linux/linux-5.18.11/drivers/gpu/drm/msm/adreno/adreno_gpu.c

1010 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
*/
#include <linux/ascii85.h>
#include <linux/interconnect.h>
#include <linux/qcom_scm.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/soc/qcom/mdt_loader.h>
#include <linux/nvmem-consumer.h>
#include <soc/qcom/ocmem.h>
#include "adreno_gpu.h"
#include "a6xx_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
static bool zap_available = true;
static int zap_shader_load_mdt(struct msm_gpu *gpu, const char *fwname,
u32 pasid)
{
struct device *dev = &gpu->pdev->dev;
const struct firmware *fw;
const char *signed_fwname = NULL;
struct device_node *np, *mem_np;
struct resource r;
phys_addr_t mem_phys;
ssize_t mem_size;
void *mem_region = NULL;
int ret;
if (!IS_ENABLED(CONFIG_ARCH_QCOM)) {
zap_available = false;
return -EINVAL;
}
np = of_get_child_by_name(dev->of_node, "zap-shader");
if (!np) {
zap_available = false;
return -ENODEV;
}
mem_np = of_parse_phandle(np, "memory-region", 0);
of_node_put(np);
if (!mem_np) {
zap_available = false;
return -EINVAL;
}
ret = of_address_to_resource(mem_np, 0, &r);
of_node_put(mem_np);
if (ret)
return ret;
mem_phys = r.start;
/*
* Check for a firmware-name property. This is the new scheme
* to handle firmware that may be signed with device specific
* keys, allowing us to have a different zap fw path for different
* devices.
*
* If the firmware-name property is found, we bypass the
* adreno_request_fw() mechanism, because we don't need to handle
* the /lib/firmware/qcom/... vs /lib/firmware/... case.
*
* If the firmware-name property is not found, for backwards
* compatibility we fall back to the fwname from the gpulist
* table.
*/
of_property_read_string_index(np, "firmware-name", 0, &signed_fwname);
if (signed_fwname) {
fwname = signed_fwname;
ret = request_firmware_direct(&fw, fwname, gpu->dev->dev);
if (ret)
fw = ERR_PTR(ret);
} else if (fwname) {
/* Request the MDT file from the default location: */
fw = adreno_request_fw(to_adreno_gpu(gpu), fwname);
} else {
/*
* For new targets, we require the firmware-name property,
* if a zap-shader is required, rather than falling back
* to a firmware name specified in gpulist.
*
* Because the firmware is signed with a (potentially)
* device specific key, having the name come from gpulist
* was a bad idea, and is only provided for backwards
* compatibility for older targets.
*/
return -ENODEV;
}
if (IS_ERR(fw)) {
DRM_DEV_ERROR(dev, "Unable to load %s\n", fwname);
return PTR_ERR(fw);
}
/* Figure out how much memory we need */
mem_size = qcom_mdt_get_size(fw);
if (mem_size < 0) {
ret = mem_size;
goto out;
}
if (mem_size > resource_size(&r)) {
DRM_DEV_ERROR(dev,
"memory region is too small to load the MDT\n");
ret = -E2BIG;
goto out;
}
/* Allocate memory for the firmware image */
mem_region = memremap(mem_phys, mem_size, MEMREMAP_WC);
if (!mem_region) {
ret = -ENOMEM;
goto out;
}
/*
* Load the rest of the MDT
*
* Note that we could be dealing with two different paths, since
* with upstream linux-firmware it would be in a qcom/ subdir..
* adreno_request_fw() handles this, but qcom_mdt_load() does
* not. But since we've already gotten through adreno_request_fw()
* we know which of the two cases it is:
*/
if (signed_fwname || (to_adreno_gpu(gpu)->fwloc == FW_LOCATION_LEGACY)) {
ret = qcom_mdt_load(dev, fw, fwname, pasid,
mem_region, mem_phys, mem_size, NULL);
} else {
char *newname;
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
ret = qcom_mdt_load(dev, fw, newname, pasid,
mem_region, mem_phys, mem_size, NULL);
kfree(newname);
}
if (ret)
goto out;
/* Send the image to the secure world */
ret = qcom_scm_pas_auth_and_reset(pasid);
/*
* If the scm call returns -EOPNOTSUPP we assume that this target
* doesn't need/support the zap shader so quietly fail
*/
if (ret == -EOPNOTSUPP)
zap_available = false;
else if (ret)
DRM_DEV_ERROR(dev, "Unable to authorize the image\n");
out:
if (mem_region)
memunmap(mem_region);
release_firmware(fw);
return ret;
}
int adreno_zap_shader_load(struct msm_gpu *gpu, u32 pasid)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct platform_device *pdev = gpu->pdev;
/* Short cut if we determine the zap shader isn't available/needed */
if (!zap_available)
return -ENODEV;
/* We need SCM to be able to load the firmware */
if (!qcom_scm_is_available()) {
DRM_DEV_ERROR(&pdev->dev, "SCM is not available\n");
return -EPROBE_DEFER;
}
return zap_shader_load_mdt(gpu, adreno_gpu->info->zapfw, pasid);
}
void adreno_set_llc_attributes(struct iommu_domain *iommu)
{
iommu_set_pgtable_quirks(iommu, IO_PGTABLE_QUIRK_ARM_OUTER_WBWA);
}
struct msm_gem_address_space *
adreno_iommu_create_address_space(struct msm_gpu *gpu,
struct platform_device *pdev)
{
struct iommu_domain *iommu;
struct msm_mmu *mmu;
struct msm_gem_address_space *aspace;
u64 start, size;
iommu = iommu_domain_alloc(&platform_bus_type);
if (!iommu)
return NULL;
mmu = msm_iommu_new(&pdev->dev, iommu);
if (IS_ERR(mmu)) {
iommu_domain_free(iommu);
return ERR_CAST(mmu);
}
/*
* Use the aperture start or SZ_16M, whichever is greater. This will
* ensure that we align with the allocated pagetable range while still
* allowing room in the lower 32 bits for GMEM and whatnot
*/
start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
size = iommu->geometry.aperture_end - start + 1;
aspace = msm_gem_address_space_create(mmu, "gpu",
start & GENMASK_ULL(48, 0), size);
if (IS_ERR(aspace) && !IS_ERR(mmu))
mmu->funcs->destroy(mmu);
return aspace;
}
int adreno_get_param(struct msm_gpu *gpu, struct msm_file_private *ctx,
uint32_t param, uint64_t *value)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
switch (param) {
case MSM_PARAM_GPU_ID:
*value = adreno_gpu->info->revn;
return 0;
case MSM_PARAM_GMEM_SIZE:
*value = adreno_gpu->gmem;
return 0;
case MSM_PARAM_GMEM_BASE:
*value = !adreno_is_a650_family(adreno_gpu) ? 0x100000 : 0;
return 0;
case MSM_PARAM_CHIP_ID:
*value = (uint64_t)adreno_gpu->rev.patchid |
((uint64_t)adreno_gpu->rev.minor << 8) |
((uint64_t)adreno_gpu->rev.major << 16) |
((uint64_t)adreno_gpu->rev.core << 24);
if (!adreno_gpu->info->revn)
*value |= ((uint64_t) adreno_gpu->speedbin) << 32;
return 0;
case MSM_PARAM_MAX_FREQ:
*value = adreno_gpu->base.fast_rate;
return 0;
case MSM_PARAM_TIMESTAMP:
if (adreno_gpu->funcs->get_timestamp) {
int ret;
pm_runtime_get_sync(&gpu->pdev->dev);
ret = adreno_gpu->funcs->get_timestamp(gpu, value);
pm_runtime_put_autosuspend(&gpu->pdev->dev);
return ret;
}
return -EINVAL;
case MSM_PARAM_PRIORITIES:
*value = gpu->nr_rings * NR_SCHED_PRIORITIES;
return 0;
case MSM_PARAM_PP_PGTABLE:
*value = 0;
return 0;
case MSM_PARAM_FAULTS:
if (ctx->aspace)
*value = gpu->global_faults + ctx->aspace->faults;
else
*value = gpu->global_faults;
return 0;
case MSM_PARAM_SUSPENDS:
*value = gpu->suspend_count;
return 0;
default:
DBG("%s: invalid param: %u", gpu->name, param);
return -EINVAL;
}
}
int adreno_set_param(struct msm_gpu *gpu, struct msm_file_private *ctx,
uint32_t param, uint64_t value)
{
switch (param) {
case MSM_PARAM_SYSPROF:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
return msm_file_private_set_sysprof(ctx, gpu, value);
default:
DBG("%s: invalid param: %u", gpu->name, param);
return -EINVAL;
}
}
const struct firmware *
adreno_request_fw(struct adreno_gpu *adreno_gpu, const char *fwname)
{
struct drm_device *drm = adreno_gpu->base.dev;
const struct firmware *fw = NULL;
char *newname;
int ret;
newname = kasprintf(GFP_KERNEL, "qcom/%s", fwname);
if (!newname)
return ERR_PTR(-ENOMEM);
/*
* Try first to load from qcom/$fwfile using a direct load (to avoid
* a potential timeout waiting for usermode helper)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_NEW)) {
ret = request_firmware_direct(&fw, newname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s from new location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_NEW;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Then try the legacy location without qcom/ prefix
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_LEGACY)) {
ret = request_firmware_direct(&fw, fwname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s from legacy location\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_LEGACY;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
fwname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
/*
* Finally fall back to request_firmware() for cases where the
* usermode helper is needed (I think mainly android)
*/
if ((adreno_gpu->fwloc == FW_LOCATION_UNKNOWN) ||
(adreno_gpu->fwloc == FW_LOCATION_HELPER)) {
ret = request_firmware(&fw, newname, drm->dev);
if (!ret) {
DRM_DEV_INFO(drm->dev, "loaded %s with helper\n",
newname);
adreno_gpu->fwloc = FW_LOCATION_HELPER;
goto out;
} else if (adreno_gpu->fwloc != FW_LOCATION_UNKNOWN) {
DRM_DEV_ERROR(drm->dev, "failed to load %s: %d\n",
newname, ret);
fw = ERR_PTR(ret);
goto out;
}
}
DRM_DEV_ERROR(drm->dev, "failed to load %s\n", fwname);
fw = ERR_PTR(-ENOENT);
out:
kfree(newname);
return fw;
}
int adreno_load_fw(struct adreno_gpu *adreno_gpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++) {
const struct firmware *fw;
if (!adreno_gpu->info->fw[i])
continue;
/* Skip if the firmware has already been loaded */
if (adreno_gpu->fw[i])
continue;
fw = adreno_request_fw(adreno_gpu, adreno_gpu->info->fw[i]);
if (IS_ERR(fw))
return PTR_ERR(fw);
adreno_gpu->fw[i] = fw;
}
return 0;
}
struct drm_gem_object *adreno_fw_create_bo(struct msm_gpu *gpu,
const struct firmware *fw, u64 *iova)
{
struct drm_gem_object *bo;
void *ptr;
ptr = msm_gem_kernel_new(gpu->dev, fw->size - 4,
MSM_BO_WC | MSM_BO_GPU_READONLY, gpu->aspace, &bo, iova);
if (IS_ERR(ptr))
return ERR_CAST(ptr);
memcpy(ptr, &fw->data[4], fw->size - 4);
msm_gem_put_vaddr(bo);
return bo;
}
int adreno_hw_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret, i;
VERB("%s", gpu->name);
ret = adreno_load_fw(adreno_gpu);
if (ret)
return ret;
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
if (!ring)
continue;
ring->cur = ring->start;
ring->next = ring->start;
/* reset completed fence seqno: */
ring->memptrs->fence = ring->fctx->completed_fence;
ring->memptrs->rptr = 0;
}
return 0;
}
/* Use this helper to read rptr, since a430 doesn't update rptr in memory */
static uint32_t get_rptr(struct adreno_gpu *adreno_gpu,
struct msm_ringbuffer *ring)
{
struct msm_gpu *gpu = &adreno_gpu->base;
return gpu->funcs->get_rptr(gpu, ring);
}
struct msm_ringbuffer *adreno_active_ring(struct msm_gpu *gpu)
{
return gpu->rb[0];
}
void adreno_recover(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
int ret;
// XXX pm-runtime?? we *need* the device to be off after this
// so maybe continuing to call ->pm_suspend/resume() is better?
gpu->funcs->pm_suspend(gpu);
gpu->funcs->pm_resume(gpu);
ret = msm_gpu_hw_init(gpu);
if (ret) {
DRM_DEV_ERROR(dev->dev, "gpu hw init failed: %d\n", ret);
/* hmm, oh well? */
}
}
void adreno_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, u32 reg)
{
uint32_t wptr;
/* Copy the shadow to the actual register */
ring->cur = ring->next;
/*
* Mask wptr value that we calculate to fit in the HW range. This is
* to account for the possibility that the last command fit exactly into
* the ringbuffer and rb->next hasn't wrapped to zero yet
*/
wptr = get_wptr(ring);
/* ensure writes to ringbuffer have hit system memory: */
mb();
gpu_write(gpu, reg, wptr);
}
bool adreno_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
uint32_t wptr = get_wptr(ring);
/* wait for CP to drain ringbuffer: */
if (!spin_until(get_rptr(adreno_gpu, ring) == wptr))
return true;
/* TODO maybe we need to reset GPU here to recover from hang? */
DRM_ERROR("%s: timeout waiting to drain ringbuffer %d rptr/wptr = %X/%X\n",
gpu->name, ring->id, get_rptr(adreno_gpu, ring), wptr);
return false;
}
int adreno_gpu_state_get(struct msm_gpu *gpu, struct msm_gpu_state *state)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i, count = 0;
WARN_ON(!mutex_is_locked(&gpu->lock));
kref_init(&state->ref);
ktime_get_real_ts64(&state->time);
for (i = 0; i < gpu->nr_rings; i++) {
int size = 0, j;
state->ring[i].fence = gpu->rb[i]->memptrs->fence;
state->ring[i].iova = gpu->rb[i]->iova;
state->ring[i].seqno = gpu->rb[i]->seqno;
state->ring[i].rptr = get_rptr(adreno_gpu, gpu->rb[i]);
state->ring[i].wptr = get_wptr(gpu->rb[i]);
/* Copy at least 'wptr' dwords of the data */
size = state->ring[i].wptr;
/* After wptr find the last non zero dword to save space */
for (j = state->ring[i].wptr; j < MSM_GPU_RINGBUFFER_SZ >> 2; j++)
if (gpu->rb[i]->start[j])
size = j + 1;
if (size) {
state->ring[i].data = kvmalloc(size << 2, GFP_KERNEL);
if (state->ring[i].data) {
memcpy(state->ring[i].data, gpu->rb[i]->start, size << 2);
state->ring[i].data_size = size << 2;
}
}
}
/* Some targets prefer to collect their own registers */
if (!adreno_gpu->registers)
return 0;
/* Count the number of registers */
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2)
count += adreno_gpu->registers[i + 1] -
adreno_gpu->registers[i] + 1;
state->registers = kcalloc(count * 2, sizeof(u32), GFP_KERNEL);
if (state->registers) {
int pos = 0;
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
u32 start = adreno_gpu->registers[i];
u32 end = adreno_gpu->registers[i + 1];
u32 addr;
for (addr = start; addr <= end; addr++) {
state->registers[pos++] = addr;
state->registers[pos++] = gpu_read(gpu, addr);
}
}
state->nr_registers = count;
}
return 0;
}
void adreno_gpu_state_destroy(struct msm_gpu_state *state)
{
int i;
for (i = 0; i < ARRAY_SIZE(state->ring); i++)
kvfree(state->ring[i].data);
for (i = 0; state->bos && i < state->nr_bos; i++)
kvfree(state->bos[i].data);
kfree(state->bos);
kfree(state->comm);
kfree(state->cmd);
kfree(state->registers);
}
static void adreno_gpu_state_kref_destroy(struct kref *kref)
{
struct msm_gpu_state *state = container_of(kref,
struct msm_gpu_state, ref);
adreno_gpu_state_destroy(state);
kfree(state);
}
int adreno_gpu_state_put(struct msm_gpu_state *state)
{
if (IS_ERR_OR_NULL(state))
return 1;
return kref_put(&state->ref, adreno_gpu_state_kref_destroy);
}
#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
static char *adreno_gpu_ascii85_encode(u32 *src, size_t len)
{
void *buf;
size_t buf_itr = 0, buffer_size;
char out[ASCII85_BUFSZ];
long l;
int i;
if (!src || !len)
return NULL;
l = ascii85_encode_len(len);
/*
* Ascii85 outputs either a 5 byte string or a 1 byte string. So we
* account for the worst case of 5 bytes per dword plus the 1 for '\0'
*/
buffer_size = (l * 5) + 1;
buf = kvmalloc(buffer_size, GFP_KERNEL);
if (!buf)
return NULL;
for (i = 0; i < l; i++)
buf_itr += scnprintf(buf + buf_itr, buffer_size - buf_itr, "%s",
ascii85_encode(src[i], out));
return buf;
}
/* len is expected to be in bytes */
void adreno_show_object(struct drm_printer *p, void **ptr, int len,
bool *encoded)
{
if (!*ptr || !len)
return;
if (!*encoded) {
long datalen, i;
u32 *buf = *ptr;
/*
* Only dump the non-zero part of the buffer - rarely will
* any data completely fill the entire allocated size of
* the buffer.
*/
for (datalen = 0, i = 0; i < len >> 2; i++)
if (buf[i])
datalen = ((i + 1) << 2);
/*
* If we reach here, then the originally captured binary buffer
* will be replaced with the ascii85 encoded string
*/
*ptr = adreno_gpu_ascii85_encode(buf, datalen);
kvfree(buf);
*encoded = true;
}
if (!*ptr)
return;
drm_puts(p, " data: !!ascii85 |\n");
drm_puts(p, " ");
drm_puts(p, *ptr);
drm_puts(p, "\n");
}
void adreno_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
if (IS_ERR_OR_NULL(state))
return;
drm_printf(p, "revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
/*
* If this is state collected due to iova fault, so fault related info
*
* TTBR0 would not be zero, so this is a good way to distinguish
*/
if (state->fault_info.ttbr0) {
const struct msm_gpu_fault_info *info = &state->fault_info;
drm_puts(p, "fault-info:\n");
drm_printf(p, " - ttbr0=%.16llx\n", info->ttbr0);
drm_printf(p, " - iova=%.16lx\n", info->iova);
drm_printf(p, " - dir=%s\n", info->flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ");
drm_printf(p, " - type=%s\n", info->type);
drm_printf(p, " - source=%s\n", info->block);
}
drm_printf(p, "rbbm-status: 0x%08x\n", state->rbbm_status);
drm_puts(p, "ringbuffer:\n");
for (i = 0; i < gpu->nr_rings; i++) {
drm_printf(p, " - id: %d\n", i);
drm_printf(p, " iova: 0x%016llx\n", state->ring[i].iova);
drm_printf(p, " last-fence: %d\n", state->ring[i].seqno);
drm_printf(p, " retired-fence: %d\n", state->ring[i].fence);
drm_printf(p, " rptr: %d\n", state->ring[i].rptr);
drm_printf(p, " wptr: %d\n", state->ring[i].wptr);
drm_printf(p, " size: %d\n", MSM_GPU_RINGBUFFER_SZ);
adreno_show_object(p, &state->ring[i].data,
state->ring[i].data_size, &state->ring[i].encoded);
}
if (state->bos) {
drm_puts(p, "bos:\n");
for (i = 0; i < state->nr_bos; i++) {
drm_printf(p, " - iova: 0x%016llx\n",
state->bos[i].iova);
drm_printf(p, " size: %zd\n", state->bos[i].size);
adreno_show_object(p, &state->bos[i].data,
state->bos[i].size, &state->bos[i].encoded);
}
}
if (state->nr_registers) {
drm_puts(p, "registers:\n");
for (i = 0; i < state->nr_registers; i++) {
drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n",
state->registers[i * 2] << 2,
state->registers[(i * 2) + 1]);
}
}
}
#endif
/* Dump common gpu status and scratch registers on any hang, to make
* the hangcheck logs more useful. The scratch registers seem always
* safe to read when GPU has hung (unlike some other regs, depending
* on how the GPU hung), and they are useful to match up to cmdstream
* dumps when debugging hangs:
*/
void adreno_dump_info(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
printk("revision: %d (%d.%d.%d.%d)\n",
adreno_gpu->info->revn, adreno_gpu->rev.core,
adreno_gpu->rev.major, adreno_gpu->rev.minor,
adreno_gpu->rev.patchid);
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
printk("rb %d: fence: %d/%d\n", i,
ring->memptrs->fence,
ring->seqno);
printk("rptr: %d\n", get_rptr(adreno_gpu, ring));
printk("rb wptr: %d\n", get_wptr(ring));
}
}
/* would be nice to not have to duplicate the _show() stuff with printk(): */
void adreno_dump(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int i;
if (!adreno_gpu->registers)
return;
/* dump these out in a form that can be parsed by demsm: */
printk("IO:region %s 00000000 00020000\n", gpu->name);
for (i = 0; adreno_gpu->registers[i] != ~0; i += 2) {
uint32_t start = adreno_gpu->registers[i];
uint32_t end = adreno_gpu->registers[i+1];
uint32_t addr;
for (addr = start; addr <= end; addr++) {
uint32_t val = gpu_read(gpu, addr);
printk("IO:R %08x %08x\n", addr<<2, val);
}
}
}
static uint32_t ring_freewords(struct msm_ringbuffer *ring)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(ring->gpu);
uint32_t size = MSM_GPU_RINGBUFFER_SZ >> 2;
/* Use ring->next to calculate free size */
uint32_t wptr = ring->next - ring->start;
uint32_t rptr = get_rptr(adreno_gpu, ring);
return (rptr + (size - 1) - wptr) % size;
}
void adreno_wait_ring(struct msm_ringbuffer *ring, uint32_t ndwords)
{
if (spin_until(ring_freewords(ring) >= ndwords))
DRM_DEV_ERROR(ring->gpu->dev->dev,
"timeout waiting for space in ringbuffer %d\n",
ring->id);
}
/* Get legacy powerlevels from qcom,gpu-pwrlevels and populate the opp table */
static int adreno_get_legacy_pwrlevels(struct device *dev)
{
struct device_node *child, *node;
int ret;
node = of_get_compatible_child(dev->of_node, "qcom,gpu-pwrlevels");
if (!node) {
DRM_DEV_DEBUG(dev, "Could not find the GPU powerlevels\n");
return -ENXIO;
}
for_each_child_of_node(node, child) {
unsigned int val;
ret = of_property_read_u32(child, "qcom,gpu-freq", &val);
if (ret)
continue;
/*
* Skip the intentionally bogus clock value found at the bottom
* of most legacy frequency tables
*/
if (val != 27000000)
dev_pm_opp_add(dev, val, 0);
}
of_node_put(node);
return 0;
}
static void adreno_get_pwrlevels(struct device *dev,
struct msm_gpu *gpu)
{
unsigned long freq = ULONG_MAX;
struct dev_pm_opp *opp;
int ret;
gpu->fast_rate = 0;
/* You down with OPP? */
if (!of_find_property(dev->of_node, "operating-points-v2", NULL))
ret = adreno_get_legacy_pwrlevels(dev);
else {
ret = devm_pm_opp_of_add_table(dev);
if (ret)
DRM_DEV_ERROR(dev, "Unable to set the OPP table\n");
}
if (!ret) {
/* Find the fastest defined rate */
opp = dev_pm_opp_find_freq_floor(dev, &freq);
if (!IS_ERR(opp)) {
gpu->fast_rate = freq;
dev_pm_opp_put(opp);
}
}
if (!gpu->fast_rate) {
dev_warn(dev,
"Could not find a clock rate. Using a reasonable default\n");
/* Pick a suitably safe clock speed for any target */
gpu->fast_rate = 200000000;
}
DBG("fast_rate=%u, slow_rate=27000000", gpu->fast_rate);
}
int adreno_gpu_ocmem_init(struct device *dev, struct adreno_gpu *adreno_gpu,
struct adreno_ocmem *adreno_ocmem)
{
struct ocmem_buf *ocmem_hdl;
struct ocmem *ocmem;
ocmem = of_get_ocmem(dev);
if (IS_ERR(ocmem)) {
if (PTR_ERR(ocmem) == -ENODEV) {
/*
* Return success since either the ocmem property was
* not specified in device tree, or ocmem support is
* not compiled into the kernel.
*/
return 0;
}
return PTR_ERR(ocmem);
}
ocmem_hdl = ocmem_allocate(ocmem, OCMEM_GRAPHICS, adreno_gpu->gmem);
if (IS_ERR(ocmem_hdl))
return PTR_ERR(ocmem_hdl);
adreno_ocmem->ocmem = ocmem;
adreno_ocmem->base = ocmem_hdl->addr;
adreno_ocmem->hdl = ocmem_hdl;
adreno_gpu->gmem = ocmem_hdl->len;
return 0;
}
void adreno_gpu_ocmem_cleanup(struct adreno_ocmem *adreno_ocmem)
{
if (adreno_ocmem && adreno_ocmem->base)
ocmem_free(adreno_ocmem->ocmem, OCMEM_GRAPHICS,
adreno_ocmem->hdl);
}
int adreno_read_speedbin(struct device *dev, u32 *speedbin)
{
return nvmem_cell_read_variable_le_u32(dev, "speed_bin", speedbin);
}
int adreno_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct adreno_gpu *adreno_gpu,
const struct adreno_gpu_funcs *funcs, int nr_rings)
{
struct device *dev = &pdev->dev;
struct adreno_platform_config *config = dev->platform_data;
struct msm_gpu_config adreno_gpu_config = { 0 };
struct msm_gpu *gpu = &adreno_gpu->base;
struct adreno_rev *rev = &config->rev;
const char *gpu_name;
u32 speedbin;
adreno_gpu->funcs = funcs;
adreno_gpu->info = adreno_info(config->rev);
adreno_gpu->gmem = adreno_gpu->info->gmem;
adreno_gpu->revn = adreno_gpu->info->revn;
adreno_gpu->rev = *rev;
if (adreno_read_speedbin(dev, &speedbin) || !speedbin)
speedbin = 0xffff;
adreno_gpu->speedbin = (uint16_t) (0xffff & speedbin);
gpu_name = adreno_gpu->info->name;
if (!gpu_name) {
gpu_name = devm_kasprintf(dev, GFP_KERNEL, "%d.%d.%d.%d",
rev->core, rev->major, rev->minor,
rev->patchid);
if (!gpu_name)
return -ENOMEM;
}
adreno_gpu_config.ioname = "kgsl_3d0_reg_memory";
adreno_gpu_config.nr_rings = nr_rings;
adreno_get_pwrlevels(dev, gpu);
pm_runtime_set_autosuspend_delay(dev,
adreno_gpu->info->inactive_period);
pm_runtime_use_autosuspend(dev);
pm_runtime_enable(dev);
return msm_gpu_init(drm, pdev, &adreno_gpu->base, &funcs->base,
gpu_name, &adreno_gpu_config);
}
void adreno_gpu_cleanup(struct adreno_gpu *adreno_gpu)
{
struct msm_gpu *gpu = &adreno_gpu->base;
struct msm_drm_private *priv = gpu->dev->dev_private;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(adreno_gpu->info->fw); i++)
release_firmware(adreno_gpu->fw[i]);
if (pm_runtime_enabled(&priv->gpu_pdev->dev))
pm_runtime_disable(&priv->gpu_pdev->dev);
msm_gpu_cleanup(&adreno_gpu->base);
}