linux/linux-5.18.11/drivers/iio/light/tsl2583.c

958 lines
24 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Device driver for monitoring ambient light intensity (lux)
* within the TAOS tsl258x family of devices (tsl2580, tsl2581, tsl2583).
*
* Copyright (c) 2011, TAOS Corporation.
* Copyright (c) 2016-2017 Brian Masney <masneyb@onstation.org>
*/
#include <linux/kernel.h>
#include <linux/i2c.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/pm_runtime.h>
/* Device Registers and Masks */
#define TSL2583_CNTRL 0x00
#define TSL2583_ALS_TIME 0X01
#define TSL2583_INTERRUPT 0x02
#define TSL2583_GAIN 0x07
#define TSL2583_REVID 0x11
#define TSL2583_CHIPID 0x12
#define TSL2583_ALS_CHAN0LO 0x14
#define TSL2583_ALS_CHAN0HI 0x15
#define TSL2583_ALS_CHAN1LO 0x16
#define TSL2583_ALS_CHAN1HI 0x17
#define TSL2583_TMR_LO 0x18
#define TSL2583_TMR_HI 0x19
/* tsl2583 cmd reg masks */
#define TSL2583_CMD_REG 0x80
#define TSL2583_CMD_SPL_FN 0x60
#define TSL2583_CMD_ALS_INT_CLR 0x01
/* tsl2583 cntrl reg masks */
#define TSL2583_CNTL_ADC_ENBL 0x02
#define TSL2583_CNTL_PWR_OFF 0x00
#define TSL2583_CNTL_PWR_ON 0x01
/* tsl2583 status reg masks */
#define TSL2583_STA_ADC_VALID 0x01
#define TSL2583_STA_ADC_INTR 0x10
/* Lux calculation constants */
#define TSL2583_LUX_CALC_OVER_FLOW 65535
#define TSL2583_INTERRUPT_DISABLED 0x00
#define TSL2583_CHIP_ID 0x90
#define TSL2583_CHIP_ID_MASK 0xf0
#define TSL2583_POWER_OFF_DELAY_MS 2000
/* Per-device data */
struct tsl2583_als_info {
u16 als_ch0;
u16 als_ch1;
u16 lux;
};
struct tsl2583_lux {
unsigned int ratio;
unsigned int ch0;
unsigned int ch1;
};
static const struct tsl2583_lux tsl2583_default_lux[] = {
{ 9830, 8520, 15729 },
{ 12452, 10807, 23344 },
{ 14746, 6383, 11705 },
{ 17695, 4063, 6554 },
{ 0, 0, 0 } /* Termination segment */
};
#define TSL2583_MAX_LUX_TABLE_ENTRIES 11
struct tsl2583_settings {
int als_time;
int als_gain;
int als_gain_trim;
int als_cal_target;
/*
* This structure is intentionally large to accommodate updates via
* sysfs. Sized to 11 = max 10 segments + 1 termination segment.
* Assumption is that one and only one type of glass used.
*/
struct tsl2583_lux als_device_lux[TSL2583_MAX_LUX_TABLE_ENTRIES];
};
struct tsl2583_chip {
struct mutex als_mutex;
struct i2c_client *client;
struct tsl2583_als_info als_cur_info;
struct tsl2583_settings als_settings;
int als_time_scale;
int als_saturation;
};
struct gainadj {
s16 ch0;
s16 ch1;
s16 mean;
};
/* Index = (0 - 3) Used to validate the gain selection index */
static const struct gainadj gainadj[] = {
{ 1, 1, 1 },
{ 8, 8, 8 },
{ 16, 16, 16 },
{ 107, 115, 111 }
};
/*
* Provides initial operational parameter defaults.
* These defaults may be changed through the device's sysfs files.
*/
static void tsl2583_defaults(struct tsl2583_chip *chip)
{
/*
* The integration time must be a multiple of 50ms and within the
* range [50, 600] ms.
*/
chip->als_settings.als_time = 100;
/*
* This is an index into the gainadj table. Assume clear glass as the
* default.
*/
chip->als_settings.als_gain = 0;
/* Default gain trim to account for aperture effects */
chip->als_settings.als_gain_trim = 1000;
/* Known external ALS reading used for calibration */
chip->als_settings.als_cal_target = 130;
/* Default lux table. */
memcpy(chip->als_settings.als_device_lux, tsl2583_default_lux,
sizeof(tsl2583_default_lux));
}
/*
* Reads and calculates current lux value.
* The raw ch0 and ch1 values of the ambient light sensed in the last
* integration cycle are read from the device.
* Time scale factor array values are adjusted based on the integration time.
* The raw values are multiplied by a scale factor, and device gain is obtained
* using gain index. Limit checks are done next, then the ratio of a multiple
* of ch1 value, to the ch0 value, is calculated. The array als_device_lux[]
* declared above is then scanned to find the first ratio value that is just
* above the ratio we just calculated. The ch0 and ch1 multiplier constants in
* the array are then used along with the time scale factor array values, to
* calculate the lux.
*/
static int tsl2583_get_lux(struct iio_dev *indio_dev)
{
u16 ch0, ch1; /* separated ch0/ch1 data from device */
u32 lux; /* raw lux calculated from device data */
u64 lux64;
u32 ratio;
u8 buf[5];
struct tsl2583_lux *p;
struct tsl2583_chip *chip = iio_priv(indio_dev);
int i, ret;
ret = i2c_smbus_read_byte_data(chip->client, TSL2583_CMD_REG);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to read CMD_REG register\n",
__func__);
goto done;
}
/* is data new & valid */
if (!(ret & TSL2583_STA_ADC_INTR)) {
dev_err(&chip->client->dev, "%s: data not valid; returning last value\n",
__func__);
ret = chip->als_cur_info.lux; /* return LAST VALUE */
goto done;
}
for (i = 0; i < 4; i++) {
int reg = TSL2583_CMD_REG | (TSL2583_ALS_CHAN0LO + i);
ret = i2c_smbus_read_byte_data(chip->client, reg);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to read register %x\n",
__func__, reg);
goto done;
}
buf[i] = ret;
}
/*
* Clear the pending interrupt status bit on the chip to allow the next
* integration cycle to start. This has to be done even though this
* driver currently does not support interrupts.
*/
ret = i2c_smbus_write_byte(chip->client,
(TSL2583_CMD_REG | TSL2583_CMD_SPL_FN |
TSL2583_CMD_ALS_INT_CLR));
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to clear the interrupt bit\n",
__func__);
goto done; /* have no data, so return failure */
}
/* extract ALS/lux data */
ch0 = le16_to_cpup((const __le16 *)&buf[0]);
ch1 = le16_to_cpup((const __le16 *)&buf[2]);
chip->als_cur_info.als_ch0 = ch0;
chip->als_cur_info.als_ch1 = ch1;
if ((ch0 >= chip->als_saturation) || (ch1 >= chip->als_saturation))
goto return_max;
if (!ch0) {
/*
* The sensor appears to be in total darkness so set the
* calculated lux to 0 and return early to avoid a division by
* zero below when calculating the ratio.
*/
ret = 0;
chip->als_cur_info.lux = 0;
goto done;
}
/* calculate ratio */
ratio = (ch1 << 15) / ch0;
/* convert to unscaled lux using the pointer to the table */
for (p = (struct tsl2583_lux *)chip->als_settings.als_device_lux;
p->ratio != 0 && p->ratio < ratio; p++)
;
if (p->ratio == 0) {
lux = 0;
} else {
u32 ch0lux, ch1lux;
ch0lux = ((ch0 * p->ch0) +
(gainadj[chip->als_settings.als_gain].ch0 >> 1))
/ gainadj[chip->als_settings.als_gain].ch0;
ch1lux = ((ch1 * p->ch1) +
(gainadj[chip->als_settings.als_gain].ch1 >> 1))
/ gainadj[chip->als_settings.als_gain].ch1;
/* note: lux is 31 bit max at this point */
if (ch1lux > ch0lux) {
dev_dbg(&chip->client->dev, "%s: No Data - Returning 0\n",
__func__);
ret = 0;
chip->als_cur_info.lux = 0;
goto done;
}
lux = ch0lux - ch1lux;
}
/* adjust for active time scale */
if (chip->als_time_scale == 0)
lux = 0;
else
lux = (lux + (chip->als_time_scale >> 1)) /
chip->als_time_scale;
/*
* Adjust for active gain scale.
* The tsl2583_default_lux tables above have a factor of 8192 built in,
* so we need to shift right.
* User-specified gain provides a multiplier.
* Apply user-specified gain before shifting right to retain precision.
* Use 64 bits to avoid overflow on multiplication.
* Then go back to 32 bits before division to avoid using div_u64().
*/
lux64 = lux;
lux64 = lux64 * chip->als_settings.als_gain_trim;
lux64 >>= 13;
lux = lux64;
lux = DIV_ROUND_CLOSEST(lux, 1000);
if (lux > TSL2583_LUX_CALC_OVER_FLOW) { /* check for overflow */
return_max:
lux = TSL2583_LUX_CALC_OVER_FLOW;
}
/* Update the structure with the latest VALID lux. */
chip->als_cur_info.lux = lux;
ret = lux;
done:
return ret;
}
/*
* Obtain single reading and calculate the als_gain_trim (later used
* to derive actual lux).
* Return updated gain_trim value.
*/
static int tsl2583_als_calibrate(struct iio_dev *indio_dev)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
unsigned int gain_trim_val;
int ret;
int lux_val;
ret = i2c_smbus_read_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_CNTRL);
if (ret < 0) {
dev_err(&chip->client->dev,
"%s: failed to read from the CNTRL register\n",
__func__);
return ret;
}
if ((ret & (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON))
!= (TSL2583_CNTL_ADC_ENBL | TSL2583_CNTL_PWR_ON)) {
dev_err(&chip->client->dev,
"%s: Device is not powered on and/or ADC is not enabled\n",
__func__);
return -EINVAL;
} else if ((ret & TSL2583_STA_ADC_VALID) != TSL2583_STA_ADC_VALID) {
dev_err(&chip->client->dev,
"%s: The two ADC channels have not completed an integration cycle\n",
__func__);
return -ENODATA;
}
lux_val = tsl2583_get_lux(indio_dev);
if (lux_val < 0) {
dev_err(&chip->client->dev, "%s: failed to get lux\n",
__func__);
return lux_val;
}
/* Avoid division by zero of lux_value later on */
if (lux_val == 0) {
dev_err(&chip->client->dev,
"%s: lux_val of 0 will produce out of range trim_value\n",
__func__);
return -ENODATA;
}
gain_trim_val = (unsigned int)(((chip->als_settings.als_cal_target)
* chip->als_settings.als_gain_trim) / lux_val);
if ((gain_trim_val < 250) || (gain_trim_val > 4000)) {
dev_err(&chip->client->dev,
"%s: trim_val of %d is not within the range [250, 4000]\n",
__func__, gain_trim_val);
return -ENODATA;
}
chip->als_settings.als_gain_trim = (int)gain_trim_val;
return 0;
}
static int tsl2583_set_als_time(struct tsl2583_chip *chip)
{
int als_count, als_time, ret;
u8 val;
/* determine als integration register */
als_count = DIV_ROUND_CLOSEST(chip->als_settings.als_time * 100, 270);
if (!als_count)
als_count = 1; /* ensure at least one cycle */
/* convert back to time (encompasses overrides) */
als_time = DIV_ROUND_CLOSEST(als_count * 27, 10);
val = 256 - als_count;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_ALS_TIME,
val);
if (ret < 0) {
dev_err(&chip->client->dev, "%s: failed to set the als time to %d\n",
__func__, val);
return ret;
}
/* set chip struct re scaling and saturation */
chip->als_saturation = als_count * 922; /* 90% of full scale */
chip->als_time_scale = DIV_ROUND_CLOSEST(als_time, 50);
return ret;
}
static int tsl2583_set_als_gain(struct tsl2583_chip *chip)
{
int ret;
/* Set the gain based on als_settings struct */
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_GAIN,
chip->als_settings.als_gain);
if (ret < 0)
dev_err(&chip->client->dev,
"%s: failed to set the gain to %d\n", __func__,
chip->als_settings.als_gain);
return ret;
}
static int tsl2583_set_power_state(struct tsl2583_chip *chip, u8 state)
{
int ret;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_CNTRL, state);
if (ret < 0)
dev_err(&chip->client->dev,
"%s: failed to set the power state to %d\n", __func__,
state);
return ret;
}
/*
* Turn the device on.
* Configuration must be set before calling this function.
*/
static int tsl2583_chip_init_and_power_on(struct iio_dev *indio_dev)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
/* Power on the device; ADC off. */
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON);
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte_data(chip->client,
TSL2583_CMD_REG | TSL2583_INTERRUPT,
TSL2583_INTERRUPT_DISABLED);
if (ret < 0) {
dev_err(&chip->client->dev,
"%s: failed to disable interrupts\n", __func__);
return ret;
}
ret = tsl2583_set_als_time(chip);
if (ret < 0)
return ret;
ret = tsl2583_set_als_gain(chip);
if (ret < 0)
return ret;
usleep_range(3000, 3500);
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_ON |
TSL2583_CNTL_ADC_ENBL);
if (ret < 0)
return ret;
return ret;
}
/* Sysfs Interface Functions */
static ssize_t in_illuminance_input_target_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = sprintf(buf, "%d\n", chip->als_settings.als_cal_target);
mutex_unlock(&chip->als_mutex);
return ret;
}
static ssize_t in_illuminance_input_target_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int value;
if (kstrtoint(buf, 0, &value) || !value)
return -EINVAL;
mutex_lock(&chip->als_mutex);
chip->als_settings.als_cal_target = value;
mutex_unlock(&chip->als_mutex);
return len;
}
static ssize_t in_illuminance_calibrate_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
int value, ret;
if (kstrtoint(buf, 0, &value) || value != 1)
return -EINVAL;
mutex_lock(&chip->als_mutex);
ret = tsl2583_als_calibrate(indio_dev);
if (ret < 0)
goto done;
ret = len;
done:
mutex_unlock(&chip->als_mutex);
return ret;
}
static ssize_t in_illuminance_lux_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
unsigned int i;
int offset = 0;
for (i = 0; i < ARRAY_SIZE(chip->als_settings.als_device_lux); i++) {
offset += sprintf(buf + offset, "%u,%u,%u,",
chip->als_settings.als_device_lux[i].ratio,
chip->als_settings.als_device_lux[i].ch0,
chip->als_settings.als_device_lux[i].ch1);
if (chip->als_settings.als_device_lux[i].ratio == 0) {
/*
* We just printed the first "0" entry.
* Now get rid of the extra "," and break.
*/
offset--;
break;
}
}
offset += sprintf(buf + offset, "\n");
return offset;
}
static ssize_t in_illuminance_lux_table_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct tsl2583_chip *chip = iio_priv(indio_dev);
const unsigned int max_ints = TSL2583_MAX_LUX_TABLE_ENTRIES * 3;
int value[TSL2583_MAX_LUX_TABLE_ENTRIES * 3 + 1];
int ret = -EINVAL;
unsigned int n;
mutex_lock(&chip->als_mutex);
get_options(buf, ARRAY_SIZE(value), value);
/*
* We now have an array of ints starting at value[1], and
* enumerated by value[0].
* We expect each group of three ints is one table entry,
* and the last table entry is all 0.
*/
n = value[0];
if ((n % 3) || n < 6 || n > max_ints) {
dev_err(dev,
"%s: The number of entries in the lux table must be a multiple of 3 and within the range [6, %d]\n",
__func__, max_ints);
goto done;
}
if ((value[n - 2] | value[n - 1] | value[n]) != 0) {
dev_err(dev, "%s: The last 3 entries in the lux table must be zeros.\n",
__func__);
goto done;
}
memcpy(chip->als_settings.als_device_lux, &value[1],
value[0] * sizeof(value[1]));
ret = len;
done:
mutex_unlock(&chip->als_mutex);
return ret;
}
static IIO_CONST_ATTR(in_illuminance_calibscale_available, "1 8 16 111");
static IIO_CONST_ATTR(in_illuminance_integration_time_available,
"0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.550 0.600 0.650");
static IIO_DEVICE_ATTR_RW(in_illuminance_input_target, 0);
static IIO_DEVICE_ATTR_WO(in_illuminance_calibrate, 0);
static IIO_DEVICE_ATTR_RW(in_illuminance_lux_table, 0);
static struct attribute *sysfs_attrs_ctrl[] = {
&iio_const_attr_in_illuminance_calibscale_available.dev_attr.attr,
&iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr,
&iio_dev_attr_in_illuminance_input_target.dev_attr.attr,
&iio_dev_attr_in_illuminance_calibrate.dev_attr.attr,
&iio_dev_attr_in_illuminance_lux_table.dev_attr.attr,
NULL
};
static const struct attribute_group tsl2583_attribute_group = {
.attrs = sysfs_attrs_ctrl,
};
static const struct iio_chan_spec tsl2583_channels[] = {
{
.type = IIO_LIGHT,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_IR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},
{
.type = IIO_LIGHT,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
},
{
.type = IIO_LIGHT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_INT_TIME),
},
};
static int tsl2583_set_pm_runtime_busy(struct tsl2583_chip *chip, bool on)
{
int ret;
if (on) {
ret = pm_runtime_resume_and_get(&chip->client->dev);
} else {
pm_runtime_mark_last_busy(&chip->client->dev);
ret = pm_runtime_put_autosuspend(&chip->client->dev);
}
return ret;
}
static int tsl2583_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret, pm_ret;
ret = tsl2583_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->als_mutex);
ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (chan->type == IIO_LIGHT) {
ret = tsl2583_get_lux(indio_dev);
if (ret < 0)
goto read_done;
/*
* From page 20 of the TSL2581, TSL2583 data
* sheet (TAOS134 MARCH 2011):
*
* One of the photodiodes (channel 0) is
* sensitive to both visible and infrared light,
* while the second photodiode (channel 1) is
* sensitive primarily to infrared light.
*/
if (chan->channel2 == IIO_MOD_LIGHT_BOTH)
*val = chip->als_cur_info.als_ch0;
else
*val = chip->als_cur_info.als_ch1;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_PROCESSED:
if (chan->type == IIO_LIGHT) {
ret = tsl2583_get_lux(indio_dev);
if (ret < 0)
goto read_done;
*val = ret;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_CALIBBIAS:
if (chan->type == IIO_LIGHT) {
*val = chip->als_settings.als_gain_trim;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
*val = gainadj[chip->als_settings.als_gain].mean;
ret = IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT) {
*val = 0;
*val2 = chip->als_settings.als_time;
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
default:
break;
}
read_done:
mutex_unlock(&chip->als_mutex);
if (ret < 0) {
tsl2583_set_pm_runtime_busy(chip, false);
return ret;
}
/*
* Preserve the ret variable if the call to
* tsl2583_set_pm_runtime_busy() is successful so the reading
* (if applicable) is returned to user space.
*/
pm_ret = tsl2583_set_pm_runtime_busy(chip, false);
if (pm_ret < 0)
return pm_ret;
return ret;
}
static int tsl2583_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
ret = tsl2583_set_pm_runtime_busy(chip, true);
if (ret < 0)
return ret;
mutex_lock(&chip->als_mutex);
ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
if (chan->type == IIO_LIGHT) {
chip->als_settings.als_gain_trim = val;
ret = 0;
}
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(gainadj); i++) {
if (gainadj[i].mean == val) {
chip->als_settings.als_gain = i;
ret = tsl2583_set_als_gain(chip);
break;
}
}
}
break;
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT && !val && val2 >= 50 &&
val2 <= 650 && !(val2 % 50)) {
chip->als_settings.als_time = val2;
ret = tsl2583_set_als_time(chip);
}
break;
default:
break;
}
mutex_unlock(&chip->als_mutex);
if (ret < 0) {
tsl2583_set_pm_runtime_busy(chip, false);
return ret;
}
ret = tsl2583_set_pm_runtime_busy(chip, false);
if (ret < 0)
return ret;
return ret;
}
static const struct iio_info tsl2583_info = {
.attrs = &tsl2583_attribute_group,
.read_raw = tsl2583_read_raw,
.write_raw = tsl2583_write_raw,
};
static int tsl2583_probe(struct i2c_client *clientp,
const struct i2c_device_id *idp)
{
int ret;
struct tsl2583_chip *chip;
struct iio_dev *indio_dev;
if (!i2c_check_functionality(clientp->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&clientp->dev, "%s: i2c smbus byte data functionality is unsupported\n",
__func__);
return -EOPNOTSUPP;
}
indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
chip->client = clientp;
i2c_set_clientdata(clientp, indio_dev);
mutex_init(&chip->als_mutex);
ret = i2c_smbus_read_byte_data(clientp,
TSL2583_CMD_REG | TSL2583_CHIPID);
if (ret < 0) {
dev_err(&clientp->dev,
"%s: failed to read the chip ID register\n", __func__);
return ret;
}
if ((ret & TSL2583_CHIP_ID_MASK) != TSL2583_CHIP_ID) {
dev_err(&clientp->dev, "%s: received an unknown chip ID %x\n",
__func__, ret);
return -EINVAL;
}
indio_dev->info = &tsl2583_info;
indio_dev->channels = tsl2583_channels;
indio_dev->num_channels = ARRAY_SIZE(tsl2583_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = chip->client->name;
pm_runtime_enable(&clientp->dev);
pm_runtime_set_autosuspend_delay(&clientp->dev,
TSL2583_POWER_OFF_DELAY_MS);
pm_runtime_use_autosuspend(&clientp->dev);
ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
if (ret) {
dev_err(&clientp->dev, "%s: iio registration failed\n",
__func__);
return ret;
}
/* Load up the V2 defaults (these are hard coded defaults for now) */
tsl2583_defaults(chip);
dev_info(&clientp->dev, "Light sensor found.\n");
return 0;
}
static int tsl2583_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct tsl2583_chip *chip = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
return tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
}
static int __maybe_unused tsl2583_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = tsl2583_set_power_state(chip, TSL2583_CNTL_PWR_OFF);
mutex_unlock(&chip->als_mutex);
return ret;
}
static int __maybe_unused tsl2583_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct tsl2583_chip *chip = iio_priv(indio_dev);
int ret;
mutex_lock(&chip->als_mutex);
ret = tsl2583_chip_init_and_power_on(indio_dev);
mutex_unlock(&chip->als_mutex);
return ret;
}
static const struct dev_pm_ops tsl2583_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(tsl2583_suspend, tsl2583_resume, NULL)
};
static const struct i2c_device_id tsl2583_idtable[] = {
{ "tsl2580", 0 },
{ "tsl2581", 1 },
{ "tsl2583", 2 },
{}
};
MODULE_DEVICE_TABLE(i2c, tsl2583_idtable);
static const struct of_device_id tsl2583_of_match[] = {
{ .compatible = "amstaos,tsl2580", },
{ .compatible = "amstaos,tsl2581", },
{ .compatible = "amstaos,tsl2583", },
{ },
};
MODULE_DEVICE_TABLE(of, tsl2583_of_match);
/* Driver definition */
static struct i2c_driver tsl2583_driver = {
.driver = {
.name = "tsl2583",
.pm = &tsl2583_pm_ops,
.of_match_table = tsl2583_of_match,
},
.id_table = tsl2583_idtable,
.probe = tsl2583_probe,
.remove = tsl2583_remove,
};
module_i2c_driver(tsl2583_driver);
MODULE_AUTHOR("J. August Brenner <jbrenner@taosinc.com>");
MODULE_AUTHOR("Brian Masney <masneyb@onstation.org>");
MODULE_DESCRIPTION("TAOS tsl2583 ambient light sensor driver");
MODULE_LICENSE("GPL");