linux/linux-5.18.11/drivers/mtd/nand/raw/ams-delta.c

450 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
*
* Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
* Copyright (c) 2003 Texas Instruments
* Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
*
* Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
* Partially stolen from plat_nand.c
*
* Overview:
* This is a device driver for the NAND flash device found on the
* Amstrad E3 (Delta).
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand-gpio.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
/*
* MTD structure for E3 (Delta)
*/
struct gpio_nand {
struct nand_controller base;
struct nand_chip nand_chip;
struct gpio_desc *gpiod_rdy;
struct gpio_desc *gpiod_nce;
struct gpio_desc *gpiod_nre;
struct gpio_desc *gpiod_nwp;
struct gpio_desc *gpiod_nwe;
struct gpio_desc *gpiod_ale;
struct gpio_desc *gpiod_cle;
struct gpio_descs *data_gpiods;
bool data_in;
unsigned int tRP;
unsigned int tWP;
u8 (*io_read)(struct gpio_nand *this);
void (*io_write)(struct gpio_nand *this, u8 byte);
};
static void gpio_nand_write_commit(struct gpio_nand *priv)
{
gpiod_set_value(priv->gpiod_nwe, 1);
ndelay(priv->tWP);
gpiod_set_value(priv->gpiod_nwe, 0);
}
static void gpio_nand_io_write(struct gpio_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
gpiod_set_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
gpio_nand_write_commit(priv);
}
static void gpio_nand_dir_output(struct gpio_nand *priv, u8 byte)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(byte)) = { byte, };
int i;
for (i = 0; i < data_gpiods->ndescs; i++)
gpiod_direction_output_raw(data_gpiods->desc[i],
test_bit(i, values));
gpio_nand_write_commit(priv);
priv->data_in = false;
}
static u8 gpio_nand_io_read(struct gpio_nand *priv)
{
u8 res;
struct gpio_descs *data_gpiods = priv->data_gpiods;
DECLARE_BITMAP(values, BITS_PER_TYPE(res)) = { 0, };
gpiod_set_value(priv->gpiod_nre, 1);
ndelay(priv->tRP);
gpiod_get_raw_array_value(data_gpiods->ndescs, data_gpiods->desc,
data_gpiods->info, values);
gpiod_set_value(priv->gpiod_nre, 0);
res = values[0];
return res;
}
static void gpio_nand_dir_input(struct gpio_nand *priv)
{
struct gpio_descs *data_gpiods = priv->data_gpiods;
int i;
for (i = 0; i < data_gpiods->ndescs; i++)
gpiod_direction_input(data_gpiods->desc[i]);
priv->data_in = true;
}
static void gpio_nand_write_buf(struct gpio_nand *priv, const u8 *buf, int len)
{
int i = 0;
if (len > 0 && priv->data_in)
gpio_nand_dir_output(priv, buf[i++]);
while (i < len)
priv->io_write(priv, buf[i++]);
}
static void gpio_nand_read_buf(struct gpio_nand *priv, u8 *buf, int len)
{
int i;
if (priv->data_gpiods && !priv->data_in)
gpio_nand_dir_input(priv);
for (i = 0; i < len; i++)
buf[i] = priv->io_read(priv);
}
static void gpio_nand_ctrl_cs(struct gpio_nand *priv, bool assert)
{
gpiod_set_value(priv->gpiod_nce, assert);
}
static int gpio_nand_exec_op(struct nand_chip *this,
const struct nand_operation *op, bool check_only)
{
struct gpio_nand *priv = nand_get_controller_data(this);
const struct nand_op_instr *instr;
int ret = 0;
if (check_only)
return 0;
gpio_nand_ctrl_cs(priv, 1);
for (instr = op->instrs; instr < op->instrs + op->ninstrs; instr++) {
switch (instr->type) {
case NAND_OP_CMD_INSTR:
gpiod_set_value(priv->gpiod_cle, 1);
gpio_nand_write_buf(priv, &instr->ctx.cmd.opcode, 1);
gpiod_set_value(priv->gpiod_cle, 0);
break;
case NAND_OP_ADDR_INSTR:
gpiod_set_value(priv->gpiod_ale, 1);
gpio_nand_write_buf(priv, instr->ctx.addr.addrs,
instr->ctx.addr.naddrs);
gpiod_set_value(priv->gpiod_ale, 0);
break;
case NAND_OP_DATA_IN_INSTR:
gpio_nand_read_buf(priv, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
gpio_nand_write_buf(priv, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = priv->gpiod_rdy ?
nand_gpio_waitrdy(this, priv->gpiod_rdy,
instr->ctx.waitrdy.timeout_ms) :
nand_soft_waitrdy(this,
instr->ctx.waitrdy.timeout_ms);
break;
}
if (ret)
break;
}
gpio_nand_ctrl_cs(priv, 0);
return ret;
}
static int gpio_nand_setup_interface(struct nand_chip *this, int csline,
const struct nand_interface_config *cf)
{
struct gpio_nand *priv = nand_get_controller_data(this);
const struct nand_sdr_timings *sdr = nand_get_sdr_timings(cf);
struct device *dev = &nand_to_mtd(this)->dev;
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
if (priv->gpiod_nre) {
priv->tRP = DIV_ROUND_UP(sdr->tRP_min, 1000);
dev_dbg(dev, "using %u ns read pulse width\n", priv->tRP);
}
priv->tWP = DIV_ROUND_UP(sdr->tWP_min, 1000);
dev_dbg(dev, "using %u ns write pulse width\n", priv->tWP);
return 0;
}
static int gpio_nand_attach_chip(struct nand_chip *chip)
{
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
return 0;
}
static const struct nand_controller_ops gpio_nand_ops = {
.exec_op = gpio_nand_exec_op,
.attach_chip = gpio_nand_attach_chip,
.setup_interface = gpio_nand_setup_interface,
};
/*
* Main initialization routine
*/
static int gpio_nand_probe(struct platform_device *pdev)
{
struct gpio_nand_platdata *pdata = dev_get_platdata(&pdev->dev);
const struct mtd_partition *partitions = NULL;
int num_partitions = 0;
struct gpio_nand *priv;
struct nand_chip *this;
struct mtd_info *mtd;
int (*probe)(struct platform_device *pdev, struct gpio_nand *priv);
int err = 0;
if (pdata) {
partitions = pdata->parts;
num_partitions = pdata->num_parts;
}
/* Allocate memory for MTD device structure and private data */
priv = devm_kzalloc(&pdev->dev, sizeof(struct gpio_nand),
GFP_KERNEL);
if (!priv)
return -ENOMEM;
this = &priv->nand_chip;
mtd = nand_to_mtd(this);
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(this, priv);
nand_set_flash_node(this, pdev->dev.of_node);
priv->gpiod_rdy = devm_gpiod_get_optional(&pdev->dev, "rdy", GPIOD_IN);
if (IS_ERR(priv->gpiod_rdy)) {
err = PTR_ERR(priv->gpiod_rdy);
dev_warn(&pdev->dev, "RDY GPIO request failed (%d)\n", err);
return err;
}
platform_set_drvdata(pdev, priv);
/* Set chip enabled but write protected */
priv->gpiod_nwp = devm_gpiod_get_optional(&pdev->dev, "nwp",
GPIOD_OUT_HIGH);
if (IS_ERR(priv->gpiod_nwp)) {
err = PTR_ERR(priv->gpiod_nwp);
dev_err(&pdev->dev, "NWP GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nce = devm_gpiod_get_optional(&pdev->dev, "nce",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nce)) {
err = PTR_ERR(priv->gpiod_nce);
dev_err(&pdev->dev, "NCE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nre = devm_gpiod_get_optional(&pdev->dev, "nre",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nre)) {
err = PTR_ERR(priv->gpiod_nre);
dev_err(&pdev->dev, "NRE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_nwe = devm_gpiod_get_optional(&pdev->dev, "nwe",
GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_nwe)) {
err = PTR_ERR(priv->gpiod_nwe);
dev_err(&pdev->dev, "NWE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_ale = devm_gpiod_get(&pdev->dev, "ale", GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_ale)) {
err = PTR_ERR(priv->gpiod_ale);
dev_err(&pdev->dev, "ALE GPIO request failed (%d)\n", err);
return err;
}
priv->gpiod_cle = devm_gpiod_get(&pdev->dev, "cle", GPIOD_OUT_LOW);
if (IS_ERR(priv->gpiod_cle)) {
err = PTR_ERR(priv->gpiod_cle);
dev_err(&pdev->dev, "CLE GPIO request failed (%d)\n", err);
return err;
}
/* Request array of data pins, initialize them as input */
priv->data_gpiods = devm_gpiod_get_array_optional(&pdev->dev, "data",
GPIOD_IN);
if (IS_ERR(priv->data_gpiods)) {
err = PTR_ERR(priv->data_gpiods);
dev_err(&pdev->dev, "data GPIO request failed: %d\n", err);
return err;
}
if (priv->data_gpiods) {
if (!priv->gpiod_nwe) {
dev_err(&pdev->dev,
"mandatory NWE pin not provided by platform\n");
return -ENODEV;
}
priv->io_read = gpio_nand_io_read;
priv->io_write = gpio_nand_io_write;
priv->data_in = true;
}
if (pdev->id_entry)
probe = (void *) pdev->id_entry->driver_data;
else
probe = of_device_get_match_data(&pdev->dev);
if (probe)
err = probe(pdev, priv);
if (err)
return err;
if (!priv->io_read || !priv->io_write) {
dev_err(&pdev->dev, "incomplete device configuration\n");
return -ENODEV;
}
/* Initialize the NAND controller object embedded in gpio_nand. */
priv->base.ops = &gpio_nand_ops;
nand_controller_init(&priv->base);
this->controller = &priv->base;
/*
* FIXME: We should release write protection only after nand_scan() to
* be on the safe side but we can't do that until we have a generic way
* to assert/deassert WP from the core. Even if the core shouldn't
* write things in the nand_scan() path, it should have control on this
* pin just in case we ever need to disable write protection during
* chip detection/initialization.
*/
/* Release write protection */
gpiod_set_value(priv->gpiod_nwp, 0);
/*
* This driver assumes that the default ECC engine should be TYPE_SOFT.
* Set ->engine_type before registering the NAND devices in order to
* provide a driver specific default value.
*/
this->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
/* Scan to find existence of the device */
err = nand_scan(this, 1);
if (err)
return err;
/* Register the partitions */
err = mtd_device_register(mtd, partitions, num_partitions);
if (err)
goto err_nand_cleanup;
return 0;
err_nand_cleanup:
nand_cleanup(this);
return err;
}
/*
* Clean up routine
*/
static int gpio_nand_remove(struct platform_device *pdev)
{
struct gpio_nand *priv = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&priv->nand_chip);
int ret;
/* Apply write protection */
gpiod_set_value(priv->gpiod_nwp, 1);
/* Unregister device */
ret = mtd_device_unregister(mtd);
WARN_ON(ret);
nand_cleanup(mtd_to_nand(mtd));
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id gpio_nand_of_id_table[] = {
{
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, gpio_nand_of_id_table);
#endif
static const struct platform_device_id gpio_nand_plat_id_table[] = {
{
.name = "ams-delta-nand",
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(platform, gpio_nand_plat_id_table);
static struct platform_driver gpio_nand_driver = {
.probe = gpio_nand_probe,
.remove = gpio_nand_remove,
.id_table = gpio_nand_plat_id_table,
.driver = {
.name = "ams-delta-nand",
.of_match_table = of_match_ptr(gpio_nand_of_id_table),
},
};
module_platform_driver(gpio_nand_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");
MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");