 15,
|
|
.low = 16,
|
|
.low_mask = 0x1F,
|
|
.low_bn = 5,
|
|
.high = 29,
|
|
.high_mask = 0x1,
|
|
},
|
|
};
|
|
|
|
static struct nfc_cfg nfc_v8_cfg = {
|
|
.type = NFC_V8,
|
|
.ecc_strengths = {16, 16, 16, 16},
|
|
.ecc_cfgs = {
|
|
0x00000001, 0x00000001, 0x00000001, 0x00000001,
|
|
},
|
|
.flctl_off = 0x08,
|
|
.bchctl_off = 0x0C,
|
|
.dma_cfg_off = 0x10,
|
|
.dma_data_buf_off = 0x14,
|
|
.dma_oob_buf_off = 0x18,
|
|
.dma_st_off = 0x1C,
|
|
.bch_st_off = 0x20,
|
|
.randmz_off = 0x150,
|
|
.int_en_off = 0x16C,
|
|
.int_clr_off = 0x170,
|
|
.int_st_off = 0x174,
|
|
.oob0_off = 0x200,
|
|
.oob1_off = 0x230,
|
|
.ecc0 = {
|
|
.err_flag_bit = 2,
|
|
.low = 3,
|
|
.low_mask = 0x1F,
|
|
.low_bn = 5,
|
|
.high = 27,
|
|
.high_mask = 0x1,
|
|
},
|
|
.ecc1 = {
|
|
.err_flag_bit = 15,
|
|
.low = 16,
|
|
.low_mask = 0x1F,
|
|
.low_bn = 5,
|
|
.high = 29,
|
|
.high_mask = 0x1,
|
|
},
|
|
};
|
|
|
|
static struct nfc_cfg nfc_v9_cfg = {
|
|
.type = NFC_V9,
|
|
.ecc_strengths = {70, 60, 40, 16},
|
|
.ecc_cfgs = {
|
|
0x00000001, 0x06000001, 0x04000001, 0x02000001,
|
|
},
|
|
.flctl_off = 0x10,
|
|
.bchctl_off = 0x20,
|
|
.dma_cfg_off = 0x30,
|
|
.dma_data_buf_off = 0x34,
|
|
.dma_oob_buf_off = 0x38,
|
|
.dma_st_off = 0x3C,
|
|
.bch_st_off = 0x150,
|
|
.randmz_off = 0x208,
|
|
.int_en_off = 0x120,
|
|
.int_clr_off = 0x124,
|
|
.int_st_off = 0x128,
|
|
.oob0_off = 0x200,
|
|
.oob1_off = 0x204,
|
|
.ecc0 = {
|
|
.err_flag_bit = 2,
|
|
.low = 3,
|
|
.low_mask = 0x7F,
|
|
.low_bn = 7,
|
|
.high = 0,
|
|
.high_mask = 0x0,
|
|
},
|
|
.ecc1 = {
|
|
.err_flag_bit = 18,
|
|
.low = 19,
|
|
.low_mask = 0x7F,
|
|
.low_bn = 7,
|
|
.high = 0,
|
|
.high_mask = 0x0,
|
|
},
|
|
};
|
|
|
|
static const struct of_device_id rk_nfc_id_table[] = {
|
|
{
|
|
.compatible = "rockchip,px30-nfc",
|
|
.data = &nfc_v9_cfg
|
|
},
|
|
{
|
|
.compatible = "rockchip,rk2928-nfc",
|
|
.data = &nfc_v6_cfg
|
|
},
|
|
{
|
|
.compatible = "rockchip,rv1108-nfc",
|
|
.data = &nfc_v8_cfg
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
|
|
|
|
static int rk_nfc_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct rk_nfc *nfc;
|
|
int ret, irq;
|
|
|
|
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
|
|
if (!nfc)
|
|
return -ENOMEM;
|
|
|
|
nand_controller_init(&nfc->controller);
|
|
INIT_LIST_HEAD(&nfc->chips);
|
|
nfc->controller.ops = &rk_nfc_controller_ops;
|
|
|
|
nfc->cfg = of_device_get_match_data(dev);
|
|
nfc->dev = dev;
|
|
|
|
init_completion(&nfc->done);
|
|
|
|
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(nfc->regs)) {
|
|
ret = PTR_ERR(nfc->regs);
|
|
goto release_nfc;
|
|
}
|
|
|
|
nfc->nfc_clk = devm_clk_get(dev, "nfc");
|
|
if (IS_ERR(nfc->nfc_clk)) {
|
|
dev_dbg(dev, "no NFC clk\n");
|
|
/* Some earlier models, such as rk3066, have no NFC clk. */
|
|
}
|
|
|
|
nfc->ahb_clk = devm_clk_get(dev, "ahb");
|
|
if (IS_ERR(nfc->ahb_clk)) {
|
|
dev_err(dev, "no ahb clk\n");
|
|
ret = PTR_ERR(nfc->ahb_clk);
|
|
goto release_nfc;
|
|
}
|
|
|
|
ret = rk_nfc_enable_clks(dev, nfc);
|
|
if (ret)
|
|
goto release_nfc;
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
ret = -EINVAL;
|
|
goto clk_disable;
|
|
}
|
|
|
|
writel(0, nfc->regs + nfc->cfg->int_en_off);
|
|
ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to request NFC irq\n");
|
|
goto clk_disable;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, nfc);
|
|
|
|
ret = rk_nfc_nand_chips_init(dev, nfc);
|
|
if (ret) {
|
|
dev_err(dev, "failed to init NAND chips\n");
|
|
goto clk_disable;
|
|
}
|
|
return 0;
|
|
|
|
clk_disable:
|
|
rk_nfc_disable_clks(nfc);
|
|
release_nfc:
|
|
return ret;
|
|
}
|
|
|
|
static int rk_nfc_remove(struct platform_device *pdev)
|
|
{
|
|
struct rk_nfc *nfc = platform_get_drvdata(pdev);
|
|
|
|
kfree(nfc->page_buf);
|
|
kfree(nfc->oob_buf);
|
|
rk_nfc_chips_cleanup(nfc);
|
|
rk_nfc_disable_clks(nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused rk_nfc_suspend(struct device *dev)
|
|
{
|
|
struct rk_nfc *nfc = dev_get_drvdata(dev);
|
|
|
|
rk_nfc_disable_clks(nfc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __maybe_unused rk_nfc_resume(struct device *dev)
|
|
{
|
|
struct rk_nfc *nfc = dev_get_drvdata(dev);
|
|
struct rk_nfc_nand_chip *rknand;
|
|
struct nand_chip *chip;
|
|
int ret;
|
|
u32 i;
|
|
|
|
ret = rk_nfc_enable_clks(dev, nfc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Reset NAND chip if VCC was powered off. */
|
|
list_for_each_entry(rknand, &nfc->chips, node) {
|
|
chip = &rknand->chip;
|
|
for (i = 0; i < rknand->nsels; i++)
|
|
nand_reset(chip, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops rk_nfc_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
|
|
};
|
|
|
|
static struct platform_driver rk_nfc_driver = {
|
|
.probe = rk_nfc_probe,
|
|
.remove = rk_nfc_remove,
|
|
.driver = {
|
|
.name = "rockchip-nfc",
|
|
.of_match_table = rk_nfc_id_table,
|
|
.pm = &rk_nfc_pm_ops,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(rk_nfc_driver);
|
|
|
|
MODULE_LICENSE("Dual MIT/GPL");
|
|
MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
|
|
MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
|
|
MODULE_ALIAS("platform:rockchip-nand-controller");
|