linux/linux-5.18.11/drivers/media/v4l2-core/v4l2-fwnode.c

1317 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* V4L2 fwnode binding parsing library
*
* The origins of the V4L2 fwnode library are in V4L2 OF library that
* formerly was located in v4l2-of.c.
*
* Copyright (c) 2016 Intel Corporation.
* Author: Sakari Ailus <sakari.ailus@linux.intel.com>
*
* Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
* Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* Copyright (C) 2012 Renesas Electronics Corp.
* Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
*/
#include <linux/acpi.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <media/v4l2-async.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
static const struct v4l2_fwnode_bus_conv {
enum v4l2_fwnode_bus_type fwnode_bus_type;
enum v4l2_mbus_type mbus_type;
const char *name;
} buses[] = {
{
V4L2_FWNODE_BUS_TYPE_GUESS,
V4L2_MBUS_UNKNOWN,
"not specified",
}, {
V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
V4L2_MBUS_CSI2_CPHY,
"MIPI CSI-2 C-PHY",
}, {
V4L2_FWNODE_BUS_TYPE_CSI1,
V4L2_MBUS_CSI1,
"MIPI CSI-1",
}, {
V4L2_FWNODE_BUS_TYPE_CCP2,
V4L2_MBUS_CCP2,
"compact camera port 2",
}, {
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
V4L2_MBUS_CSI2_DPHY,
"MIPI CSI-2 D-PHY",
}, {
V4L2_FWNODE_BUS_TYPE_PARALLEL,
V4L2_MBUS_PARALLEL,
"parallel",
}, {
V4L2_FWNODE_BUS_TYPE_BT656,
V4L2_MBUS_BT656,
"Bt.656",
}
};
static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(buses); i++)
if (buses[i].fwnode_bus_type == type)
return &buses[i];
return NULL;
}
static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
{
const struct v4l2_fwnode_bus_conv *conv =
get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
}
static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
{
const struct v4l2_fwnode_bus_conv *conv =
get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
return conv ? conv->name : "not found";
}
static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(buses); i++)
if (buses[i].mbus_type == type)
return &buses[i];
return NULL;
}
static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
{
const struct v4l2_fwnode_bus_conv *conv =
get_v4l2_fwnode_bus_conv_by_mbus(type);
return conv ? conv->name : "not found";
}
static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep,
enum v4l2_mbus_type bus_type)
{
struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
bool have_clk_lane = false, have_data_lanes = false,
have_lane_polarities = false;
unsigned int flags = 0, lanes_used = 0;
u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
u32 clock_lane = 0;
unsigned int num_data_lanes = 0;
bool use_default_lane_mapping = false;
unsigned int i;
u32 v;
int rval;
if (bus_type == V4L2_MBUS_CSI2_DPHY ||
bus_type == V4L2_MBUS_CSI2_CPHY) {
use_default_lane_mapping = true;
num_data_lanes = min_t(u32, bus->num_data_lanes,
V4L2_MBUS_CSI2_MAX_DATA_LANES);
clock_lane = bus->clock_lane;
if (clock_lane)
use_default_lane_mapping = false;
for (i = 0; i < num_data_lanes; i++) {
array[i] = bus->data_lanes[i];
if (array[i])
use_default_lane_mapping = false;
}
if (use_default_lane_mapping)
pr_debug("no lane mapping given, using defaults\n");
}
rval = fwnode_property_count_u32(fwnode, "data-lanes");
if (rval > 0) {
num_data_lanes =
min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
fwnode_property_read_u32_array(fwnode, "data-lanes", array,
num_data_lanes);
have_data_lanes = true;
if (use_default_lane_mapping) {
pr_debug("data-lanes property exists; disabling default mapping\n");
use_default_lane_mapping = false;
}
}
for (i = 0; i < num_data_lanes; i++) {
if (lanes_used & BIT(array[i])) {
if (have_data_lanes || !use_default_lane_mapping)
pr_warn("duplicated lane %u in data-lanes, using defaults\n",
array[i]);
use_default_lane_mapping = true;
}
lanes_used |= BIT(array[i]);
if (have_data_lanes)
pr_debug("lane %u position %u\n", i, array[i]);
}
rval = fwnode_property_count_u32(fwnode, "lane-polarities");
if (rval > 0) {
if (rval != 1 + num_data_lanes /* clock+data */) {
pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
1 + num_data_lanes, rval);
return -EINVAL;
}
have_lane_polarities = true;
}
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
clock_lane = v;
pr_debug("clock lane position %u\n", v);
have_clk_lane = true;
}
if (have_clk_lane && lanes_used & BIT(clock_lane) &&
!use_default_lane_mapping) {
pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
v);
use_default_lane_mapping = true;
}
if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
pr_debug("non-continuous clock\n");
}
if (bus_type == V4L2_MBUS_CSI2_DPHY ||
bus_type == V4L2_MBUS_CSI2_CPHY ||
lanes_used || have_clk_lane || flags) {
/* Only D-PHY has a clock lane. */
unsigned int dfl_data_lane_index =
bus_type == V4L2_MBUS_CSI2_DPHY;
bus->flags = flags;
if (bus_type == V4L2_MBUS_UNKNOWN)
vep->bus_type = V4L2_MBUS_CSI2_DPHY;
bus->num_data_lanes = num_data_lanes;
if (use_default_lane_mapping) {
bus->clock_lane = 0;
for (i = 0; i < num_data_lanes; i++)
bus->data_lanes[i] = dfl_data_lane_index + i;
} else {
bus->clock_lane = clock_lane;
for (i = 0; i < num_data_lanes; i++)
bus->data_lanes[i] = array[i];
}
if (have_lane_polarities) {
fwnode_property_read_u32_array(fwnode,
"lane-polarities", array,
1 + num_data_lanes);
for (i = 0; i < 1 + num_data_lanes; i++) {
bus->lane_polarities[i] = array[i];
pr_debug("lane %u polarity %sinverted",
i, array[i] ? "" : "not ");
}
} else {
pr_debug("no lane polarities defined, assuming not inverted\n");
}
}
return 0;
}
#define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
V4L2_MBUS_HSYNC_ACTIVE_LOW | \
V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
V4L2_MBUS_VSYNC_ACTIVE_LOW | \
V4L2_MBUS_FIELD_EVEN_HIGH | \
V4L2_MBUS_FIELD_EVEN_LOW)
static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep,
enum v4l2_mbus_type bus_type)
{
struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
unsigned int flags = 0;
u32 v;
if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
flags = bus->flags;
if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
V4L2_MBUS_HSYNC_ACTIVE_LOW);
flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
V4L2_MBUS_HSYNC_ACTIVE_LOW;
pr_debug("hsync-active %s\n", v ? "high" : "low");
}
if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
V4L2_MBUS_VSYNC_ACTIVE_LOW);
flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
V4L2_MBUS_VSYNC_ACTIVE_LOW;
pr_debug("vsync-active %s\n", v ? "high" : "low");
}
if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
V4L2_MBUS_FIELD_EVEN_LOW);
flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
V4L2_MBUS_FIELD_EVEN_LOW;
pr_debug("field-even-active %s\n", v ? "high" : "low");
}
if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
V4L2_MBUS_PCLK_SAMPLE_FALLING);
flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
V4L2_MBUS_PCLK_SAMPLE_FALLING;
pr_debug("pclk-sample %s\n", v ? "high" : "low");
}
if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
V4L2_MBUS_DATA_ACTIVE_LOW);
flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
V4L2_MBUS_DATA_ACTIVE_LOW;
pr_debug("data-active %s\n", v ? "high" : "low");
}
if (fwnode_property_present(fwnode, "slave-mode")) {
pr_debug("slave mode\n");
flags &= ~V4L2_MBUS_MASTER;
flags |= V4L2_MBUS_SLAVE;
} else {
flags &= ~V4L2_MBUS_SLAVE;
flags |= V4L2_MBUS_MASTER;
}
if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
bus->bus_width = v;
pr_debug("bus-width %u\n", v);
}
if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
bus->data_shift = v;
pr_debug("data-shift %u\n", v);
}
if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
}
if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
V4L2_MBUS_DATA_ENABLE_LOW);
flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
V4L2_MBUS_DATA_ENABLE_LOW;
pr_debug("data-enable-active %s\n", v ? "high" : "low");
}
switch (bus_type) {
default:
bus->flags = flags;
if (flags & PARALLEL_MBUS_FLAGS)
vep->bus_type = V4L2_MBUS_PARALLEL;
else
vep->bus_type = V4L2_MBUS_BT656;
break;
case V4L2_MBUS_PARALLEL:
vep->bus_type = V4L2_MBUS_PARALLEL;
bus->flags = flags;
break;
case V4L2_MBUS_BT656:
vep->bus_type = V4L2_MBUS_BT656;
bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
break;
}
}
static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep,
enum v4l2_mbus_type bus_type)
{
struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
u32 v;
if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
bus->clock_inv = v;
pr_debug("clock-inv %u\n", v);
}
if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
bus->strobe = v;
pr_debug("strobe %u\n", v);
}
if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
bus->data_lane = v;
pr_debug("data-lanes %u\n", v);
}
if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
bus->clock_lane = v;
pr_debug("clock-lanes %u\n", v);
}
if (bus_type == V4L2_MBUS_CCP2)
vep->bus_type = V4L2_MBUS_CCP2;
else
vep->bus_type = V4L2_MBUS_CSI1;
}
static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep)
{
u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
enum v4l2_mbus_type mbus_type;
int rval;
pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
v4l2_fwnode_mbus_type_to_string(vep->bus_type),
vep->bus_type);
mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
if (mbus_type == V4L2_MBUS_INVALID) {
pr_debug("unsupported bus type %u\n", bus_type);
return -EINVAL;
}
if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
if (mbus_type != V4L2_MBUS_UNKNOWN &&
vep->bus_type != mbus_type) {
pr_debug("expecting bus type %s\n",
v4l2_fwnode_mbus_type_to_string(vep->bus_type));
return -ENXIO;
}
} else {
vep->bus_type = mbus_type;
}
switch (vep->bus_type) {
case V4L2_MBUS_UNKNOWN:
rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
V4L2_MBUS_UNKNOWN);
if (rval)
return rval;
if (vep->bus_type == V4L2_MBUS_UNKNOWN)
v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
V4L2_MBUS_UNKNOWN);
pr_debug("assuming media bus type %s (%u)\n",
v4l2_fwnode_mbus_type_to_string(vep->bus_type),
vep->bus_type);
break;
case V4L2_MBUS_CCP2:
case V4L2_MBUS_CSI1:
v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
break;
case V4L2_MBUS_CSI2_DPHY:
case V4L2_MBUS_CSI2_CPHY:
rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
vep->bus_type);
if (rval)
return rval;
break;
case V4L2_MBUS_PARALLEL:
case V4L2_MBUS_BT656:
v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
vep->bus_type);
break;
default:
pr_warn("unsupported bus type %u\n", mbus_type);
return -EINVAL;
}
fwnode_graph_parse_endpoint(fwnode, &vep->base);
return 0;
}
int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep)
{
int ret;
ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
pr_debug("===== end parsing endpoint %pfw\n", fwnode);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
{
if (IS_ERR_OR_NULL(vep))
return;
kfree(vep->link_frequencies);
vep->link_frequencies = NULL;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
struct v4l2_fwnode_endpoint *vep)
{
int rval;
rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
if (rval < 0)
return rval;
rval = fwnode_property_count_u64(fwnode, "link-frequencies");
if (rval > 0) {
unsigned int i;
vep->link_frequencies =
kmalloc_array(rval, sizeof(*vep->link_frequencies),
GFP_KERNEL);
if (!vep->link_frequencies)
return -ENOMEM;
vep->nr_of_link_frequencies = rval;
rval = fwnode_property_read_u64_array(fwnode,
"link-frequencies",
vep->link_frequencies,
vep->nr_of_link_frequencies);
if (rval < 0) {
v4l2_fwnode_endpoint_free(vep);
return rval;
}
for (i = 0; i < vep->nr_of_link_frequencies; i++)
pr_debug("link-frequencies %u value %llu\n", i,
vep->link_frequencies[i]);
}
pr_debug("===== end parsing endpoint %pfw\n", fwnode);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
struct v4l2_fwnode_link *link)
{
struct fwnode_endpoint fwep;
memset(link, 0, sizeof(*link));
fwnode_graph_parse_endpoint(fwnode, &fwep);
link->local_id = fwep.id;
link->local_port = fwep.port;
link->local_node = fwnode_graph_get_port_parent(fwnode);
fwnode = fwnode_graph_get_remote_endpoint(fwnode);
if (!fwnode) {
fwnode_handle_put(fwnode);
return -ENOLINK;
}
fwnode_graph_parse_endpoint(fwnode, &fwep);
link->remote_id = fwep.id;
link->remote_port = fwep.port;
link->remote_node = fwnode_graph_get_port_parent(fwnode);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
{
fwnode_handle_put(link->local_node);
fwnode_handle_put(link->remote_node);
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
static const struct v4l2_fwnode_connector_conv {
enum v4l2_connector_type type;
const char *compatible;
} connectors[] = {
{
.type = V4L2_CONN_COMPOSITE,
.compatible = "composite-video-connector",
}, {
.type = V4L2_CONN_SVIDEO,
.compatible = "svideo-connector",
},
};
static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char *con_str)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(connectors); i++)
if (!strcmp(con_str, connectors[i].compatible))
return connectors[i].type;
return V4L2_CONN_UNKNOWN;
}
static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
struct v4l2_fwnode_connector *vc)
{
u32 stds;
int ret;
ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
/* The property is optional. */
vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
}
void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
{
struct v4l2_connector_link *link, *tmp;
if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
return;
list_for_each_entry_safe(link, tmp, &connector->links, head) {
v4l2_fwnode_put_link(&link->fwnode_link);
list_del(&link->head);
kfree(link);
}
kfree(connector->label);
connector->label = NULL;
connector->type = V4L2_CONN_UNKNOWN;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
{
const char *type_name;
int err;
if (!fwnode)
return V4L2_CONN_UNKNOWN;
/* The connector-type is stored within the compatible string. */
err = fwnode_property_read_string(fwnode, "compatible", &type_name);
if (err)
return V4L2_CONN_UNKNOWN;
return v4l2_fwnode_string_to_connector_type(type_name);
}
int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
struct v4l2_fwnode_connector *connector)
{
struct fwnode_handle *connector_node;
enum v4l2_connector_type connector_type;
const char *label;
int err;
if (!fwnode)
return -EINVAL;
memset(connector, 0, sizeof(*connector));
INIT_LIST_HEAD(&connector->links);
connector_node = fwnode_graph_get_port_parent(fwnode);
connector_type = v4l2_fwnode_get_connector_type(connector_node);
if (connector_type == V4L2_CONN_UNKNOWN) {
fwnode_handle_put(connector_node);
connector_node = fwnode_graph_get_remote_port_parent(fwnode);
connector_type = v4l2_fwnode_get_connector_type(connector_node);
}
if (connector_type == V4L2_CONN_UNKNOWN) {
pr_err("Unknown connector type\n");
err = -ENOTCONN;
goto out;
}
connector->type = connector_type;
connector->name = fwnode_get_name(connector_node);
err = fwnode_property_read_string(connector_node, "label", &label);
connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
/* Parse the connector specific properties. */
switch (connector->type) {
case V4L2_CONN_COMPOSITE:
case V4L2_CONN_SVIDEO:
v4l2_fwnode_connector_parse_analog(connector_node, connector);
break;
/* Avoid compiler warnings */
case V4L2_CONN_UNKNOWN:
break;
}
out:
fwnode_handle_put(connector_node);
return err;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
struct v4l2_fwnode_connector *connector)
{
struct fwnode_handle *connector_ep;
struct v4l2_connector_link *link;
int err;
if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
return -EINVAL;
connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
if (!connector_ep)
return -ENOTCONN;
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
err = -ENOMEM;
goto err;
}
err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
if (err)
goto err;
fwnode_handle_put(connector_ep);
list_add(&link->head, &connector->links);
connector->nr_of_links++;
return 0;
err:
kfree(link);
fwnode_handle_put(connector_ep);
return err;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
int v4l2_fwnode_device_parse(struct device *dev,
struct v4l2_fwnode_device_properties *props)
{
struct fwnode_handle *fwnode = dev_fwnode(dev);
u32 val;
int ret;
memset(props, 0, sizeof(*props));
props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
ret = fwnode_property_read_u32(fwnode, "orientation", &val);
if (!ret) {
switch (val) {
case V4L2_FWNODE_ORIENTATION_FRONT:
case V4L2_FWNODE_ORIENTATION_BACK:
case V4L2_FWNODE_ORIENTATION_EXTERNAL:
break;
default:
dev_warn(dev, "Unsupported device orientation: %u\n", val);
return -EINVAL;
}
props->orientation = val;
dev_dbg(dev, "device orientation: %u\n", val);
}
props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
ret = fwnode_property_read_u32(fwnode, "rotation", &val);
if (!ret) {
if (val >= 360) {
dev_warn(dev, "Unsupported device rotation: %u\n", val);
return -EINVAL;
}
props->rotation = val;
dev_dbg(dev, "device rotation: %u\n", val);
}
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
static int
v4l2_async_nf_fwnode_parse_endpoint(struct device *dev,
struct v4l2_async_notifier *notifier,
struct fwnode_handle *endpoint,
unsigned int asd_struct_size,
parse_endpoint_func parse_endpoint)
{
struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
struct v4l2_async_subdev *asd;
int ret;
asd = kzalloc(asd_struct_size, GFP_KERNEL);
if (!asd)
return -ENOMEM;
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode =
fwnode_graph_get_remote_port_parent(endpoint);
if (!asd->match.fwnode) {
dev_dbg(dev, "no remote endpoint found\n");
ret = -ENOTCONN;
goto out_err;
}
ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
if (ret) {
dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
ret);
goto out_err;
}
ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
if (ret == -ENOTCONN)
dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
vep.base.id);
else if (ret < 0)
dev_warn(dev,
"driver could not parse port@%u/endpoint@%u (%d)\n",
vep.base.port, vep.base.id, ret);
v4l2_fwnode_endpoint_free(&vep);
if (ret < 0)
goto out_err;
ret = __v4l2_async_nf_add_subdev(notifier, asd);
if (ret < 0) {
/* not an error if asd already exists */
if (ret == -EEXIST)
ret = 0;
goto out_err;
}
return 0;
out_err:
fwnode_handle_put(asd->match.fwnode);
kfree(asd);
return ret == -ENOTCONN ? 0 : ret;
}
int
v4l2_async_nf_parse_fwnode_endpoints(struct device *dev,
struct v4l2_async_notifier *notifier,
size_t asd_struct_size,
parse_endpoint_func parse_endpoint)
{
struct fwnode_handle *fwnode;
int ret = 0;
if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
return -EINVAL;
fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
struct fwnode_handle *dev_fwnode;
bool is_available;
dev_fwnode = fwnode_graph_get_port_parent(fwnode);
is_available = fwnode_device_is_available(dev_fwnode);
fwnode_handle_put(dev_fwnode);
if (!is_available)
continue;
ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier,
fwnode,
asd_struct_size,
parse_endpoint);
if (ret < 0)
break;
}
fwnode_handle_put(fwnode);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints);
/*
* v4l2_fwnode_reference_parse - parse references for async sub-devices
* @dev: the device node the properties of which are parsed for references
* @notifier: the async notifier where the async subdevs will be added
* @prop: the name of the property
*
* Return: 0 on success
* -ENOENT if no entries were found
* -ENOMEM if memory allocation failed
* -EINVAL if property parsing failed
*/
static int v4l2_fwnode_reference_parse(struct device *dev,
struct v4l2_async_notifier *notifier,
const char *prop)
{
struct fwnode_reference_args args;
unsigned int index;
int ret;
for (index = 0;
!(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
NULL, 0, index, &args));
index++) {
struct v4l2_async_subdev *asd;
asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
struct v4l2_async_subdev);
fwnode_handle_put(args.fwnode);
if (IS_ERR(asd)) {
/* not an error if asd already exists */
if (PTR_ERR(asd) == -EEXIST)
continue;
return PTR_ERR(asd);
}
}
/* -ENOENT here means successful parsing */
if (ret != -ENOENT)
return ret;
/* Return -ENOENT if no references were found */
return index ? 0 : -ENOENT;
}
/*
* v4l2_fwnode_reference_get_int_prop - parse a reference with integer
* arguments
* @fwnode: fwnode to read @prop from
* @notifier: notifier for @dev
* @prop: the name of the property
* @index: the index of the reference to get
* @props: the array of integer property names
* @nprops: the number of integer property names in @nprops
*
* First find an fwnode referred to by the reference at @index in @prop.
*
* Then under that fwnode, @nprops times, for each property in @props,
* iteratively follow child nodes starting from fwnode such that they have the
* property in @props array at the index of the child node distance from the
* root node and the value of that property matching with the integer argument
* of the reference, at the same index.
*
* The child fwnode reached at the end of the iteration is then returned to the
* caller.
*
* The core reason for this is that you cannot refer to just any node in ACPI.
* So to refer to an endpoint (easy in DT) you need to refer to a device, then
* provide a list of (property name, property value) tuples where each tuple
* uniquely identifies a child node. The first tuple identifies a child directly
* underneath the device fwnode, the next tuple identifies a child node
* underneath the fwnode identified by the previous tuple, etc. until you
* reached the fwnode you need.
*
* THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
* REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
* Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
* data-node-references.txt and leds.txt .
*
* Scope (\_SB.PCI0.I2C2)
* {
* Device (CAM0)
* {
* Name (_DSD, Package () {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () {
* "compatible",
* Package () { "nokia,smia" }
* },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "port0", "PRT0" },
* }
* })
* Name (PRT0, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "port", 0 },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "endpoint0", "EP00" },
* }
* })
* Name (EP00, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "endpoint", 0 },
* Package () {
* "remote-endpoint",
* Package() {
* \_SB.PCI0.ISP, 4, 0
* }
* },
* }
* })
* }
* }
*
* Scope (\_SB.PCI0)
* {
* Device (ISP)
* {
* Name (_DSD, Package () {
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "port4", "PRT4" },
* }
* })
*
* Name (PRT4, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "port", 4 },
* },
* ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
* Package () {
* Package () { "endpoint0", "EP40" },
* }
* })
*
* Name (EP40, Package() {
* ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
* Package () {
* Package () { "endpoint", 0 },
* Package () {
* "remote-endpoint",
* Package () {
* \_SB.PCI0.I2C2.CAM0,
* 0, 0
* }
* },
* }
* })
* }
* }
*
* From the EP40 node under ISP device, you could parse the graph remote
* endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
*
* @fwnode: fwnode referring to EP40 under ISP.
* @prop: "remote-endpoint"
* @index: 0
* @props: "port", "endpoint"
* @nprops: 2
*
* And you'd get back fwnode referring to EP00 under CAM0.
*
* The same works the other way around: if you use EP00 under CAM0 as the
* fwnode, you'll get fwnode referring to EP40 under ISP.
*
* The same example in DT syntax would look like this:
*
* cam: cam0 {
* compatible = "nokia,smia";
*
* port {
* port = <0>;
* endpoint {
* endpoint = <0>;
* remote-endpoint = <&isp 4 0>;
* };
* };
* };
*
* isp: isp {
* ports {
* port@4 {
* port = <4>;
* endpoint {
* endpoint = <0>;
* remote-endpoint = <&cam 0 0>;
* };
* };
* };
* };
*
* Return: 0 on success
* -ENOENT if no entries (or the property itself) were found
* -EINVAL if property parsing otherwise failed
* -ENOMEM if memory allocation failed
*/
static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
const char *prop,
unsigned int index,
const char * const *props,
unsigned int nprops)
{
struct fwnode_reference_args fwnode_args;
u64 *args = fwnode_args.args;
struct fwnode_handle *child;
int ret;
/*
* Obtain remote fwnode as well as the integer arguments.
*
* Note that right now both -ENODATA and -ENOENT may signal
* out-of-bounds access. Return -ENOENT in that case.
*/
ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
index, &fwnode_args);
if (ret)
return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
/*
* Find a node in the tree under the referred fwnode corresponding to
* the integer arguments.
*/
fwnode = fwnode_args.fwnode;
while (nprops--) {
u32 val;
/* Loop over all child nodes under fwnode. */
fwnode_for_each_child_node(fwnode, child) {
if (fwnode_property_read_u32(child, *props, &val))
continue;
/* Found property, see if its value matches. */
if (val == *args)
break;
}
fwnode_handle_put(fwnode);
/* No property found; return an error here. */
if (!child) {
fwnode = ERR_PTR(-ENOENT);
break;
}
props++;
args++;
fwnode = child;
}
return fwnode;
}
struct v4l2_fwnode_int_props {
const char *name;
const char * const *props;
unsigned int nprops;
};
/*
* v4l2_fwnode_reference_parse_int_props - parse references for async
* sub-devices
* @dev: struct device pointer
* @notifier: notifier for @dev
* @prop: the name of the property
* @props: the array of integer property names
* @nprops: the number of integer properties
*
* Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
* property @prop with integer arguments with child nodes matching in properties
* @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
* accordingly.
*
* While it is technically possible to use this function on DT, it is only
* meaningful on ACPI. On Device tree you can refer to any node in the tree but
* on ACPI the references are limited to devices.
*
* Return: 0 on success
* -ENOENT if no entries (or the property itself) were found
* -EINVAL if property parsing otherwisefailed
* -ENOMEM if memory allocation failed
*/
static int
v4l2_fwnode_reference_parse_int_props(struct device *dev,
struct v4l2_async_notifier *notifier,
const struct v4l2_fwnode_int_props *p)
{
struct fwnode_handle *fwnode;
unsigned int index;
int ret;
const char *prop = p->name;
const char * const *props = p->props;
unsigned int nprops = p->nprops;
index = 0;
do {
fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
prop, index,
props, nprops);
if (IS_ERR(fwnode)) {
/*
* Note that right now both -ENODATA and -ENOENT may
* signal out-of-bounds access. Return the error in
* cases other than that.
*/
if (PTR_ERR(fwnode) != -ENOENT &&
PTR_ERR(fwnode) != -ENODATA)
return PTR_ERR(fwnode);
break;
}
fwnode_handle_put(fwnode);
index++;
} while (1);
for (index = 0;
!IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
prop, index,
props,
nprops)));
index++) {
struct v4l2_async_subdev *asd;
asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
struct v4l2_async_subdev);
fwnode_handle_put(fwnode);
if (IS_ERR(asd)) {
ret = PTR_ERR(asd);
/* not an error if asd already exists */
if (ret == -EEXIST)
continue;
return PTR_ERR(asd);
}
}
return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
}
/**
* v4l2_async_nf_parse_fwnode_sensor - parse common references on
* sensors for async sub-devices
* @dev: the device node the properties of which are parsed for references
* @notifier: the async notifier where the async subdevs will be added
*
* Parse common sensor properties for remote devices related to the
* sensor and set up async sub-devices for them.
*
* Any notifier populated using this function must be released with a call to
* v4l2_async_nf_release() after it has been unregistered and the async
* sub-devices are no longer in use, even in the case the function returned an
* error.
*
* Return: 0 on success
* -ENOMEM if memory allocation failed
* -EINVAL if property parsing failed
*/
static int
v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
struct v4l2_async_notifier *notifier)
{
static const char * const led_props[] = { "led" };
static const struct v4l2_fwnode_int_props props[] = {
{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
{ "lens-focus", NULL, 0 },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(props); i++) {
int ret;
if (props[i].props && is_acpi_node(dev_fwnode(dev)))
ret = v4l2_fwnode_reference_parse_int_props(dev,
notifier,
&props[i]);
else
ret = v4l2_fwnode_reference_parse(dev, notifier,
props[i].name);
if (ret && ret != -ENOENT) {
dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
props[i].name, ret);
return ret;
}
}
return 0;
}
int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
{
struct v4l2_async_notifier *notifier;
int ret;
if (WARN_ON(!sd->dev))
return -ENODEV;
notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
if (!notifier)
return -ENOMEM;
v4l2_async_nf_init(notifier);
ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_subdev_nf_register(sd, notifier);
if (ret < 0)
goto out_cleanup;
ret = v4l2_async_register_subdev(sd);
if (ret < 0)
goto out_unregister;
sd->subdev_notifier = notifier;
return 0;
out_unregister:
v4l2_async_nf_unregister(notifier);
out_cleanup:
v4l2_async_nf_cleanup(notifier);
kfree(notifier);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");