linux/linux-5.18.11/drivers/media/platform/rockchip/rkisp1/rkisp1-capture.c

1462 lines
41 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Rockchip ISP1 Driver - V4l capture device
*
* Copyright (C) 2019 Collabora, Ltd.
*
* Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd.
* Copyright (C) 2017 Rockchip Electronics Co., Ltd.
*/
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include "rkisp1-common.h"
/*
* NOTE: There are two capture video devices in rkisp1, selfpath and mainpath.
*
* differences between selfpath and mainpath
* available mp sink input: isp
* available sp sink input : isp, dma(TODO)
* available mp sink pad fmts: yuv422, raw
* available sp sink pad fmts: yuv422, yuv420......
* available mp source fmts: yuv, raw, jpeg(TODO)
* available sp source fmts: yuv, rgb
*/
#define RKISP1_SP_DEV_NAME RKISP1_DRIVER_NAME "_selfpath"
#define RKISP1_MP_DEV_NAME RKISP1_DRIVER_NAME "_mainpath"
#define RKISP1_MIN_BUFFERS_NEEDED 3
enum rkisp1_plane {
RKISP1_PLANE_Y = 0,
RKISP1_PLANE_CB = 1,
RKISP1_PLANE_CR = 2
};
/*
* @fourcc: pixel format
* @fmt_type: helper filed for pixel format
* @uv_swap: if cb cr swapped, for yuv
* @write_format: defines how YCbCr self picture data is written to memory
* @output_format: defines sp output format
* @mbus: the mbus code on the src resizer pad that matches the pixel format
*/
struct rkisp1_capture_fmt_cfg {
u32 fourcc;
u8 uv_swap;
u32 write_format;
u32 output_format;
u32 mbus;
};
struct rkisp1_capture_ops {
void (*config)(struct rkisp1_capture *cap);
void (*stop)(struct rkisp1_capture *cap);
void (*enable)(struct rkisp1_capture *cap);
void (*disable)(struct rkisp1_capture *cap);
void (*set_data_path)(struct rkisp1_capture *cap);
bool (*is_stopped)(struct rkisp1_capture *cap);
};
struct rkisp1_capture_config {
const struct rkisp1_capture_fmt_cfg *fmts;
int fmt_size;
struct {
u32 y_size_init;
u32 cb_size_init;
u32 cr_size_init;
u32 y_base_ad_init;
u32 cb_base_ad_init;
u32 cr_base_ad_init;
u32 y_offs_cnt_init;
u32 cb_offs_cnt_init;
u32 cr_offs_cnt_init;
} mi;
};
/*
* The supported pixel formats for mainpath. NOTE, pixel formats with identical 'mbus'
* are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
*/
static const struct rkisp1_capture_fmt_cfg rkisp1_mp_fmts[] = {
/* yuv422 */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUVINT,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_YVU422M,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
},
/* yuv400 */
{
.fourcc = V4L2_PIX_FMT_GREY,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
},
/* yuv420 */
{
.fourcc = V4L2_PIX_FMT_NV21,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV21M,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV12M,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_SPLA,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_YUV420,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_YVU420,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
},
/* raw */
{
.fourcc = V4L2_PIX_FMT_SRGGB8,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_SRGGB8_1X8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_SGRBG8_1X8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_SGBRG8_1X8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR8,
.write_format = RKISP1_MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
.mbus = MEDIA_BUS_FMT_SBGGR8_1X8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SRGGB10_1X10,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SGRBG10_1X10,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SGBRG10_1X10,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SBGGR10_1X10,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SRGGB12_1X12,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SGRBG12_1X12,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SGBRG12_1X12,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.write_format = RKISP1_MI_CTRL_MP_WRITE_RAW12,
.mbus = MEDIA_BUS_FMT_SBGGR12_1X12,
},
};
/*
* The supported pixel formats for selfpath. NOTE, pixel formats with identical 'mbus'
* are grouped together. This is assumed and used by the function rkisp1_cap_enum_mbus_codes
*/
static const struct rkisp1_capture_fmt_cfg rkisp1_sp_fmts[] = {
/* yuv422 */
{
.fourcc = V4L2_PIX_FMT_YUYV,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_INT,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_NV61,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_YVU422M,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
},
/* yuv400 */
{
.fourcc = V4L2_PIX_FMT_GREY,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV422,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
},
/* rgb */
{
.fourcc = V4L2_PIX_FMT_XBGR32,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB888,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
}, {
.fourcc = V4L2_PIX_FMT_RGB565,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_RGB565,
.mbus = MEDIA_BUS_FMT_YUYV8_2X8,
},
/* yuv420 */
{
.fourcc = V4L2_PIX_FMT_NV21,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV21M,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_NV12M,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_SPLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_YUV420,
.uv_swap = 0,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
}, {
.fourcc = V4L2_PIX_FMT_YVU420,
.uv_swap = 1,
.write_format = RKISP1_MI_CTRL_SP_WRITE_PLA,
.output_format = RKISP1_MI_CTRL_SP_OUTPUT_YUV420,
.mbus = MEDIA_BUS_FMT_YUYV8_1_5X8,
},
};
static const struct rkisp1_capture_config rkisp1_capture_config_mp = {
.fmts = rkisp1_mp_fmts,
.fmt_size = ARRAY_SIZE(rkisp1_mp_fmts),
.mi = {
.y_size_init = RKISP1_CIF_MI_MP_Y_SIZE_INIT,
.cb_size_init = RKISP1_CIF_MI_MP_CB_SIZE_INIT,
.cr_size_init = RKISP1_CIF_MI_MP_CR_SIZE_INIT,
.y_base_ad_init = RKISP1_CIF_MI_MP_Y_BASE_AD_INIT,
.cb_base_ad_init = RKISP1_CIF_MI_MP_CB_BASE_AD_INIT,
.cr_base_ad_init = RKISP1_CIF_MI_MP_CR_BASE_AD_INIT,
.y_offs_cnt_init = RKISP1_CIF_MI_MP_Y_OFFS_CNT_INIT,
.cb_offs_cnt_init = RKISP1_CIF_MI_MP_CB_OFFS_CNT_INIT,
.cr_offs_cnt_init = RKISP1_CIF_MI_MP_CR_OFFS_CNT_INIT,
},
};
static const struct rkisp1_capture_config rkisp1_capture_config_sp = {
.fmts = rkisp1_sp_fmts,
.fmt_size = ARRAY_SIZE(rkisp1_sp_fmts),
.mi = {
.y_size_init = RKISP1_CIF_MI_SP_Y_SIZE_INIT,
.cb_size_init = RKISP1_CIF_MI_SP_CB_SIZE_INIT,
.cr_size_init = RKISP1_CIF_MI_SP_CR_SIZE_INIT,
.y_base_ad_init = RKISP1_CIF_MI_SP_Y_BASE_AD_INIT,
.cb_base_ad_init = RKISP1_CIF_MI_SP_CB_BASE_AD_INIT,
.cr_base_ad_init = RKISP1_CIF_MI_SP_CR_BASE_AD_INIT,
.y_offs_cnt_init = RKISP1_CIF_MI_SP_Y_OFFS_CNT_INIT,
.cb_offs_cnt_init = RKISP1_CIF_MI_SP_CB_OFFS_CNT_INIT,
.cr_offs_cnt_init = RKISP1_CIF_MI_SP_CR_OFFS_CNT_INIT,
},
};
static inline struct rkisp1_vdev_node *
rkisp1_vdev_to_node(struct video_device *vdev)
{
return container_of(vdev, struct rkisp1_vdev_node, vdev);
}
int rkisp1_cap_enum_mbus_codes(struct rkisp1_capture *cap,
struct v4l2_subdev_mbus_code_enum *code)
{
const struct rkisp1_capture_fmt_cfg *fmts = cap->config->fmts;
/*
* initialize curr_mbus to non existing mbus code 0 to ensure it is
* different from fmts[0].mbus
*/
u32 curr_mbus = 0;
int i, n = 0;
for (i = 0; i < cap->config->fmt_size; i++) {
if (fmts[i].mbus == curr_mbus)
continue;
curr_mbus = fmts[i].mbus;
if (n++ == code->index) {
code->code = curr_mbus;
return 0;
}
}
return -EINVAL;
}
/* ----------------------------------------------------------------------------
* Stream operations for self-picture path (sp) and main-picture path (mp)
*/
static void rkisp1_mi_config_ctrl(struct rkisp1_capture *cap)
{
u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
mi_ctrl &= ~GENMASK(17, 16);
mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_LUM_64;
mi_ctrl &= ~GENMASK(19, 18);
mi_ctrl |= RKISP1_CIF_MI_CTRL_BURST_LEN_CHROM_64;
mi_ctrl |= RKISP1_CIF_MI_CTRL_INIT_BASE_EN |
RKISP1_CIF_MI_CTRL_INIT_OFFSET_EN;
rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static u32 rkisp1_pixfmt_comp_size(const struct v4l2_pix_format_mplane *pixm,
unsigned int component)
{
/*
* If packed format, then plane_fmt[0].sizeimage is the sum of all
* components, so we need to calculate just the size of Y component.
* See rkisp1_fill_pixfmt().
*/
if (!component && pixm->num_planes == 1)
return pixm->plane_fmt[0].bytesperline * pixm->height;
return pixm->plane_fmt[component].sizeimage;
}
static void rkisp1_irq_frame_end_enable(struct rkisp1_capture *cap)
{
u32 mi_imsc = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_IMSC);
mi_imsc |= RKISP1_CIF_MI_FRAME(cap);
rkisp1_write(cap->rkisp1, mi_imsc, RKISP1_CIF_MI_IMSC);
}
static void rkisp1_mp_config(struct rkisp1_capture *cap)
{
const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
struct rkisp1_device *rkisp1 = cap->rkisp1;
u32 reg;
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
cap->config->mi.y_size_init);
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
cap->config->mi.cb_size_init);
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
cap->config->mi.cr_size_init);
rkisp1_irq_frame_end_enable(cap);
/* set uv swapping for semiplanar formats */
if (cap->pix.info->comp_planes == 2) {
reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
if (cap->pix.cfg->uv_swap)
reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
else
reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_MP_CB_CR_SWAP;
rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
}
rkisp1_mi_config_ctrl(cap);
reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
reg &= ~RKISP1_MI_CTRL_MP_FMT_MASK;
reg |= cap->pix.cfg->write_format;
rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);
reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
reg |= RKISP1_CIF_MI_MP_AUTOUPDATE_ENABLE;
rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_sp_config(struct rkisp1_capture *cap)
{
const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
struct rkisp1_device *rkisp1 = cap->rkisp1;
u32 mi_ctrl, reg;
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
cap->config->mi.y_size_init);
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
cap->config->mi.cb_size_init);
rkisp1_write(rkisp1, rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR),
cap->config->mi.cr_size_init);
rkisp1_write(rkisp1, pixm->width, RKISP1_CIF_MI_SP_Y_PIC_WIDTH);
rkisp1_write(rkisp1, pixm->height, RKISP1_CIF_MI_SP_Y_PIC_HEIGHT);
rkisp1_write(rkisp1, cap->sp_y_stride, RKISP1_CIF_MI_SP_Y_LLENGTH);
rkisp1_irq_frame_end_enable(cap);
/* set uv swapping for semiplanar formats */
if (cap->pix.info->comp_planes == 2) {
reg = rkisp1_read(rkisp1, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
if (cap->pix.cfg->uv_swap)
reg |= RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
else
reg &= ~RKISP1_CIF_MI_XTD_FMT_CTRL_SP_CB_CR_SWAP;
rkisp1_write(rkisp1, reg, RKISP1_CIF_MI_XTD_FORMAT_CTRL);
}
rkisp1_mi_config_ctrl(cap);
mi_ctrl = rkisp1_read(rkisp1, RKISP1_CIF_MI_CTRL);
mi_ctrl &= ~RKISP1_MI_CTRL_SP_FMT_MASK;
mi_ctrl |= cap->pix.cfg->write_format |
RKISP1_MI_CTRL_SP_INPUT_YUV422 |
cap->pix.cfg->output_format |
RKISP1_CIF_MI_SP_AUTOUPDATE_ENABLE;
rkisp1_write(rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_mp_disable(struct rkisp1_capture *cap)
{
u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
mi_ctrl &= ~(RKISP1_CIF_MI_CTRL_MP_ENABLE |
RKISP1_CIF_MI_CTRL_RAW_ENABLE);
rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_sp_disable(struct rkisp1_capture *cap)
{
u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
mi_ctrl &= ~RKISP1_CIF_MI_CTRL_SP_ENABLE;
rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_mp_enable(struct rkisp1_capture *cap)
{
u32 mi_ctrl;
rkisp1_mp_disable(cap);
mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
if (v4l2_is_format_bayer(cap->pix.info))
mi_ctrl |= RKISP1_CIF_MI_CTRL_RAW_ENABLE;
/* YUV */
else
mi_ctrl |= RKISP1_CIF_MI_CTRL_MP_ENABLE;
rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_sp_enable(struct rkisp1_capture *cap)
{
u32 mi_ctrl = rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL);
mi_ctrl |= RKISP1_CIF_MI_CTRL_SP_ENABLE;
rkisp1_write(cap->rkisp1, mi_ctrl, RKISP1_CIF_MI_CTRL);
}
static void rkisp1_mp_sp_stop(struct rkisp1_capture *cap)
{
if (!cap->is_streaming)
return;
rkisp1_write(cap->rkisp1,
RKISP1_CIF_MI_FRAME(cap), RKISP1_CIF_MI_ICR);
cap->ops->disable(cap);
}
static bool rkisp1_mp_is_stopped(struct rkisp1_capture *cap)
{
u32 en = RKISP1_CIF_MI_CTRL_SHD_MP_IN_ENABLED |
RKISP1_CIF_MI_CTRL_SHD_RAW_OUT_ENABLED;
return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) & en);
}
static bool rkisp1_sp_is_stopped(struct rkisp1_capture *cap)
{
return !(rkisp1_read(cap->rkisp1, RKISP1_CIF_MI_CTRL_SHD) &
RKISP1_CIF_MI_CTRL_SHD_SP_IN_ENABLED);
}
static void rkisp1_mp_set_data_path(struct rkisp1_capture *cap)
{
u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
dpcl = dpcl | RKISP1_CIF_VI_DPCL_CHAN_MODE_MP |
RKISP1_CIF_VI_DPCL_MP_MUX_MRSZ_MI;
rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
}
static void rkisp1_sp_set_data_path(struct rkisp1_capture *cap)
{
u32 dpcl = rkisp1_read(cap->rkisp1, RKISP1_CIF_VI_DPCL);
dpcl |= RKISP1_CIF_VI_DPCL_CHAN_MODE_SP;
rkisp1_write(cap->rkisp1, dpcl, RKISP1_CIF_VI_DPCL);
}
static const struct rkisp1_capture_ops rkisp1_capture_ops_mp = {
.config = rkisp1_mp_config,
.enable = rkisp1_mp_enable,
.disable = rkisp1_mp_disable,
.stop = rkisp1_mp_sp_stop,
.set_data_path = rkisp1_mp_set_data_path,
.is_stopped = rkisp1_mp_is_stopped,
};
static const struct rkisp1_capture_ops rkisp1_capture_ops_sp = {
.config = rkisp1_sp_config,
.enable = rkisp1_sp_enable,
.disable = rkisp1_sp_disable,
.stop = rkisp1_mp_sp_stop,
.set_data_path = rkisp1_sp_set_data_path,
.is_stopped = rkisp1_sp_is_stopped,
};
/* ----------------------------------------------------------------------------
* Frame buffer operations
*/
static int rkisp1_dummy_buf_create(struct rkisp1_capture *cap)
{
const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
struct rkisp1_dummy_buffer *dummy_buf = &cap->buf.dummy;
dummy_buf->size = max3(rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y),
rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB),
rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CR));
/* The driver never access vaddr, no mapping is required */
dummy_buf->vaddr = dma_alloc_attrs(cap->rkisp1->dev,
dummy_buf->size,
&dummy_buf->dma_addr,
GFP_KERNEL,
DMA_ATTR_NO_KERNEL_MAPPING);
if (!dummy_buf->vaddr)
return -ENOMEM;
return 0;
}
static void rkisp1_dummy_buf_destroy(struct rkisp1_capture *cap)
{
dma_free_attrs(cap->rkisp1->dev,
cap->buf.dummy.size, cap->buf.dummy.vaddr,
cap->buf.dummy.dma_addr, DMA_ATTR_NO_KERNEL_MAPPING);
}
static void rkisp1_set_next_buf(struct rkisp1_capture *cap)
{
cap->buf.curr = cap->buf.next;
cap->buf.next = NULL;
if (!list_empty(&cap->buf.queue)) {
u32 *buff_addr;
cap->buf.next = list_first_entry(&cap->buf.queue, struct rkisp1_buffer, queue);
list_del(&cap->buf.next->queue);
buff_addr = cap->buf.next->buff_addr;
rkisp1_write(cap->rkisp1,
buff_addr[RKISP1_PLANE_Y],
cap->config->mi.y_base_ad_init);
/*
* In order to support grey format we capture
* YUV422 planar format from the camera and
* set the U and V planes to the dummy buffer
*/
if (cap->pix.cfg->fourcc == V4L2_PIX_FMT_GREY) {
rkisp1_write(cap->rkisp1,
cap->buf.dummy.dma_addr,
cap->config->mi.cb_base_ad_init);
rkisp1_write(cap->rkisp1,
cap->buf.dummy.dma_addr,
cap->config->mi.cr_base_ad_init);
} else {
rkisp1_write(cap->rkisp1,
buff_addr[RKISP1_PLANE_CB],
cap->config->mi.cb_base_ad_init);
rkisp1_write(cap->rkisp1,
buff_addr[RKISP1_PLANE_CR],
cap->config->mi.cr_base_ad_init);
}
} else {
/*
* Use the dummy space allocated by dma_alloc_coherent to
* throw data if there is no available buffer.
*/
rkisp1_write(cap->rkisp1,
cap->buf.dummy.dma_addr,
cap->config->mi.y_base_ad_init);
rkisp1_write(cap->rkisp1,
cap->buf.dummy.dma_addr,
cap->config->mi.cb_base_ad_init);
rkisp1_write(cap->rkisp1,
cap->buf.dummy.dma_addr,
cap->config->mi.cr_base_ad_init);
}
/* Set plane offsets */
rkisp1_write(cap->rkisp1, 0, cap->config->mi.y_offs_cnt_init);
rkisp1_write(cap->rkisp1, 0, cap->config->mi.cb_offs_cnt_init);
rkisp1_write(cap->rkisp1, 0, cap->config->mi.cr_offs_cnt_init);
}
/*
* This function is called when a frame end comes. The next frame
* is processing and we should set up buffer for next-next frame,
* otherwise it will overflow.
*/
static void rkisp1_handle_buffer(struct rkisp1_capture *cap)
{
struct rkisp1_isp *isp = &cap->rkisp1->isp;
struct rkisp1_buffer *curr_buf;
spin_lock(&cap->buf.lock);
curr_buf = cap->buf.curr;
if (curr_buf) {
curr_buf->vb.sequence = isp->frame_sequence;
curr_buf->vb.vb2_buf.timestamp = ktime_get_boottime_ns();
curr_buf->vb.field = V4L2_FIELD_NONE;
vb2_buffer_done(&curr_buf->vb.vb2_buf, VB2_BUF_STATE_DONE);
} else {
cap->rkisp1->debug.frame_drop[cap->id]++;
}
rkisp1_set_next_buf(cap);
spin_unlock(&cap->buf.lock);
}
irqreturn_t rkisp1_capture_isr(int irq, void *ctx)
{
struct device *dev = ctx;
struct rkisp1_device *rkisp1 = dev_get_drvdata(dev);
unsigned int i;
u32 status;
status = rkisp1_read(rkisp1, RKISP1_CIF_MI_MIS);
if (!status)
return IRQ_NONE;
rkisp1_write(rkisp1, status, RKISP1_CIF_MI_ICR);
for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); ++i) {
struct rkisp1_capture *cap = &rkisp1->capture_devs[i];
if (!(status & RKISP1_CIF_MI_FRAME(cap)))
continue;
if (!cap->is_stopping) {
rkisp1_handle_buffer(cap);
continue;
}
/*
* Make sure stream is actually stopped, whose state
* can be read from the shadow register, before
* wake_up() thread which would immediately free all
* frame buffers. stop() takes effect at the next
* frame end that sync the configurations to shadow
* regs.
*/
if (!cap->ops->is_stopped(cap)) {
cap->ops->stop(cap);
continue;
}
cap->is_stopping = false;
cap->is_streaming = false;
wake_up(&cap->done);
}
return IRQ_HANDLED;
}
/* ----------------------------------------------------------------------------
* Vb2 operations
*/
static int rkisp1_vb2_queue_setup(struct vb2_queue *queue,
unsigned int *num_buffers,
unsigned int *num_planes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct rkisp1_capture *cap = queue->drv_priv;
const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
unsigned int i;
if (*num_planes) {
if (*num_planes != pixm->num_planes)
return -EINVAL;
for (i = 0; i < pixm->num_planes; i++)
if (sizes[i] < pixm->plane_fmt[i].sizeimage)
return -EINVAL;
} else {
*num_planes = pixm->num_planes;
for (i = 0; i < pixm->num_planes; i++)
sizes[i] = pixm->plane_fmt[i].sizeimage;
}
return 0;
}
static int rkisp1_vb2_buf_init(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct rkisp1_buffer *ispbuf =
container_of(vbuf, struct rkisp1_buffer, vb);
struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
const struct v4l2_pix_format_mplane *pixm = &cap->pix.fmt;
unsigned int i;
memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
for (i = 0; i < pixm->num_planes; i++)
ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
/* Convert to non-MPLANE */
if (pixm->num_planes == 1) {
ispbuf->buff_addr[RKISP1_PLANE_CB] =
ispbuf->buff_addr[RKISP1_PLANE_Y] +
rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_Y);
ispbuf->buff_addr[RKISP1_PLANE_CR] =
ispbuf->buff_addr[RKISP1_PLANE_CB] +
rkisp1_pixfmt_comp_size(pixm, RKISP1_PLANE_CB);
}
/*
* uv swap can be supported for planar formats by switching
* the address of cb and cr
*/
if (cap->pix.info->comp_planes == 3 && cap->pix.cfg->uv_swap)
swap(ispbuf->buff_addr[RKISP1_PLANE_CR],
ispbuf->buff_addr[RKISP1_PLANE_CB]);
return 0;
}
static void rkisp1_vb2_buf_queue(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
struct rkisp1_buffer *ispbuf =
container_of(vbuf, struct rkisp1_buffer, vb);
struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
spin_lock_irq(&cap->buf.lock);
list_add_tail(&ispbuf->queue, &cap->buf.queue);
spin_unlock_irq(&cap->buf.lock);
}
static int rkisp1_vb2_buf_prepare(struct vb2_buffer *vb)
{
struct rkisp1_capture *cap = vb->vb2_queue->drv_priv;
unsigned int i;
for (i = 0; i < cap->pix.fmt.num_planes; i++) {
unsigned long size = cap->pix.fmt.plane_fmt[i].sizeimage;
if (vb2_plane_size(vb, i) < size) {
dev_err(cap->rkisp1->dev,
"User buffer too small (%ld < %ld)\n",
vb2_plane_size(vb, i), size);
return -EINVAL;
}
vb2_set_plane_payload(vb, i, size);
}
return 0;
}
static void rkisp1_return_all_buffers(struct rkisp1_capture *cap,
enum vb2_buffer_state state)
{
struct rkisp1_buffer *buf;
spin_lock_irq(&cap->buf.lock);
if (cap->buf.curr) {
vb2_buffer_done(&cap->buf.curr->vb.vb2_buf, state);
cap->buf.curr = NULL;
}
if (cap->buf.next) {
vb2_buffer_done(&cap->buf.next->vb.vb2_buf, state);
cap->buf.next = NULL;
}
while (!list_empty(&cap->buf.queue)) {
buf = list_first_entry(&cap->buf.queue,
struct rkisp1_buffer, queue);
list_del(&buf->queue);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
spin_unlock_irq(&cap->buf.lock);
}
/*
* Most registers inside the rockchip ISP1 have shadow register since
* they must not be changed while processing a frame.
* Usually, each sub-module updates its shadow register after
* processing the last pixel of a frame.
*/
static void rkisp1_cap_stream_enable(struct rkisp1_capture *cap)
{
struct rkisp1_device *rkisp1 = cap->rkisp1;
struct rkisp1_capture *other = &rkisp1->capture_devs[cap->id ^ 1];
cap->ops->set_data_path(cap);
cap->ops->config(cap);
/* Setup a buffer for the next frame */
spin_lock_irq(&cap->buf.lock);
rkisp1_set_next_buf(cap);
cap->ops->enable(cap);
/* It's safe to configure ACTIVE and SHADOW registers for the
* first stream. While when the second is starting, do NOT
* force update because it also updates the first one.
*
* The latter case would drop one more buffer(that is 2) since
* there's no buffer in a shadow register when the second FE received.
* This's also required because the second FE maybe corrupt
* especially when run at 120fps.
*/
if (!other->is_streaming) {
/* force cfg update */
rkisp1_write(rkisp1,
RKISP1_CIF_MI_INIT_SOFT_UPD, RKISP1_CIF_MI_INIT);
rkisp1_set_next_buf(cap);
}
spin_unlock_irq(&cap->buf.lock);
cap->is_streaming = true;
}
static void rkisp1_cap_stream_disable(struct rkisp1_capture *cap)
{
int ret;
/* Stream should stop in interrupt. If it doesn't, stop it by force. */
cap->is_stopping = true;
ret = wait_event_timeout(cap->done,
!cap->is_streaming,
msecs_to_jiffies(1000));
if (!ret) {
cap->rkisp1->debug.stop_timeout[cap->id]++;
cap->ops->stop(cap);
cap->is_stopping = false;
cap->is_streaming = false;
}
}
/*
* rkisp1_pipeline_stream_disable - disable nodes in the pipeline
*
* Call s_stream(false) in the reverse order from
* rkisp1_pipeline_stream_enable() and disable the DMA engine.
* Should be called before media_pipeline_stop()
*/
static void rkisp1_pipeline_stream_disable(struct rkisp1_capture *cap)
__must_hold(&cap->rkisp1->stream_lock)
{
struct rkisp1_device *rkisp1 = cap->rkisp1;
rkisp1_cap_stream_disable(cap);
/*
* If the other capture is streaming, isp and sensor nodes shouldn't
* be disabled, skip them.
*/
if (rkisp1->pipe.streaming_count < 2) {
v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
false);
v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
}
v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
false);
}
/*
* rkisp1_pipeline_stream_enable - enable nodes in the pipeline
*
* Enable the DMA Engine and call s_stream(true) through the pipeline.
* Should be called after media_pipeline_start()
*/
static int rkisp1_pipeline_stream_enable(struct rkisp1_capture *cap)
__must_hold(&cap->rkisp1->stream_lock)
{
struct rkisp1_device *rkisp1 = cap->rkisp1;
int ret;
rkisp1_cap_stream_enable(cap);
ret = v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video,
s_stream, true);
if (ret)
goto err_disable_cap;
/*
* If the other capture is streaming, isp and sensor nodes are already
* enabled, skip them.
*/
if (rkisp1->pipe.streaming_count > 1)
return 0;
ret = v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, true);
if (ret)
goto err_disable_rsz;
ret = v4l2_subdev_call(rkisp1->active_sensor->sd, video, s_stream,
true);
if (ret)
goto err_disable_isp;
return 0;
err_disable_isp:
v4l2_subdev_call(&rkisp1->isp.sd, video, s_stream, false);
err_disable_rsz:
v4l2_subdev_call(&rkisp1->resizer_devs[cap->id].sd, video, s_stream,
false);
err_disable_cap:
rkisp1_cap_stream_disable(cap);
return ret;
}
static void rkisp1_vb2_stop_streaming(struct vb2_queue *queue)
{
struct rkisp1_capture *cap = queue->drv_priv;
struct rkisp1_vdev_node *node = &cap->vnode;
struct rkisp1_device *rkisp1 = cap->rkisp1;
int ret;
mutex_lock(&cap->rkisp1->stream_lock);
rkisp1_pipeline_stream_disable(cap);
rkisp1_return_all_buffers(cap, VB2_BUF_STATE_ERROR);
v4l2_pipeline_pm_put(&node->vdev.entity);
ret = pm_runtime_put(rkisp1->dev);
if (ret < 0)
dev_err(rkisp1->dev, "power down failed error:%d\n", ret);
rkisp1_dummy_buf_destroy(cap);
media_pipeline_stop(&node->vdev.entity);
mutex_unlock(&cap->rkisp1->stream_lock);
}
static int
rkisp1_vb2_start_streaming(struct vb2_queue *queue, unsigned int count)
{
struct rkisp1_capture *cap = queue->drv_priv;
struct media_entity *entity = &cap->vnode.vdev.entity;
int ret;
mutex_lock(&cap->rkisp1->stream_lock);
ret = media_pipeline_start(entity, &cap->rkisp1->pipe);
if (ret) {
dev_err(cap->rkisp1->dev, "start pipeline failed %d\n", ret);
goto err_ret_buffers;
}
ret = rkisp1_dummy_buf_create(cap);
if (ret)
goto err_pipeline_stop;
ret = pm_runtime_resume_and_get(cap->rkisp1->dev);
if (ret < 0) {
dev_err(cap->rkisp1->dev, "power up failed %d\n", ret);
goto err_destroy_dummy;
}
ret = v4l2_pipeline_pm_get(entity);
if (ret) {
dev_err(cap->rkisp1->dev, "open cif pipeline failed %d\n", ret);
goto err_pipe_pm_put;
}
ret = rkisp1_pipeline_stream_enable(cap);
if (ret)
goto err_v4l2_pm_put;
mutex_unlock(&cap->rkisp1->stream_lock);
return 0;
err_v4l2_pm_put:
v4l2_pipeline_pm_put(entity);
err_pipe_pm_put:
pm_runtime_put(cap->rkisp1->dev);
err_destroy_dummy:
rkisp1_dummy_buf_destroy(cap);
err_pipeline_stop:
media_pipeline_stop(entity);
err_ret_buffers:
rkisp1_return_all_buffers(cap, VB2_BUF_STATE_QUEUED);
mutex_unlock(&cap->rkisp1->stream_lock);
return ret;
}
static const struct vb2_ops rkisp1_vb2_ops = {
.queue_setup = rkisp1_vb2_queue_setup,
.buf_init = rkisp1_vb2_buf_init,
.buf_queue = rkisp1_vb2_buf_queue,
.buf_prepare = rkisp1_vb2_buf_prepare,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.stop_streaming = rkisp1_vb2_stop_streaming,
.start_streaming = rkisp1_vb2_start_streaming,
};
/* ----------------------------------------------------------------------------
* IOCTLs operations
*/
static const struct v4l2_format_info *
rkisp1_fill_pixfmt(struct v4l2_pix_format_mplane *pixm,
enum rkisp1_stream_id id)
{
struct v4l2_plane_pix_format *plane_y = &pixm->plane_fmt[0];
const struct v4l2_format_info *info;
unsigned int i;
u32 stride;
memset(pixm->plane_fmt, 0, sizeof(pixm->plane_fmt));
info = v4l2_format_info(pixm->pixelformat);
pixm->num_planes = info->mem_planes;
stride = info->bpp[0] * pixm->width;
/* Self path supports custom stride but Main path doesn't */
if (id == RKISP1_MAINPATH || plane_y->bytesperline < stride)
plane_y->bytesperline = stride;
plane_y->sizeimage = plane_y->bytesperline * pixm->height;
/* normalize stride to pixels per line */
stride = DIV_ROUND_UP(plane_y->bytesperline, info->bpp[0]);
for (i = 1; i < info->comp_planes; i++) {
struct v4l2_plane_pix_format *plane = &pixm->plane_fmt[i];
/* bytesperline for other components derive from Y component */
plane->bytesperline = DIV_ROUND_UP(stride, info->hdiv) *
info->bpp[i];
plane->sizeimage = plane->bytesperline *
DIV_ROUND_UP(pixm->height, info->vdiv);
}
/*
* If pixfmt is packed, then plane_fmt[0] should contain the total size
* considering all components. plane_fmt[i] for i > 0 should be ignored
* by userspace as mem_planes == 1, but we are keeping information there
* for convenience.
*/
if (info->mem_planes == 1)
for (i = 1; i < info->comp_planes; i++)
plane_y->sizeimage += pixm->plane_fmt[i].sizeimage;
return info;
}
static const struct rkisp1_capture_fmt_cfg *
rkisp1_find_fmt_cfg(const struct rkisp1_capture *cap, const u32 pixelfmt)
{
unsigned int i;
for (i = 0; i < cap->config->fmt_size; i++) {
if (cap->config->fmts[i].fourcc == pixelfmt)
return &cap->config->fmts[i];
}
return NULL;
}
static void rkisp1_try_fmt(const struct rkisp1_capture *cap,
struct v4l2_pix_format_mplane *pixm,
const struct rkisp1_capture_fmt_cfg **fmt_cfg,
const struct v4l2_format_info **fmt_info)
{
const struct rkisp1_capture_config *config = cap->config;
const struct rkisp1_capture_fmt_cfg *fmt;
const struct v4l2_format_info *info;
const unsigned int max_widths[] = { RKISP1_RSZ_MP_SRC_MAX_WIDTH,
RKISP1_RSZ_SP_SRC_MAX_WIDTH };
const unsigned int max_heights[] = { RKISP1_RSZ_MP_SRC_MAX_HEIGHT,
RKISP1_RSZ_SP_SRC_MAX_HEIGHT};
fmt = rkisp1_find_fmt_cfg(cap, pixm->pixelformat);
if (!fmt) {
fmt = config->fmts;
pixm->pixelformat = fmt->fourcc;
}
pixm->width = clamp_t(u32, pixm->width,
RKISP1_RSZ_SRC_MIN_WIDTH, max_widths[cap->id]);
pixm->height = clamp_t(u32, pixm->height,
RKISP1_RSZ_SRC_MIN_HEIGHT, max_heights[cap->id]);
pixm->field = V4L2_FIELD_NONE;
pixm->colorspace = V4L2_COLORSPACE_DEFAULT;
pixm->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
pixm->quantization = V4L2_QUANTIZATION_DEFAULT;
info = rkisp1_fill_pixfmt(pixm, cap->id);
if (fmt_cfg)
*fmt_cfg = fmt;
if (fmt_info)
*fmt_info = info;
}
static void rkisp1_set_fmt(struct rkisp1_capture *cap,
struct v4l2_pix_format_mplane *pixm)
{
rkisp1_try_fmt(cap, pixm, &cap->pix.cfg, &cap->pix.info);
cap->pix.fmt = *pixm;
/* SP supports custom stride in number of pixels of the Y plane */
if (cap->id == RKISP1_SELFPATH)
cap->sp_y_stride = pixm->plane_fmt[0].bytesperline /
cap->pix.info->bpp[0];
}
static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
struct v4l2_format *f)
{
struct rkisp1_capture *cap = video_drvdata(file);
rkisp1_try_fmt(cap, &f->fmt.pix_mp, NULL, NULL);
return 0;
}
static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct rkisp1_capture *cap = video_drvdata(file);
const struct rkisp1_capture_fmt_cfg *fmt = NULL;
unsigned int i, n = 0;
if (!f->mbus_code) {
if (f->index >= cap->config->fmt_size)
return -EINVAL;
fmt = &cap->config->fmts[f->index];
f->pixelformat = fmt->fourcc;
return 0;
}
for (i = 0; i < cap->config->fmt_size; i++) {
if (cap->config->fmts[i].mbus != f->mbus_code)
continue;
if (n++ == f->index) {
f->pixelformat = cap->config->fmts[i].fourcc;
return 0;
}
}
return -EINVAL;
}
static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
void *priv, struct v4l2_format *f)
{
struct rkisp1_capture *cap = video_drvdata(file);
struct rkisp1_vdev_node *node =
rkisp1_vdev_to_node(&cap->vnode.vdev);
if (vb2_is_busy(&node->buf_queue))
return -EBUSY;
rkisp1_set_fmt(cap, &f->fmt.pix_mp);
return 0;
}
static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
struct v4l2_format *f)
{
struct rkisp1_capture *cap = video_drvdata(file);
f->fmt.pix_mp = cap->pix.fmt;
return 0;
}
static int
rkisp1_querycap(struct file *file, void *priv, struct v4l2_capability *cap)
{
struct rkisp1_capture *cap_dev = video_drvdata(file);
struct rkisp1_device *rkisp1 = cap_dev->rkisp1;
strscpy(cap->driver, rkisp1->dev->driver->name, sizeof(cap->driver));
strscpy(cap->card, rkisp1->dev->driver->name, sizeof(cap->card));
strscpy(cap->bus_info, RKISP1_BUS_INFO, sizeof(cap->bus_info));
return 0;
}
static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
.vidioc_querycap = rkisp1_querycap,
.vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static int rkisp1_capture_link_validate(struct media_link *link)
{
struct video_device *vdev =
media_entity_to_video_device(link->sink->entity);
struct v4l2_subdev *sd =
media_entity_to_v4l2_subdev(link->source->entity);
struct rkisp1_capture *cap = video_get_drvdata(vdev);
const struct rkisp1_capture_fmt_cfg *fmt =
rkisp1_find_fmt_cfg(cap, cap->pix.fmt.pixelformat);
struct v4l2_subdev_format sd_fmt;
int ret;
sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
sd_fmt.pad = link->source->index;
ret = v4l2_subdev_call(sd, pad, get_fmt, NULL, &sd_fmt);
if (ret)
return ret;
if (sd_fmt.format.height != cap->pix.fmt.height ||
sd_fmt.format.width != cap->pix.fmt.width ||
sd_fmt.format.code != fmt->mbus)
return -EPIPE;
return 0;
}
/* ----------------------------------------------------------------------------
* core functions
*/
static const struct media_entity_operations rkisp1_media_ops = {
.link_validate = rkisp1_capture_link_validate,
};
static const struct v4l2_file_operations rkisp1_fops = {
.open = v4l2_fh_open,
.release = vb2_fop_release,
.unlocked_ioctl = video_ioctl2,
.poll = vb2_fop_poll,
.mmap = vb2_fop_mmap,
};
static void rkisp1_unregister_capture(struct rkisp1_capture *cap)
{
media_entity_cleanup(&cap->vnode.vdev.entity);
vb2_video_unregister_device(&cap->vnode.vdev);
}
void rkisp1_capture_devs_unregister(struct rkisp1_device *rkisp1)
{
struct rkisp1_capture *mp = &rkisp1->capture_devs[RKISP1_MAINPATH];
struct rkisp1_capture *sp = &rkisp1->capture_devs[RKISP1_SELFPATH];
rkisp1_unregister_capture(mp);
rkisp1_unregister_capture(sp);
}
static int rkisp1_register_capture(struct rkisp1_capture *cap)
{
const char * const dev_names[] = {RKISP1_MP_DEV_NAME,
RKISP1_SP_DEV_NAME};
struct v4l2_device *v4l2_dev = &cap->rkisp1->v4l2_dev;
struct video_device *vdev = &cap->vnode.vdev;
struct rkisp1_vdev_node *node;
struct vb2_queue *q;
int ret;
strscpy(vdev->name, dev_names[cap->id], sizeof(vdev->name));
node = rkisp1_vdev_to_node(vdev);
mutex_init(&node->vlock);
vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
vdev->release = video_device_release_empty;
vdev->fops = &rkisp1_fops;
vdev->minor = -1;
vdev->v4l2_dev = v4l2_dev;
vdev->lock = &node->vlock;
vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
vdev->entity.ops = &rkisp1_media_ops;
video_set_drvdata(vdev, cap);
vdev->vfl_dir = VFL_DIR_RX;
node->pad.flags = MEDIA_PAD_FL_SINK;
q = &node->buf_queue;
q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->drv_priv = cap;
q->ops = &rkisp1_vb2_ops;
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = sizeof(struct rkisp1_buffer);
q->min_buffers_needed = RKISP1_MIN_BUFFERS_NEEDED;
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &node->vlock;
q->dev = cap->rkisp1->dev;
ret = vb2_queue_init(q);
if (ret) {
dev_err(cap->rkisp1->dev,
"vb2 queue init failed (err=%d)\n", ret);
return ret;
}
vdev->queue = q;
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(cap->rkisp1->dev,
"failed to register %s, ret=%d\n", vdev->name, ret);
return ret;
}
v4l2_info(v4l2_dev, "registered %s as /dev/video%d\n", vdev->name,
vdev->num);
ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
if (ret) {
video_unregister_device(vdev);
return ret;
}
return 0;
}
static void
rkisp1_capture_init(struct rkisp1_device *rkisp1, enum rkisp1_stream_id id)
{
struct rkisp1_capture *cap = &rkisp1->capture_devs[id];
struct v4l2_pix_format_mplane pixm;
memset(cap, 0, sizeof(*cap));
cap->id = id;
cap->rkisp1 = rkisp1;
INIT_LIST_HEAD(&cap->buf.queue);
init_waitqueue_head(&cap->done);
spin_lock_init(&cap->buf.lock);
if (cap->id == RKISP1_SELFPATH) {
cap->ops = &rkisp1_capture_ops_sp;
cap->config = &rkisp1_capture_config_sp;
} else {
cap->ops = &rkisp1_capture_ops_mp;
cap->config = &rkisp1_capture_config_mp;
}
cap->is_streaming = false;
memset(&pixm, 0, sizeof(pixm));
pixm.pixelformat = V4L2_PIX_FMT_YUYV;
pixm.width = RKISP1_DEFAULT_WIDTH;
pixm.height = RKISP1_DEFAULT_HEIGHT;
rkisp1_set_fmt(cap, &pixm);
}
int rkisp1_capture_devs_register(struct rkisp1_device *rkisp1)
{
struct rkisp1_capture *cap;
unsigned int i, j;
int ret;
for (i = 0; i < ARRAY_SIZE(rkisp1->capture_devs); i++) {
rkisp1_capture_init(rkisp1, i);
cap = &rkisp1->capture_devs[i];
cap->rkisp1 = rkisp1;
ret = rkisp1_register_capture(cap);
if (ret)
goto err_unreg_capture_devs;
}
return 0;
err_unreg_capture_devs:
for (j = 0; j < i; j++) {
cap = &rkisp1->capture_devs[j];
rkisp1_unregister_capture(cap);
}
return ret;
}