837 lines
24 KiB
C
837 lines
24 KiB
C
/*
|
|
* Copyright 2018 Advanced Micro Devices, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
|
|
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
* USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
*/
|
|
|
|
#include <linux/io-64-nonatomic-lo-hi.h>
|
|
#ifdef CONFIG_X86
|
|
#include <asm/hypervisor.h>
|
|
#endif
|
|
|
|
#include "amdgpu.h"
|
|
#include "amdgpu_gmc.h"
|
|
#include "amdgpu_ras.h"
|
|
#include "amdgpu_xgmi.h"
|
|
|
|
#include <drm/drm_drv.h>
|
|
|
|
/**
|
|
* amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Allocate video memory for pdb0 and map it for CPU access
|
|
* Returns 0 for success, error for failure.
|
|
*/
|
|
int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
|
|
{
|
|
int r;
|
|
struct amdgpu_bo_param bp;
|
|
u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
|
|
uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
|
|
uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift;
|
|
|
|
memset(&bp, 0, sizeof(bp));
|
|
bp.size = PAGE_ALIGN((npdes + 1) * 8);
|
|
bp.byte_align = PAGE_SIZE;
|
|
bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
|
|
bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
|
|
AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
|
|
bp.type = ttm_bo_type_kernel;
|
|
bp.resv = NULL;
|
|
bp.bo_ptr_size = sizeof(struct amdgpu_bo);
|
|
|
|
r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
|
|
if (r)
|
|
return r;
|
|
|
|
r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
|
|
if (unlikely(r != 0))
|
|
goto bo_reserve_failure;
|
|
|
|
r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
|
|
if (r)
|
|
goto bo_pin_failure;
|
|
r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
|
|
if (r)
|
|
goto bo_kmap_failure;
|
|
|
|
amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
|
|
return 0;
|
|
|
|
bo_kmap_failure:
|
|
amdgpu_bo_unpin(adev->gmc.pdb0_bo);
|
|
bo_pin_failure:
|
|
amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
|
|
bo_reserve_failure:
|
|
amdgpu_bo_unref(&adev->gmc.pdb0_bo);
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
|
|
*
|
|
* @bo: the BO to get the PDE for
|
|
* @level: the level in the PD hirarchy
|
|
* @addr: resulting addr
|
|
* @flags: resulting flags
|
|
*
|
|
* Get the address and flags to be used for a PDE (Page Directory Entry).
|
|
*/
|
|
void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
|
|
uint64_t *addr, uint64_t *flags)
|
|
{
|
|
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
|
|
|
|
switch (bo->tbo.resource->mem_type) {
|
|
case TTM_PL_TT:
|
|
*addr = bo->tbo.ttm->dma_address[0];
|
|
break;
|
|
case TTM_PL_VRAM:
|
|
*addr = amdgpu_bo_gpu_offset(bo);
|
|
break;
|
|
default:
|
|
*addr = 0;
|
|
break;
|
|
}
|
|
*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
|
|
amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
|
|
}
|
|
|
|
/*
|
|
* amdgpu_gmc_pd_addr - return the address of the root directory
|
|
*/
|
|
uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
|
|
{
|
|
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
|
|
uint64_t pd_addr;
|
|
|
|
/* TODO: move that into ASIC specific code */
|
|
if (adev->asic_type >= CHIP_VEGA10) {
|
|
uint64_t flags = AMDGPU_PTE_VALID;
|
|
|
|
amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
|
|
pd_addr |= flags;
|
|
} else {
|
|
pd_addr = amdgpu_bo_gpu_offset(bo);
|
|
}
|
|
return pd_addr;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_set_pte_pde - update the page tables using CPU
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @cpu_pt_addr: cpu address of the page table
|
|
* @gpu_page_idx: entry in the page table to update
|
|
* @addr: dst addr to write into pte/pde
|
|
* @flags: access flags
|
|
*
|
|
* Update the page tables using CPU.
|
|
*/
|
|
int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
|
|
uint32_t gpu_page_idx, uint64_t addr,
|
|
uint64_t flags)
|
|
{
|
|
void __iomem *ptr = (void *)cpu_pt_addr;
|
|
uint64_t value;
|
|
|
|
/*
|
|
* The following is for PTE only. GART does not have PDEs.
|
|
*/
|
|
value = addr & 0x0000FFFFFFFFF000ULL;
|
|
value |= flags;
|
|
writeq(value, ptr + (gpu_page_idx * 8));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_agp_addr - return the address in the AGP address space
|
|
*
|
|
* @bo: TTM BO which needs the address, must be in GTT domain
|
|
*
|
|
* Tries to figure out how to access the BO through the AGP aperture. Returns
|
|
* AMDGPU_BO_INVALID_OFFSET if that is not possible.
|
|
*/
|
|
uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
|
|
{
|
|
struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
|
|
|
|
if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
|
|
return AMDGPU_BO_INVALID_OFFSET;
|
|
|
|
if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
|
|
return AMDGPU_BO_INVALID_OFFSET;
|
|
|
|
return adev->gmc.agp_start + bo->ttm->dma_address[0];
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_vram_location - try to find VRAM location
|
|
*
|
|
* @adev: amdgpu device structure holding all necessary information
|
|
* @mc: memory controller structure holding memory information
|
|
* @base: base address at which to put VRAM
|
|
*
|
|
* Function will try to place VRAM at base address provided
|
|
* as parameter.
|
|
*/
|
|
void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
|
|
u64 base)
|
|
{
|
|
uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
|
|
|
|
mc->vram_start = base;
|
|
mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
|
|
if (limit && limit < mc->real_vram_size)
|
|
mc->real_vram_size = limit;
|
|
|
|
if (mc->xgmi.num_physical_nodes == 0) {
|
|
mc->fb_start = mc->vram_start;
|
|
mc->fb_end = mc->vram_end;
|
|
}
|
|
dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
|
|
mc->mc_vram_size >> 20, mc->vram_start,
|
|
mc->vram_end, mc->real_vram_size >> 20);
|
|
}
|
|
|
|
/** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
|
|
*
|
|
* @adev: amdgpu device structure holding all necessary information
|
|
* @mc: memory controller structure holding memory information
|
|
*
|
|
* This function is only used if use GART for FB translation. In such
|
|
* case, we use sysvm aperture (vmid0 page tables) for both vram
|
|
* and gart (aka system memory) access.
|
|
*
|
|
* GPUVM (and our organization of vmid0 page tables) require sysvm
|
|
* aperture to be placed at a location aligned with 8 times of native
|
|
* page size. For example, if vm_context0_cntl.page_table_block_size
|
|
* is 12, then native page size is 8G (2M*2^12), sysvm should start
|
|
* with a 64G aligned address. For simplicity, we just put sysvm at
|
|
* address 0. So vram start at address 0 and gart is right after vram.
|
|
*/
|
|
void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
|
|
{
|
|
u64 hive_vram_start = 0;
|
|
u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
|
|
mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
|
|
mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
|
|
mc->gart_start = hive_vram_end + 1;
|
|
mc->gart_end = mc->gart_start + mc->gart_size - 1;
|
|
mc->fb_start = hive_vram_start;
|
|
mc->fb_end = hive_vram_end;
|
|
dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
|
|
mc->mc_vram_size >> 20, mc->vram_start,
|
|
mc->vram_end, mc->real_vram_size >> 20);
|
|
dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
|
|
mc->gart_size >> 20, mc->gart_start, mc->gart_end);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_gart_location - try to find GART location
|
|
*
|
|
* @adev: amdgpu device structure holding all necessary information
|
|
* @mc: memory controller structure holding memory information
|
|
*
|
|
* Function will place try to place GART before or after VRAM.
|
|
* If GART size is bigger than space left then we ajust GART size.
|
|
* Thus function will never fails.
|
|
*/
|
|
void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
|
|
{
|
|
const uint64_t four_gb = 0x100000000ULL;
|
|
u64 size_af, size_bf;
|
|
/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
|
|
u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
|
|
|
|
/* VCE doesn't like it when BOs cross a 4GB segment, so align
|
|
* the GART base on a 4GB boundary as well.
|
|
*/
|
|
size_bf = mc->fb_start;
|
|
size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
|
|
|
|
if (mc->gart_size > max(size_bf, size_af)) {
|
|
dev_warn(adev->dev, "limiting GART\n");
|
|
mc->gart_size = max(size_bf, size_af);
|
|
}
|
|
|
|
if ((size_bf >= mc->gart_size && size_bf < size_af) ||
|
|
(size_af < mc->gart_size))
|
|
mc->gart_start = 0;
|
|
else
|
|
mc->gart_start = max_mc_address - mc->gart_size + 1;
|
|
|
|
mc->gart_start &= ~(four_gb - 1);
|
|
mc->gart_end = mc->gart_start + mc->gart_size - 1;
|
|
dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
|
|
mc->gart_size >> 20, mc->gart_start, mc->gart_end);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_agp_location - try to find AGP location
|
|
* @adev: amdgpu device structure holding all necessary information
|
|
* @mc: memory controller structure holding memory information
|
|
*
|
|
* Function will place try to find a place for the AGP BAR in the MC address
|
|
* space.
|
|
*
|
|
* AGP BAR will be assigned the largest available hole in the address space.
|
|
* Should be called after VRAM and GART locations are setup.
|
|
*/
|
|
void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
|
|
{
|
|
const uint64_t sixteen_gb = 1ULL << 34;
|
|
const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
|
|
u64 size_af, size_bf;
|
|
|
|
if (amdgpu_sriov_vf(adev)) {
|
|
mc->agp_start = 0xffffffffffff;
|
|
mc->agp_end = 0x0;
|
|
mc->agp_size = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
if (mc->fb_start > mc->gart_start) {
|
|
size_bf = (mc->fb_start & sixteen_gb_mask) -
|
|
ALIGN(mc->gart_end + 1, sixteen_gb);
|
|
size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
|
|
} else {
|
|
size_bf = mc->fb_start & sixteen_gb_mask;
|
|
size_af = (mc->gart_start & sixteen_gb_mask) -
|
|
ALIGN(mc->fb_end + 1, sixteen_gb);
|
|
}
|
|
|
|
if (size_bf > size_af) {
|
|
mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
|
|
mc->agp_size = size_bf;
|
|
} else {
|
|
mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
|
|
mc->agp_size = size_af;
|
|
}
|
|
|
|
mc->agp_end = mc->agp_start + mc->agp_size - 1;
|
|
dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
|
|
mc->agp_size >> 20, mc->agp_start, mc->agp_end);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
|
|
*
|
|
* @addr: 48 bit physical address, page aligned (36 significant bits)
|
|
* @pasid: 16 bit process address space identifier
|
|
*/
|
|
static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
|
|
{
|
|
return addr << 4 | pasid;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_filter_faults - filter VM faults
|
|
*
|
|
* @adev: amdgpu device structure
|
|
* @ih: interrupt ring that the fault received from
|
|
* @addr: address of the VM fault
|
|
* @pasid: PASID of the process causing the fault
|
|
* @timestamp: timestamp of the fault
|
|
*
|
|
* Returns:
|
|
* True if the fault was filtered and should not be processed further.
|
|
* False if the fault is a new one and needs to be handled.
|
|
*/
|
|
bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
|
|
struct amdgpu_ih_ring *ih, uint64_t addr,
|
|
uint16_t pasid, uint64_t timestamp)
|
|
{
|
|
struct amdgpu_gmc *gmc = &adev->gmc;
|
|
uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
|
|
struct amdgpu_gmc_fault *fault;
|
|
uint32_t hash;
|
|
|
|
/* Stale retry fault if timestamp goes backward */
|
|
if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
|
|
return true;
|
|
|
|
/* If we don't have space left in the ring buffer return immediately */
|
|
stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
|
|
AMDGPU_GMC_FAULT_TIMEOUT;
|
|
if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
|
|
return true;
|
|
|
|
/* Try to find the fault in the hash */
|
|
hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
|
|
fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
|
|
while (fault->timestamp >= stamp) {
|
|
uint64_t tmp;
|
|
|
|
if (atomic64_read(&fault->key) == key)
|
|
return true;
|
|
|
|
tmp = fault->timestamp;
|
|
fault = &gmc->fault_ring[fault->next];
|
|
|
|
/* Check if the entry was reused */
|
|
if (fault->timestamp >= tmp)
|
|
break;
|
|
}
|
|
|
|
/* Add the fault to the ring */
|
|
fault = &gmc->fault_ring[gmc->last_fault];
|
|
atomic64_set(&fault->key, key);
|
|
fault->timestamp = timestamp;
|
|
|
|
/* And update the hash */
|
|
fault->next = gmc->fault_hash[hash].idx;
|
|
gmc->fault_hash[hash].idx = gmc->last_fault++;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
|
|
*
|
|
* @adev: amdgpu device structure
|
|
* @addr: address of the VM fault
|
|
* @pasid: PASID of the process causing the fault
|
|
*
|
|
* Remove the address from fault filter, then future vm fault on this address
|
|
* will pass to retry fault handler to recover.
|
|
*/
|
|
void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
|
|
uint16_t pasid)
|
|
{
|
|
struct amdgpu_gmc *gmc = &adev->gmc;
|
|
uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
|
|
struct amdgpu_gmc_fault *fault;
|
|
uint32_t hash;
|
|
uint64_t tmp;
|
|
|
|
hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
|
|
fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
|
|
do {
|
|
if (atomic64_cmpxchg(&fault->key, key, 0) == key)
|
|
break;
|
|
|
|
tmp = fault->timestamp;
|
|
fault = &gmc->fault_ring[fault->next];
|
|
} while (fault->timestamp < tmp);
|
|
}
|
|
|
|
int amdgpu_gmc_ras_early_init(struct amdgpu_device *adev)
|
|
{
|
|
if (!adev->gmc.xgmi.connected_to_cpu) {
|
|
adev->gmc.xgmi.ras = &xgmi_ras;
|
|
amdgpu_ras_register_ras_block(adev, &adev->gmc.xgmi.ras->ras_block);
|
|
adev->gmc.xgmi.ras_if = &adev->gmc.xgmi.ras->ras_block.ras_comm;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* The latest engine allocation on gfx9/10 is:
|
|
* Engine 2, 3: firmware
|
|
* Engine 0, 1, 4~16: amdgpu ring,
|
|
* subject to change when ring number changes
|
|
* Engine 17: Gart flushes
|
|
*/
|
|
#define GFXHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3
|
|
#define MMHUB_FREE_VM_INV_ENGS_BITMAP 0x1FFF3
|
|
|
|
int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_ring *ring;
|
|
unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] =
|
|
{GFXHUB_FREE_VM_INV_ENGS_BITMAP, MMHUB_FREE_VM_INV_ENGS_BITMAP,
|
|
GFXHUB_FREE_VM_INV_ENGS_BITMAP};
|
|
unsigned i;
|
|
unsigned vmhub, inv_eng;
|
|
|
|
for (i = 0; i < adev->num_rings; ++i) {
|
|
ring = adev->rings[i];
|
|
vmhub = ring->funcs->vmhub;
|
|
|
|
if (ring == &adev->mes.ring)
|
|
continue;
|
|
|
|
inv_eng = ffs(vm_inv_engs[vmhub]);
|
|
if (!inv_eng) {
|
|
dev_err(adev->dev, "no VM inv eng for ring %s\n",
|
|
ring->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ring->vm_inv_eng = inv_eng - 1;
|
|
vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
|
|
|
|
dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
|
|
ring->name, ring->vm_inv_eng, ring->funcs->vmhub);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Check and set if an the device @adev supports Trusted Memory
|
|
* Zones (TMZ).
|
|
*/
|
|
void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
|
|
{
|
|
switch (adev->asic_type) {
|
|
case CHIP_RAVEN:
|
|
case CHIP_RENOIR:
|
|
if (amdgpu_tmz == 0) {
|
|
adev->gmc.tmz_enabled = false;
|
|
dev_info(adev->dev,
|
|
"Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
|
|
} else {
|
|
adev->gmc.tmz_enabled = true;
|
|
dev_info(adev->dev,
|
|
"Trusted Memory Zone (TMZ) feature enabled\n");
|
|
}
|
|
break;
|
|
case CHIP_NAVI10:
|
|
case CHIP_NAVI14:
|
|
case CHIP_NAVI12:
|
|
case CHIP_VANGOGH:
|
|
case CHIP_YELLOW_CARP:
|
|
case CHIP_IP_DISCOVERY:
|
|
/* Don't enable it by default yet.
|
|
*/
|
|
if (amdgpu_tmz < 1) {
|
|
adev->gmc.tmz_enabled = false;
|
|
dev_info(adev->dev,
|
|
"Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
|
|
} else {
|
|
adev->gmc.tmz_enabled = true;
|
|
dev_info(adev->dev,
|
|
"Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
|
|
}
|
|
break;
|
|
default:
|
|
adev->gmc.tmz_enabled = false;
|
|
dev_info(adev->dev,
|
|
"Trusted Memory Zone (TMZ) feature not supported\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_noretry_set -- set per asic noretry defaults
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* Set a per asic default for the no-retry parameter.
|
|
*
|
|
*/
|
|
void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_gmc *gmc = &adev->gmc;
|
|
|
|
switch (adev->ip_versions[GC_HWIP][0]) {
|
|
case IP_VERSION(9, 0, 1):
|
|
case IP_VERSION(9, 3, 0):
|
|
case IP_VERSION(9, 4, 0):
|
|
case IP_VERSION(9, 4, 1):
|
|
case IP_VERSION(9, 4, 2):
|
|
case IP_VERSION(10, 3, 3):
|
|
case IP_VERSION(10, 3, 4):
|
|
case IP_VERSION(10, 3, 5):
|
|
case IP_VERSION(10, 3, 6):
|
|
case IP_VERSION(10, 3, 7):
|
|
/*
|
|
* noretry = 0 will cause kfd page fault tests fail
|
|
* for some ASICs, so set default to 1 for these ASICs.
|
|
*/
|
|
if (amdgpu_noretry == -1)
|
|
gmc->noretry = 1;
|
|
else
|
|
gmc->noretry = amdgpu_noretry;
|
|
break;
|
|
default:
|
|
/* Raven currently has issues with noretry
|
|
* regardless of what we decide for other
|
|
* asics, we should leave raven with
|
|
* noretry = 0 until we root cause the
|
|
* issues.
|
|
*
|
|
* default this to 0 for now, but we may want
|
|
* to change this in the future for certain
|
|
* GPUs as it can increase performance in
|
|
* certain cases.
|
|
*/
|
|
if (amdgpu_noretry == -1)
|
|
gmc->noretry = 0;
|
|
else
|
|
gmc->noretry = amdgpu_noretry;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
|
|
bool enable)
|
|
{
|
|
struct amdgpu_vmhub *hub;
|
|
u32 tmp, reg, i;
|
|
|
|
hub = &adev->vmhub[hub_type];
|
|
for (i = 0; i < 16; i++) {
|
|
reg = hub->vm_context0_cntl + hub->ctx_distance * i;
|
|
|
|
tmp = (hub_type == AMDGPU_GFXHUB_0) ?
|
|
RREG32_SOC15_IP(GC, reg) :
|
|
RREG32_SOC15_IP(MMHUB, reg);
|
|
|
|
if (enable)
|
|
tmp |= hub->vm_cntx_cntl_vm_fault;
|
|
else
|
|
tmp &= ~hub->vm_cntx_cntl_vm_fault;
|
|
|
|
(hub_type == AMDGPU_GFXHUB_0) ?
|
|
WREG32_SOC15_IP(GC, reg, tmp) :
|
|
WREG32_SOC15_IP(MMHUB, reg, tmp);
|
|
}
|
|
}
|
|
|
|
void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
|
|
{
|
|
unsigned size;
|
|
|
|
/*
|
|
* Some ASICs need to reserve a region of video memory to avoid access
|
|
* from driver
|
|
*/
|
|
adev->mman.stolen_reserved_offset = 0;
|
|
adev->mman.stolen_reserved_size = 0;
|
|
|
|
/*
|
|
* TODO:
|
|
* Currently there is a bug where some memory client outside
|
|
* of the driver writes to first 8M of VRAM on S3 resume,
|
|
* this overrides GART which by default gets placed in first 8M and
|
|
* causes VM_FAULTS once GTT is accessed.
|
|
* Keep the stolen memory reservation until the while this is not solved.
|
|
*/
|
|
switch (adev->asic_type) {
|
|
case CHIP_VEGA10:
|
|
adev->mman.keep_stolen_vga_memory = true;
|
|
/*
|
|
* VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
|
|
*/
|
|
#ifdef CONFIG_X86
|
|
if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
|
|
adev->mman.stolen_reserved_offset = 0x500000;
|
|
adev->mman.stolen_reserved_size = 0x200000;
|
|
}
|
|
#endif
|
|
break;
|
|
case CHIP_RAVEN:
|
|
case CHIP_RENOIR:
|
|
adev->mman.keep_stolen_vga_memory = true;
|
|
break;
|
|
case CHIP_YELLOW_CARP:
|
|
if (amdgpu_discovery == 0) {
|
|
adev->mman.stolen_reserved_offset = 0x1ffb0000;
|
|
adev->mman.stolen_reserved_size = 64 * PAGE_SIZE;
|
|
}
|
|
break;
|
|
default:
|
|
adev->mman.keep_stolen_vga_memory = false;
|
|
break;
|
|
}
|
|
|
|
if (amdgpu_sriov_vf(adev) ||
|
|
!amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_DCE)) {
|
|
size = 0;
|
|
} else {
|
|
size = amdgpu_gmc_get_vbios_fb_size(adev);
|
|
|
|
if (adev->mman.keep_stolen_vga_memory)
|
|
size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
|
|
}
|
|
|
|
/* set to 0 if the pre-OS buffer uses up most of vram */
|
|
if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
|
|
size = 0;
|
|
|
|
if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
|
|
adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
|
|
adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
|
|
} else {
|
|
adev->mman.stolen_vga_size = size;
|
|
adev->mman.stolen_extended_size = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_init_pdb0 - initialize PDB0
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
*
|
|
* This function is only used when GART page table is used
|
|
* for FB address translatioin. In such a case, we construct
|
|
* a 2-level system VM page table: PDB0->PTB, to cover both
|
|
* VRAM of the hive and system memory.
|
|
*
|
|
* PDB0 is static, initialized once on driver initialization.
|
|
* The first n entries of PDB0 are used as PTE by setting
|
|
* P bit to 1, pointing to VRAM. The n+1'th entry points
|
|
* to a big PTB covering system memory.
|
|
*
|
|
*/
|
|
void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
|
|
{
|
|
int i;
|
|
uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
|
|
/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
|
|
*/
|
|
u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
|
|
u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
|
|
u64 vram_addr = adev->vm_manager.vram_base_offset -
|
|
adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
|
|
u64 vram_end = vram_addr + vram_size;
|
|
u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
|
|
int idx;
|
|
|
|
if (!drm_dev_enter(adev_to_drm(adev), &idx))
|
|
return;
|
|
|
|
flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
|
|
flags |= AMDGPU_PTE_WRITEABLE;
|
|
flags |= AMDGPU_PTE_SNOOPED;
|
|
flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
|
|
flags |= AMDGPU_PDE_PTE;
|
|
|
|
/* The first n PDE0 entries are used as PTE,
|
|
* pointing to vram
|
|
*/
|
|
for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
|
|
amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
|
|
|
|
/* The n+1'th PDE0 entry points to a huge
|
|
* PTB who has more than 512 entries each
|
|
* pointing to a 4K system page
|
|
*/
|
|
flags = AMDGPU_PTE_VALID;
|
|
flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED;
|
|
/* Requires gart_ptb_gpu_pa to be 4K aligned */
|
|
amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
|
|
drm_dev_exit(idx);
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
|
|
* address
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @mc_addr: MC address of buffer
|
|
*/
|
|
uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
|
|
{
|
|
return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
|
|
* GPU's view
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @bo: amdgpu buffer object
|
|
*/
|
|
uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
|
|
{
|
|
return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
|
|
}
|
|
|
|
/**
|
|
* amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address
|
|
* from CPU's view
|
|
*
|
|
* @adev: amdgpu_device pointer
|
|
* @bo: amdgpu buffer object
|
|
*/
|
|
uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
|
|
{
|
|
return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base;
|
|
}
|
|
|
|
int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
|
|
{
|
|
struct amdgpu_bo *vram_bo = NULL;
|
|
uint64_t vram_gpu = 0;
|
|
void *vram_ptr = NULL;
|
|
|
|
int ret, size = 0x100000;
|
|
uint8_t cptr[10];
|
|
|
|
ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
|
|
AMDGPU_GEM_DOMAIN_VRAM,
|
|
&vram_bo,
|
|
&vram_gpu,
|
|
&vram_ptr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memset(vram_ptr, 0x86, size);
|
|
memset(cptr, 0x86, 10);
|
|
|
|
/**
|
|
* Check the start, the mid, and the end of the memory if the content of
|
|
* each byte is the pattern "0x86". If yes, we suppose the vram bo is
|
|
* workable.
|
|
*
|
|
* Note: If check the each byte of whole 1M bo, it will cost too many
|
|
* seconds, so here, we just pick up three parts for emulation.
|
|
*/
|
|
ret = memcmp(vram_ptr, cptr, 10);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = memcmp(vram_ptr + (size / 2), cptr, 10);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = memcmp(vram_ptr + size - 10, cptr, 10);
|
|
if (ret)
|
|
return ret;
|
|
|
|
amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
|
|
&vram_ptr);
|
|
|
|
return 0;
|
|
}
|