linux/linux-5.18.11/drivers/media/v4l2-core/v4l2-async.c

877 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* V4L2 asynchronous subdevice registration API
*
* Copyright (C) 2012-2013, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
*/
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <media/v4l2-async.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
static int v4l2_async_nf_call_bound(struct v4l2_async_notifier *n,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
if (!n->ops || !n->ops->bound)
return 0;
return n->ops->bound(n, subdev, asd);
}
static void v4l2_async_nf_call_unbind(struct v4l2_async_notifier *n,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
if (!n->ops || !n->ops->unbind)
return;
n->ops->unbind(n, subdev, asd);
}
static int v4l2_async_nf_call_complete(struct v4l2_async_notifier *n)
{
if (!n->ops || !n->ops->complete)
return 0;
return n->ops->complete(n);
}
static bool match_i2c(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd, struct v4l2_async_subdev *asd)
{
#if IS_ENABLED(CONFIG_I2C)
struct i2c_client *client = i2c_verify_client(sd->dev);
return client &&
asd->match.i2c.adapter_id == client->adapter->nr &&
asd->match.i2c.address == client->addr;
#else
return false;
#endif
}
static bool match_fwnode(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd, struct v4l2_async_subdev *asd)
{
struct fwnode_handle *other_fwnode;
struct fwnode_handle *dev_fwnode;
bool asd_fwnode_is_ep;
bool sd_fwnode_is_ep;
struct device *dev;
/*
* Both the subdev and the async subdev can provide either an endpoint
* fwnode or a device fwnode. Start with the simple case of direct
* fwnode matching.
*/
if (sd->fwnode == asd->match.fwnode)
return true;
/*
* Check the same situation for any possible secondary assigned to the
* subdev's fwnode
*/
if (!IS_ERR_OR_NULL(sd->fwnode->secondary) &&
sd->fwnode->secondary == asd->match.fwnode)
return true;
/*
* Otherwise, check if the sd fwnode and the asd fwnode refer to an
* endpoint or a device. If they're of the same type, there's no match.
* Technically speaking this checks if the nodes refer to a connected
* endpoint, which is the simplest check that works for both OF and
* ACPI. This won't make a difference, as drivers should not try to
* match unconnected endpoints.
*/
sd_fwnode_is_ep = fwnode_graph_is_endpoint(sd->fwnode);
asd_fwnode_is_ep = fwnode_graph_is_endpoint(asd->match.fwnode);
if (sd_fwnode_is_ep == asd_fwnode_is_ep)
return false;
/*
* The sd and asd fwnodes are of different types. Get the device fwnode
* parent of the endpoint fwnode, and compare it with the other fwnode.
*/
if (sd_fwnode_is_ep) {
dev_fwnode = fwnode_graph_get_port_parent(sd->fwnode);
other_fwnode = asd->match.fwnode;
} else {
dev_fwnode = fwnode_graph_get_port_parent(asd->match.fwnode);
other_fwnode = sd->fwnode;
}
fwnode_handle_put(dev_fwnode);
if (dev_fwnode != other_fwnode)
return false;
/*
* We have a heterogeneous match. Retrieve the struct device of the side
* that matched on a device fwnode to print its driver name.
*/
if (sd_fwnode_is_ep)
dev = notifier->v4l2_dev ? notifier->v4l2_dev->dev
: notifier->sd->dev;
else
dev = sd->dev;
if (dev && dev->driver) {
if (sd_fwnode_is_ep)
dev_warn(dev, "Driver %s uses device fwnode, incorrect match may occur\n",
dev->driver->name);
dev_notice(dev, "Consider updating driver %s to match on endpoints\n",
dev->driver->name);
}
return true;
}
static LIST_HEAD(subdev_list);
static LIST_HEAD(notifier_list);
static DEFINE_MUTEX(list_lock);
static struct v4l2_async_subdev *
v4l2_async_find_match(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd)
{
bool (*match)(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd, struct v4l2_async_subdev *asd);
struct v4l2_async_subdev *asd;
list_for_each_entry(asd, &notifier->waiting, list) {
/* bus_type has been verified valid before */
switch (asd->match_type) {
case V4L2_ASYNC_MATCH_I2C:
match = match_i2c;
break;
case V4L2_ASYNC_MATCH_FWNODE:
match = match_fwnode;
break;
default:
/* Cannot happen, unless someone breaks us */
WARN_ON(true);
return NULL;
}
/* match cannot be NULL here */
if (match(notifier, sd, asd))
return asd;
}
return NULL;
}
/* Compare two async sub-device descriptors for equivalence */
static bool asd_equal(struct v4l2_async_subdev *asd_x,
struct v4l2_async_subdev *asd_y)
{
if (asd_x->match_type != asd_y->match_type)
return false;
switch (asd_x->match_type) {
case V4L2_ASYNC_MATCH_I2C:
return asd_x->match.i2c.adapter_id ==
asd_y->match.i2c.adapter_id &&
asd_x->match.i2c.address ==
asd_y->match.i2c.address;
case V4L2_ASYNC_MATCH_FWNODE:
return asd_x->match.fwnode == asd_y->match.fwnode;
default:
break;
}
return false;
}
/* Find the sub-device notifier registered by a sub-device driver. */
static struct v4l2_async_notifier *
v4l2_async_find_subdev_notifier(struct v4l2_subdev *sd)
{
struct v4l2_async_notifier *n;
list_for_each_entry(n, &notifier_list, list)
if (n->sd == sd)
return n;
return NULL;
}
/* Get v4l2_device related to the notifier if one can be found. */
static struct v4l2_device *
v4l2_async_nf_find_v4l2_dev(struct v4l2_async_notifier *notifier)
{
while (notifier->parent)
notifier = notifier->parent;
return notifier->v4l2_dev;
}
/*
* Return true if all child sub-device notifiers are complete, false otherwise.
*/
static bool
v4l2_async_nf_can_complete(struct v4l2_async_notifier *notifier)
{
struct v4l2_subdev *sd;
if (!list_empty(&notifier->waiting))
return false;
list_for_each_entry(sd, &notifier->done, async_list) {
struct v4l2_async_notifier *subdev_notifier =
v4l2_async_find_subdev_notifier(sd);
if (subdev_notifier &&
!v4l2_async_nf_can_complete(subdev_notifier))
return false;
}
return true;
}
/*
* Complete the master notifier if possible. This is done when all async
* sub-devices have been bound; v4l2_device is also available then.
*/
static int
v4l2_async_nf_try_complete(struct v4l2_async_notifier *notifier)
{
/* Quick check whether there are still more sub-devices here. */
if (!list_empty(&notifier->waiting))
return 0;
/* Check the entire notifier tree; find the root notifier first. */
while (notifier->parent)
notifier = notifier->parent;
/* This is root if it has v4l2_dev. */
if (!notifier->v4l2_dev)
return 0;
/* Is everything ready? */
if (!v4l2_async_nf_can_complete(notifier))
return 0;
return v4l2_async_nf_call_complete(notifier);
}
static int
v4l2_async_nf_try_all_subdevs(struct v4l2_async_notifier *notifier);
static int v4l2_async_match_notify(struct v4l2_async_notifier *notifier,
struct v4l2_device *v4l2_dev,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct v4l2_async_notifier *subdev_notifier;
int ret;
ret = v4l2_device_register_subdev(v4l2_dev, sd);
if (ret < 0)
return ret;
ret = v4l2_async_nf_call_bound(notifier, sd, asd);
if (ret < 0) {
v4l2_device_unregister_subdev(sd);
return ret;
}
/* Remove from the waiting list */
list_del(&asd->list);
sd->asd = asd;
sd->notifier = notifier;
/* Move from the global subdevice list to notifier's done */
list_move(&sd->async_list, &notifier->done);
/*
* See if the sub-device has a notifier. If not, return here.
*/
subdev_notifier = v4l2_async_find_subdev_notifier(sd);
if (!subdev_notifier || subdev_notifier->parent)
return 0;
/*
* Proceed with checking for the sub-device notifier's async
* sub-devices, and return the result. The error will be handled by the
* caller.
*/
subdev_notifier->parent = notifier;
return v4l2_async_nf_try_all_subdevs(subdev_notifier);
}
/* Test all async sub-devices in a notifier for a match. */
static int
v4l2_async_nf_try_all_subdevs(struct v4l2_async_notifier *notifier)
{
struct v4l2_device *v4l2_dev =
v4l2_async_nf_find_v4l2_dev(notifier);
struct v4l2_subdev *sd;
if (!v4l2_dev)
return 0;
again:
list_for_each_entry(sd, &subdev_list, async_list) {
struct v4l2_async_subdev *asd;
int ret;
asd = v4l2_async_find_match(notifier, sd);
if (!asd)
continue;
ret = v4l2_async_match_notify(notifier, v4l2_dev, sd, asd);
if (ret < 0)
return ret;
/*
* v4l2_async_match_notify() may lead to registering a
* new notifier and thus changing the async subdevs
* list. In order to proceed safely from here, restart
* parsing the list from the beginning.
*/
goto again;
}
return 0;
}
static void v4l2_async_cleanup(struct v4l2_subdev *sd)
{
v4l2_device_unregister_subdev(sd);
/*
* Subdevice driver will reprobe and put the subdev back
* onto the list
*/
list_del_init(&sd->async_list);
sd->asd = NULL;
}
/* Unbind all sub-devices in the notifier tree. */
static void
v4l2_async_nf_unbind_all_subdevs(struct v4l2_async_notifier *notifier)
{
struct v4l2_subdev *sd, *tmp;
list_for_each_entry_safe(sd, tmp, &notifier->done, async_list) {
struct v4l2_async_notifier *subdev_notifier =
v4l2_async_find_subdev_notifier(sd);
if (subdev_notifier)
v4l2_async_nf_unbind_all_subdevs(subdev_notifier);
v4l2_async_nf_call_unbind(notifier, sd, sd->asd);
v4l2_async_cleanup(sd);
list_move(&sd->async_list, &subdev_list);
}
notifier->parent = NULL;
}
/* See if an async sub-device can be found in a notifier's lists. */
static bool
__v4l2_async_nf_has_async_subdev(struct v4l2_async_notifier *notifier,
struct v4l2_async_subdev *asd)
{
struct v4l2_async_subdev *asd_y;
struct v4l2_subdev *sd;
list_for_each_entry(asd_y, &notifier->waiting, list)
if (asd_equal(asd, asd_y))
return true;
list_for_each_entry(sd, &notifier->done, async_list) {
if (WARN_ON(!sd->asd))
continue;
if (asd_equal(asd, sd->asd))
return true;
}
return false;
}
/*
* Find out whether an async sub-device was set up already or
* whether it exists in a given notifier before @this_index.
* If @this_index < 0, search the notifier's entire @asd_list.
*/
static bool
v4l2_async_nf_has_async_subdev(struct v4l2_async_notifier *notifier,
struct v4l2_async_subdev *asd, int this_index)
{
struct v4l2_async_subdev *asd_y;
int j = 0;
lockdep_assert_held(&list_lock);
/* Check that an asd is not being added more than once. */
list_for_each_entry(asd_y, &notifier->asd_list, asd_list) {
if (this_index >= 0 && j++ >= this_index)
break;
if (asd_equal(asd, asd_y))
return true;
}
/* Check that an asd does not exist in other notifiers. */
list_for_each_entry(notifier, &notifier_list, list)
if (__v4l2_async_nf_has_async_subdev(notifier, asd))
return true;
return false;
}
static int v4l2_async_nf_asd_valid(struct v4l2_async_notifier *notifier,
struct v4l2_async_subdev *asd,
int this_index)
{
struct device *dev =
notifier->v4l2_dev ? notifier->v4l2_dev->dev : NULL;
if (!asd)
return -EINVAL;
switch (asd->match_type) {
case V4L2_ASYNC_MATCH_I2C:
case V4L2_ASYNC_MATCH_FWNODE:
if (v4l2_async_nf_has_async_subdev(notifier, asd, this_index)) {
dev_dbg(dev, "subdev descriptor already listed in this or other notifiers\n");
return -EEXIST;
}
break;
default:
dev_err(dev, "Invalid match type %u on %p\n",
asd->match_type, asd);
return -EINVAL;
}
return 0;
}
void v4l2_async_nf_init(struct v4l2_async_notifier *notifier)
{
INIT_LIST_HEAD(&notifier->asd_list);
}
EXPORT_SYMBOL(v4l2_async_nf_init);
static int __v4l2_async_nf_register(struct v4l2_async_notifier *notifier)
{
struct v4l2_async_subdev *asd;
int ret, i = 0;
INIT_LIST_HEAD(&notifier->waiting);
INIT_LIST_HEAD(&notifier->done);
mutex_lock(&list_lock);
list_for_each_entry(asd, &notifier->asd_list, asd_list) {
ret = v4l2_async_nf_asd_valid(notifier, asd, i++);
if (ret)
goto err_unlock;
list_add_tail(&asd->list, &notifier->waiting);
}
ret = v4l2_async_nf_try_all_subdevs(notifier);
if (ret < 0)
goto err_unbind;
ret = v4l2_async_nf_try_complete(notifier);
if (ret < 0)
goto err_unbind;
/* Keep also completed notifiers on the list */
list_add(&notifier->list, &notifier_list);
mutex_unlock(&list_lock);
return 0;
err_unbind:
/*
* On failure, unbind all sub-devices registered through this notifier.
*/
v4l2_async_nf_unbind_all_subdevs(notifier);
err_unlock:
mutex_unlock(&list_lock);
return ret;
}
int v4l2_async_nf_register(struct v4l2_device *v4l2_dev,
struct v4l2_async_notifier *notifier)
{
int ret;
if (WARN_ON(!v4l2_dev || notifier->sd))
return -EINVAL;
notifier->v4l2_dev = v4l2_dev;
ret = __v4l2_async_nf_register(notifier);
if (ret)
notifier->v4l2_dev = NULL;
return ret;
}
EXPORT_SYMBOL(v4l2_async_nf_register);
int v4l2_async_subdev_nf_register(struct v4l2_subdev *sd,
struct v4l2_async_notifier *notifier)
{
int ret;
if (WARN_ON(!sd || notifier->v4l2_dev))
return -EINVAL;
notifier->sd = sd;
ret = __v4l2_async_nf_register(notifier);
if (ret)
notifier->sd = NULL;
return ret;
}
EXPORT_SYMBOL(v4l2_async_subdev_nf_register);
static void
__v4l2_async_nf_unregister(struct v4l2_async_notifier *notifier)
{
if (!notifier || (!notifier->v4l2_dev && !notifier->sd))
return;
v4l2_async_nf_unbind_all_subdevs(notifier);
notifier->sd = NULL;
notifier->v4l2_dev = NULL;
list_del(&notifier->list);
}
void v4l2_async_nf_unregister(struct v4l2_async_notifier *notifier)
{
mutex_lock(&list_lock);
__v4l2_async_nf_unregister(notifier);
mutex_unlock(&list_lock);
}
EXPORT_SYMBOL(v4l2_async_nf_unregister);
static void __v4l2_async_nf_cleanup(struct v4l2_async_notifier *notifier)
{
struct v4l2_async_subdev *asd, *tmp;
if (!notifier || !notifier->asd_list.next)
return;
list_for_each_entry_safe(asd, tmp, &notifier->asd_list, asd_list) {
switch (asd->match_type) {
case V4L2_ASYNC_MATCH_FWNODE:
fwnode_handle_put(asd->match.fwnode);
break;
default:
break;
}
list_del(&asd->asd_list);
kfree(asd);
}
}
void v4l2_async_nf_cleanup(struct v4l2_async_notifier *notifier)
{
mutex_lock(&list_lock);
__v4l2_async_nf_cleanup(notifier);
mutex_unlock(&list_lock);
}
EXPORT_SYMBOL_GPL(v4l2_async_nf_cleanup);
int __v4l2_async_nf_add_subdev(struct v4l2_async_notifier *notifier,
struct v4l2_async_subdev *asd)
{
int ret;
mutex_lock(&list_lock);
ret = v4l2_async_nf_asd_valid(notifier, asd, -1);
if (ret)
goto unlock;
list_add_tail(&asd->asd_list, &notifier->asd_list);
unlock:
mutex_unlock(&list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_subdev);
struct v4l2_async_subdev *
__v4l2_async_nf_add_fwnode(struct v4l2_async_notifier *notifier,
struct fwnode_handle *fwnode,
unsigned int asd_struct_size)
{
struct v4l2_async_subdev *asd;
int ret;
asd = kzalloc(asd_struct_size, GFP_KERNEL);
if (!asd)
return ERR_PTR(-ENOMEM);
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode = fwnode_handle_get(fwnode);
ret = __v4l2_async_nf_add_subdev(notifier, asd);
if (ret) {
fwnode_handle_put(fwnode);
kfree(asd);
return ERR_PTR(ret);
}
return asd;
}
EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_fwnode);
struct v4l2_async_subdev *
__v4l2_async_nf_add_fwnode_remote(struct v4l2_async_notifier *notif,
struct fwnode_handle *endpoint,
unsigned int asd_struct_size)
{
struct v4l2_async_subdev *asd;
struct fwnode_handle *remote;
remote = fwnode_graph_get_remote_port_parent(endpoint);
if (!remote)
return ERR_PTR(-ENOTCONN);
asd = __v4l2_async_nf_add_fwnode(notif, remote, asd_struct_size);
/*
* Calling __v4l2_async_nf_add_fwnode grabs a refcount,
* so drop the one we got in fwnode_graph_get_remote_port_parent.
*/
fwnode_handle_put(remote);
return asd;
}
EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_fwnode_remote);
struct v4l2_async_subdev *
__v4l2_async_nf_add_i2c(struct v4l2_async_notifier *notifier, int adapter_id,
unsigned short address, unsigned int asd_struct_size)
{
struct v4l2_async_subdev *asd;
int ret;
asd = kzalloc(asd_struct_size, GFP_KERNEL);
if (!asd)
return ERR_PTR(-ENOMEM);
asd->match_type = V4L2_ASYNC_MATCH_I2C;
asd->match.i2c.adapter_id = adapter_id;
asd->match.i2c.address = address;
ret = __v4l2_async_nf_add_subdev(notifier, asd);
if (ret) {
kfree(asd);
return ERR_PTR(ret);
}
return asd;
}
EXPORT_SYMBOL_GPL(__v4l2_async_nf_add_i2c);
int v4l2_async_register_subdev(struct v4l2_subdev *sd)
{
struct v4l2_async_notifier *subdev_notifier;
struct v4l2_async_notifier *notifier;
int ret;
/*
* No reference taken. The reference is held by the device
* (struct v4l2_subdev.dev), and async sub-device does not
* exist independently of the device at any point of time.
*/
if (!sd->fwnode && sd->dev)
sd->fwnode = dev_fwnode(sd->dev);
mutex_lock(&list_lock);
INIT_LIST_HEAD(&sd->async_list);
list_for_each_entry(notifier, &notifier_list, list) {
struct v4l2_device *v4l2_dev =
v4l2_async_nf_find_v4l2_dev(notifier);
struct v4l2_async_subdev *asd;
if (!v4l2_dev)
continue;
asd = v4l2_async_find_match(notifier, sd);
if (!asd)
continue;
ret = v4l2_async_match_notify(notifier, v4l2_dev, sd, asd);
if (ret)
goto err_unbind;
ret = v4l2_async_nf_try_complete(notifier);
if (ret)
goto err_unbind;
goto out_unlock;
}
/* None matched, wait for hot-plugging */
list_add(&sd->async_list, &subdev_list);
out_unlock:
mutex_unlock(&list_lock);
return 0;
err_unbind:
/*
* Complete failed. Unbind the sub-devices bound through registering
* this async sub-device.
*/
subdev_notifier = v4l2_async_find_subdev_notifier(sd);
if (subdev_notifier)
v4l2_async_nf_unbind_all_subdevs(subdev_notifier);
if (sd->asd)
v4l2_async_nf_call_unbind(notifier, sd, sd->asd);
v4l2_async_cleanup(sd);
mutex_unlock(&list_lock);
return ret;
}
EXPORT_SYMBOL(v4l2_async_register_subdev);
void v4l2_async_unregister_subdev(struct v4l2_subdev *sd)
{
if (!sd->async_list.next)
return;
mutex_lock(&list_lock);
__v4l2_async_nf_unregister(sd->subdev_notifier);
__v4l2_async_nf_cleanup(sd->subdev_notifier);
kfree(sd->subdev_notifier);
sd->subdev_notifier = NULL;
if (sd->asd) {
struct v4l2_async_notifier *notifier = sd->notifier;
list_add(&sd->asd->list, &notifier->waiting);
v4l2_async_nf_call_unbind(notifier, sd, sd->asd);
}
v4l2_async_cleanup(sd);
mutex_unlock(&list_lock);
}
EXPORT_SYMBOL(v4l2_async_unregister_subdev);
static void print_waiting_subdev(struct seq_file *s,
struct v4l2_async_subdev *asd)
{
switch (asd->match_type) {
case V4L2_ASYNC_MATCH_I2C:
seq_printf(s, " [i2c] dev=%d-%04x\n", asd->match.i2c.adapter_id,
asd->match.i2c.address);
break;
case V4L2_ASYNC_MATCH_FWNODE: {
struct fwnode_handle *devnode, *fwnode = asd->match.fwnode;
devnode = fwnode_graph_is_endpoint(fwnode) ?
fwnode_graph_get_port_parent(fwnode) :
fwnode_handle_get(fwnode);
seq_printf(s, " [fwnode] dev=%s, node=%pfw\n",
devnode->dev ? dev_name(devnode->dev) : "nil",
fwnode);
fwnode_handle_put(devnode);
break;
}
}
}
static const char *
v4l2_async_nf_name(struct v4l2_async_notifier *notifier)
{
if (notifier->v4l2_dev)
return notifier->v4l2_dev->name;
else if (notifier->sd)
return notifier->sd->name;
else
return "nil";
}
static int pending_subdevs_show(struct seq_file *s, void *data)
{
struct v4l2_async_notifier *notif;
struct v4l2_async_subdev *asd;
mutex_lock(&list_lock);
list_for_each_entry(notif, &notifier_list, list) {
seq_printf(s, "%s:\n", v4l2_async_nf_name(notif));
list_for_each_entry(asd, &notif->waiting, list)
print_waiting_subdev(s, asd);
}
mutex_unlock(&list_lock);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pending_subdevs);
static struct dentry *v4l2_async_debugfs_dir;
static int __init v4l2_async_init(void)
{
v4l2_async_debugfs_dir = debugfs_create_dir("v4l2-async", NULL);
debugfs_create_file("pending_async_subdevices", 0444,
v4l2_async_debugfs_dir, NULL,
&pending_subdevs_fops);
return 0;
}
static void __exit v4l2_async_exit(void)
{
debugfs_remove_recursive(v4l2_async_debugfs_dir);
}
subsys_initcall(v4l2_async_init);
module_exit(v4l2_async_exit);
MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
MODULE_AUTHOR("Ezequiel Garcia <ezequiel@collabora.com>");
MODULE_LICENSE("GPL");