linux/linux-5.18.11/drivers/fpga/dfl-fme-perf.c

1023 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for FPGA Management Engine (FME) Global Performance Reporting
*
* Copyright 2019 Intel Corporation, Inc.
*
* Authors:
* Kang Luwei <luwei.kang@intel.com>
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
* Wu Hao <hao.wu@intel.com>
* Xu Yilun <yilun.xu@intel.com>
* Joseph Grecco <joe.grecco@intel.com>
* Enno Luebbers <enno.luebbers@intel.com>
* Tim Whisonant <tim.whisonant@intel.com>
* Ananda Ravuri <ananda.ravuri@intel.com>
* Mitchel, Henry <henry.mitchel@intel.com>
*/
#include <linux/perf_event.h>
#include "dfl.h"
#include "dfl-fme.h"
/*
* Performance Counter Registers for Cache.
*
* Cache Events are listed below as CACHE_EVNT_*.
*/
#define CACHE_CTRL 0x8
#define CACHE_RESET_CNTR BIT_ULL(0)
#define CACHE_FREEZE_CNTR BIT_ULL(8)
#define CACHE_CTRL_EVNT GENMASK_ULL(19, 16)
#define CACHE_EVNT_RD_HIT 0x0
#define CACHE_EVNT_WR_HIT 0x1
#define CACHE_EVNT_RD_MISS 0x2
#define CACHE_EVNT_WR_MISS 0x3
#define CACHE_EVNT_RSVD 0x4
#define CACHE_EVNT_HOLD_REQ 0x5
#define CACHE_EVNT_DATA_WR_PORT_CONTEN 0x6
#define CACHE_EVNT_TAG_WR_PORT_CONTEN 0x7
#define CACHE_EVNT_TX_REQ_STALL 0x8
#define CACHE_EVNT_RX_REQ_STALL 0x9
#define CACHE_EVNT_EVICTIONS 0xa
#define CACHE_EVNT_MAX CACHE_EVNT_EVICTIONS
#define CACHE_CHANNEL_SEL BIT_ULL(20)
#define CACHE_CHANNEL_RD 0
#define CACHE_CHANNEL_WR 1
#define CACHE_CNTR0 0x10
#define CACHE_CNTR1 0x18
#define CACHE_CNTR_EVNT_CNTR GENMASK_ULL(47, 0)
#define CACHE_CNTR_EVNT GENMASK_ULL(63, 60)
/*
* Performance Counter Registers for Fabric.
*
* Fabric Events are listed below as FAB_EVNT_*
*/
#define FAB_CTRL 0x20
#define FAB_RESET_CNTR BIT_ULL(0)
#define FAB_FREEZE_CNTR BIT_ULL(8)
#define FAB_CTRL_EVNT GENMASK_ULL(19, 16)
#define FAB_EVNT_PCIE0_RD 0x0
#define FAB_EVNT_PCIE0_WR 0x1
#define FAB_EVNT_PCIE1_RD 0x2
#define FAB_EVNT_PCIE1_WR 0x3
#define FAB_EVNT_UPI_RD 0x4
#define FAB_EVNT_UPI_WR 0x5
#define FAB_EVNT_MMIO_RD 0x6
#define FAB_EVNT_MMIO_WR 0x7
#define FAB_EVNT_MAX FAB_EVNT_MMIO_WR
#define FAB_PORT_ID GENMASK_ULL(21, 20)
#define FAB_PORT_FILTER BIT_ULL(23)
#define FAB_PORT_FILTER_DISABLE 0
#define FAB_PORT_FILTER_ENABLE 1
#define FAB_CNTR 0x28
#define FAB_CNTR_EVNT_CNTR GENMASK_ULL(59, 0)
#define FAB_CNTR_EVNT GENMASK_ULL(63, 60)
/*
* Performance Counter Registers for Clock.
*
* Clock Counter can't be reset or frozen by SW.
*/
#define CLK_CNTR 0x30
#define BASIC_EVNT_CLK 0x0
#define BASIC_EVNT_MAX BASIC_EVNT_CLK
/*
* Performance Counter Registers for IOMMU / VT-D.
*
* VT-D Events are listed below as VTD_EVNT_* and VTD_SIP_EVNT_*
*/
#define VTD_CTRL 0x38
#define VTD_RESET_CNTR BIT_ULL(0)
#define VTD_FREEZE_CNTR BIT_ULL(8)
#define VTD_CTRL_EVNT GENMASK_ULL(19, 16)
#define VTD_EVNT_AFU_MEM_RD_TRANS 0x0
#define VTD_EVNT_AFU_MEM_WR_TRANS 0x1
#define VTD_EVNT_AFU_DEVTLB_RD_HIT 0x2
#define VTD_EVNT_AFU_DEVTLB_WR_HIT 0x3
#define VTD_EVNT_DEVTLB_4K_FILL 0x4
#define VTD_EVNT_DEVTLB_2M_FILL 0x5
#define VTD_EVNT_DEVTLB_1G_FILL 0x6
#define VTD_EVNT_MAX VTD_EVNT_DEVTLB_1G_FILL
#define VTD_CNTR 0x40
#define VTD_CNTR_EVNT_CNTR GENMASK_ULL(47, 0)
#define VTD_CNTR_EVNT GENMASK_ULL(63, 60)
#define VTD_SIP_CTRL 0x48
#define VTD_SIP_RESET_CNTR BIT_ULL(0)
#define VTD_SIP_FREEZE_CNTR BIT_ULL(8)
#define VTD_SIP_CTRL_EVNT GENMASK_ULL(19, 16)
#define VTD_SIP_EVNT_IOTLB_4K_HIT 0x0
#define VTD_SIP_EVNT_IOTLB_2M_HIT 0x1
#define VTD_SIP_EVNT_IOTLB_1G_HIT 0x2
#define VTD_SIP_EVNT_SLPWC_L3_HIT 0x3
#define VTD_SIP_EVNT_SLPWC_L4_HIT 0x4
#define VTD_SIP_EVNT_RCC_HIT 0x5
#define VTD_SIP_EVNT_IOTLB_4K_MISS 0x6
#define VTD_SIP_EVNT_IOTLB_2M_MISS 0x7
#define VTD_SIP_EVNT_IOTLB_1G_MISS 0x8
#define VTD_SIP_EVNT_SLPWC_L3_MISS 0x9
#define VTD_SIP_EVNT_SLPWC_L4_MISS 0xa
#define VTD_SIP_EVNT_RCC_MISS 0xb
#define VTD_SIP_EVNT_MAX VTD_SIP_EVNT_SLPWC_L4_MISS
#define VTD_SIP_CNTR 0X50
#define VTD_SIP_CNTR_EVNT_CNTR GENMASK_ULL(47, 0)
#define VTD_SIP_CNTR_EVNT GENMASK_ULL(63, 60)
#define PERF_TIMEOUT 30
#define PERF_MAX_PORT_NUM 1U
/**
* struct fme_perf_priv - priv data structure for fme perf driver
*
* @dev: parent device.
* @ioaddr: mapped base address of mmio region.
* @pmu: pmu data structure for fme perf counters.
* @id: id of this fme performance report private feature.
* @fab_users: current user number on fabric counters.
* @fab_port_id: used to indicate current working mode of fabric counters.
* @fab_lock: lock to protect fabric counters working mode.
* @cpu: active CPU to which the PMU is bound for accesses.
* @cpuhp_node: node for CPU hotplug notifier link.
* @cpuhp_state: state for CPU hotplug notification;
*/
struct fme_perf_priv {
struct device *dev;
void __iomem *ioaddr;
struct pmu pmu;
u16 id;
u32 fab_users;
u32 fab_port_id;
spinlock_t fab_lock;
unsigned int cpu;
struct hlist_node node;
enum cpuhp_state cpuhp_state;
};
/**
* struct fme_perf_event_ops - callbacks for fme perf events
*
* @event_init: callback invoked during event init.
* @event_destroy: callback invoked during event destroy.
* @read_counter: callback to read hardware counters.
*/
struct fme_perf_event_ops {
int (*event_init)(struct fme_perf_priv *priv, u32 event, u32 portid);
void (*event_destroy)(struct fme_perf_priv *priv, u32 event,
u32 portid);
u64 (*read_counter)(struct fme_perf_priv *priv, u32 event, u32 portid);
};
#define to_fme_perf_priv(_pmu) container_of(_pmu, struct fme_perf_priv, pmu)
static ssize_t cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct fme_perf_priv *priv;
priv = to_fme_perf_priv(pmu);
return cpumap_print_to_pagebuf(true, buf, cpumask_of(priv->cpu));
}
static DEVICE_ATTR_RO(cpumask);
static struct attribute *fme_perf_cpumask_attrs[] = {
&dev_attr_cpumask.attr,
NULL,
};
static const struct attribute_group fme_perf_cpumask_group = {
.attrs = fme_perf_cpumask_attrs,
};
#define FME_EVENT_MASK GENMASK_ULL(11, 0)
#define FME_EVENT_SHIFT 0
#define FME_EVTYPE_MASK GENMASK_ULL(15, 12)
#define FME_EVTYPE_SHIFT 12
#define FME_EVTYPE_BASIC 0
#define FME_EVTYPE_CACHE 1
#define FME_EVTYPE_FABRIC 2
#define FME_EVTYPE_VTD 3
#define FME_EVTYPE_VTD_SIP 4
#define FME_EVTYPE_MAX FME_EVTYPE_VTD_SIP
#define FME_PORTID_MASK GENMASK_ULL(23, 16)
#define FME_PORTID_SHIFT 16
#define FME_PORTID_ROOT (0xffU)
#define get_event(_config) FIELD_GET(FME_EVENT_MASK, _config)
#define get_evtype(_config) FIELD_GET(FME_EVTYPE_MASK, _config)
#define get_portid(_config) FIELD_GET(FME_PORTID_MASK, _config)
PMU_FORMAT_ATTR(event, "config:0-11");
PMU_FORMAT_ATTR(evtype, "config:12-15");
PMU_FORMAT_ATTR(portid, "config:16-23");
static struct attribute *fme_perf_format_attrs[] = {
&format_attr_event.attr,
&format_attr_evtype.attr,
&format_attr_portid.attr,
NULL,
};
static const struct attribute_group fme_perf_format_group = {
.name = "format",
.attrs = fme_perf_format_attrs,
};
/*
* There are no default events, but we need to create
* "events" group (with empty attrs) before updating
* it with detected events (using pmu->attr_update).
*/
static struct attribute *fme_perf_events_attrs_empty[] = {
NULL,
};
static const struct attribute_group fme_perf_events_group = {
.name = "events",
.attrs = fme_perf_events_attrs_empty,
};
static const struct attribute_group *fme_perf_groups[] = {
&fme_perf_format_group,
&fme_perf_cpumask_group,
&fme_perf_events_group,
NULL,
};
static bool is_portid_root(u32 portid)
{
return portid == FME_PORTID_ROOT;
}
static bool is_portid_port(u32 portid)
{
return portid < PERF_MAX_PORT_NUM;
}
static bool is_portid_root_or_port(u32 portid)
{
return is_portid_root(portid) || is_portid_port(portid);
}
static u64 fme_read_perf_cntr_reg(void __iomem *addr)
{
u32 low;
u64 v;
/*
* For 64bit counter registers, the counter may increases and carries
* out of bit [31] between 2 32bit reads. So add extra reads to help
* to prevent this issue. This only happens in platforms which don't
* support 64bit read - readq is split into 2 readl.
*/
do {
v = readq(addr);
low = readl(addr);
} while (((u32)v) > low);
return v;
}
static int basic_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
if (event <= BASIC_EVNT_MAX && is_portid_root(portid))
return 0;
return -EINVAL;
}
static u64 basic_read_event_counter(struct fme_perf_priv *priv,
u32 event, u32 portid)
{
void __iomem *base = priv->ioaddr;
return fme_read_perf_cntr_reg(base + CLK_CNTR);
}
static int cache_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
event <= CACHE_EVNT_MAX && is_portid_root(portid))
return 0;
return -EINVAL;
}
static u64 cache_read_event_counter(struct fme_perf_priv *priv,
u32 event, u32 portid)
{
void __iomem *base = priv->ioaddr;
u64 v, count;
u8 channel;
if (event == CACHE_EVNT_WR_HIT || event == CACHE_EVNT_WR_MISS ||
event == CACHE_EVNT_DATA_WR_PORT_CONTEN ||
event == CACHE_EVNT_TAG_WR_PORT_CONTEN)
channel = CACHE_CHANNEL_WR;
else
channel = CACHE_CHANNEL_RD;
/* set channel access type and cache event code. */
v = readq(base + CACHE_CTRL);
v &= ~(CACHE_CHANNEL_SEL | CACHE_CTRL_EVNT);
v |= FIELD_PREP(CACHE_CHANNEL_SEL, channel);
v |= FIELD_PREP(CACHE_CTRL_EVNT, event);
writeq(v, base + CACHE_CTRL);
if (readq_poll_timeout_atomic(base + CACHE_CNTR0, v,
FIELD_GET(CACHE_CNTR_EVNT, v) == event,
1, PERF_TIMEOUT)) {
dev_err(priv->dev, "timeout, unmatched cache event code in counter register.\n");
return 0;
}
v = fme_read_perf_cntr_reg(base + CACHE_CNTR0);
count = FIELD_GET(CACHE_CNTR_EVNT_CNTR, v);
v = fme_read_perf_cntr_reg(base + CACHE_CNTR1);
count += FIELD_GET(CACHE_CNTR_EVNT_CNTR, v);
return count;
}
static bool is_fabric_event_supported(struct fme_perf_priv *priv, u32 event,
u32 portid)
{
if (event > FAB_EVNT_MAX || !is_portid_root_or_port(portid))
return false;
if (priv->id == FME_FEATURE_ID_GLOBAL_DPERF &&
(event == FAB_EVNT_PCIE1_RD || event == FAB_EVNT_UPI_RD ||
event == FAB_EVNT_PCIE1_WR || event == FAB_EVNT_UPI_WR))
return false;
return true;
}
static int fabric_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
void __iomem *base = priv->ioaddr;
int ret = 0;
u64 v;
if (!is_fabric_event_supported(priv, event, portid))
return -EINVAL;
/*
* as fabric counter set only can be in either overall or port mode.
* In overall mode, it counts overall data for FPGA, and in port mode,
* it is configured to monitor on one individual port.
*
* so every time, a new event is initialized, driver checks
* current working mode and if someone is using this counter set.
*/
spin_lock(&priv->fab_lock);
if (priv->fab_users && priv->fab_port_id != portid) {
dev_dbg(priv->dev, "conflict fabric event monitoring mode.\n");
ret = -EOPNOTSUPP;
goto exit;
}
priv->fab_users++;
/*
* skip if current working mode matches, otherwise change the working
* mode per input port_id, to monitor overall data or another port.
*/
if (priv->fab_port_id == portid)
goto exit;
priv->fab_port_id = portid;
v = readq(base + FAB_CTRL);
v &= ~(FAB_PORT_FILTER | FAB_PORT_ID);
if (is_portid_root(portid)) {
v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_DISABLE);
} else {
v |= FIELD_PREP(FAB_PORT_FILTER, FAB_PORT_FILTER_ENABLE);
v |= FIELD_PREP(FAB_PORT_ID, portid);
}
writeq(v, base + FAB_CTRL);
exit:
spin_unlock(&priv->fab_lock);
return ret;
}
static void fabric_event_destroy(struct fme_perf_priv *priv, u32 event,
u32 portid)
{
spin_lock(&priv->fab_lock);
priv->fab_users--;
spin_unlock(&priv->fab_lock);
}
static u64 fabric_read_event_counter(struct fme_perf_priv *priv, u32 event,
u32 portid)
{
void __iomem *base = priv->ioaddr;
u64 v;
v = readq(base + FAB_CTRL);
v &= ~FAB_CTRL_EVNT;
v |= FIELD_PREP(FAB_CTRL_EVNT, event);
writeq(v, base + FAB_CTRL);
if (readq_poll_timeout_atomic(base + FAB_CNTR, v,
FIELD_GET(FAB_CNTR_EVNT, v) == event,
1, PERF_TIMEOUT)) {
dev_err(priv->dev, "timeout, unmatched fab event code in counter register.\n");
return 0;
}
v = fme_read_perf_cntr_reg(base + FAB_CNTR);
return FIELD_GET(FAB_CNTR_EVNT_CNTR, v);
}
static int vtd_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
event <= VTD_EVNT_MAX && is_portid_port(portid))
return 0;
return -EINVAL;
}
static u64 vtd_read_event_counter(struct fme_perf_priv *priv, u32 event,
u32 portid)
{
void __iomem *base = priv->ioaddr;
u64 v;
event += (portid * (VTD_EVNT_MAX + 1));
v = readq(base + VTD_CTRL);
v &= ~VTD_CTRL_EVNT;
v |= FIELD_PREP(VTD_CTRL_EVNT, event);
writeq(v, base + VTD_CTRL);
if (readq_poll_timeout_atomic(base + VTD_CNTR, v,
FIELD_GET(VTD_CNTR_EVNT, v) == event,
1, PERF_TIMEOUT)) {
dev_err(priv->dev, "timeout, unmatched vtd event code in counter register.\n");
return 0;
}
v = fme_read_perf_cntr_reg(base + VTD_CNTR);
return FIELD_GET(VTD_CNTR_EVNT_CNTR, v);
}
static int vtd_sip_event_init(struct fme_perf_priv *priv, u32 event, u32 portid)
{
if (priv->id == FME_FEATURE_ID_GLOBAL_IPERF &&
event <= VTD_SIP_EVNT_MAX && is_portid_root(portid))
return 0;
return -EINVAL;
}
static u64 vtd_sip_read_event_counter(struct fme_perf_priv *priv, u32 event,
u32 portid)
{
void __iomem *base = priv->ioaddr;
u64 v;
v = readq(base + VTD_SIP_CTRL);
v &= ~VTD_SIP_CTRL_EVNT;
v |= FIELD_PREP(VTD_SIP_CTRL_EVNT, event);
writeq(v, base + VTD_SIP_CTRL);
if (readq_poll_timeout_atomic(base + VTD_SIP_CNTR, v,
FIELD_GET(VTD_SIP_CNTR_EVNT, v) == event,
1, PERF_TIMEOUT)) {
dev_err(priv->dev, "timeout, unmatched vtd sip event code in counter register\n");
return 0;
}
v = fme_read_perf_cntr_reg(base + VTD_SIP_CNTR);
return FIELD_GET(VTD_SIP_CNTR_EVNT_CNTR, v);
}
static struct fme_perf_event_ops fme_perf_event_ops[] = {
[FME_EVTYPE_BASIC] = {.event_init = basic_event_init,
.read_counter = basic_read_event_counter,},
[FME_EVTYPE_CACHE] = {.event_init = cache_event_init,
.read_counter = cache_read_event_counter,},
[FME_EVTYPE_FABRIC] = {.event_init = fabric_event_init,
.event_destroy = fabric_event_destroy,
.read_counter = fabric_read_event_counter,},
[FME_EVTYPE_VTD] = {.event_init = vtd_event_init,
.read_counter = vtd_read_event_counter,},
[FME_EVTYPE_VTD_SIP] = {.event_init = vtd_sip_event_init,
.read_counter = vtd_sip_read_event_counter,},
};
static ssize_t fme_perf_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr;
unsigned long config;
char *ptr = buf;
eattr = container_of(attr, struct dev_ext_attribute, attr);
config = (unsigned long)eattr->var;
ptr += sprintf(ptr, "event=0x%02x", (unsigned int)get_event(config));
ptr += sprintf(ptr, ",evtype=0x%02x", (unsigned int)get_evtype(config));
if (is_portid_root(get_portid(config)))
ptr += sprintf(ptr, ",portid=0x%02x\n", FME_PORTID_ROOT);
else
ptr += sprintf(ptr, ",portid=?\n");
return (ssize_t)(ptr - buf);
}
#define FME_EVENT_ATTR(_name) \
__ATTR(_name, 0444, fme_perf_event_show, NULL)
#define FME_PORT_EVENT_CONFIG(_event, _type) \
(void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) | \
(((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK))
#define FME_EVENT_CONFIG(_event, _type) \
(void *)((((_event) << FME_EVENT_SHIFT) & FME_EVENT_MASK) | \
(((_type) << FME_EVTYPE_SHIFT) & FME_EVTYPE_MASK) | \
(FME_PORTID_ROOT << FME_PORTID_SHIFT))
/* FME Perf Basic Events */
#define FME_EVENT_BASIC(_name, _event) \
static struct dev_ext_attribute fme_perf_event_##_name = { \
.attr = FME_EVENT_ATTR(_name), \
.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_BASIC), \
}
FME_EVENT_BASIC(clock, BASIC_EVNT_CLK);
static struct attribute *fme_perf_basic_events_attrs[] = {
&fme_perf_event_clock.attr.attr,
NULL,
};
static const struct attribute_group fme_perf_basic_events_group = {
.name = "events",
.attrs = fme_perf_basic_events_attrs,
};
/* FME Perf Cache Events */
#define FME_EVENT_CACHE(_name, _event) \
static struct dev_ext_attribute fme_perf_event_cache_##_name = { \
.attr = FME_EVENT_ATTR(cache_##_name), \
.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_CACHE), \
}
FME_EVENT_CACHE(read_hit, CACHE_EVNT_RD_HIT);
FME_EVENT_CACHE(read_miss, CACHE_EVNT_RD_MISS);
FME_EVENT_CACHE(write_hit, CACHE_EVNT_WR_HIT);
FME_EVENT_CACHE(write_miss, CACHE_EVNT_WR_MISS);
FME_EVENT_CACHE(hold_request, CACHE_EVNT_HOLD_REQ);
FME_EVENT_CACHE(tx_req_stall, CACHE_EVNT_TX_REQ_STALL);
FME_EVENT_CACHE(rx_req_stall, CACHE_EVNT_RX_REQ_STALL);
FME_EVENT_CACHE(eviction, CACHE_EVNT_EVICTIONS);
FME_EVENT_CACHE(data_write_port_contention, CACHE_EVNT_DATA_WR_PORT_CONTEN);
FME_EVENT_CACHE(tag_write_port_contention, CACHE_EVNT_TAG_WR_PORT_CONTEN);
static struct attribute *fme_perf_cache_events_attrs[] = {
&fme_perf_event_cache_read_hit.attr.attr,
&fme_perf_event_cache_read_miss.attr.attr,
&fme_perf_event_cache_write_hit.attr.attr,
&fme_perf_event_cache_write_miss.attr.attr,
&fme_perf_event_cache_hold_request.attr.attr,
&fme_perf_event_cache_tx_req_stall.attr.attr,
&fme_perf_event_cache_rx_req_stall.attr.attr,
&fme_perf_event_cache_eviction.attr.attr,
&fme_perf_event_cache_data_write_port_contention.attr.attr,
&fme_perf_event_cache_tag_write_port_contention.attr.attr,
NULL,
};
static umode_t fme_perf_events_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj));
struct fme_perf_priv *priv = to_fme_perf_priv(pmu);
return (priv->id == FME_FEATURE_ID_GLOBAL_IPERF) ? attr->mode : 0;
}
static const struct attribute_group fme_perf_cache_events_group = {
.name = "events",
.attrs = fme_perf_cache_events_attrs,
.is_visible = fme_perf_events_visible,
};
/* FME Perf Fabric Events */
#define FME_EVENT_FABRIC(_name, _event) \
static struct dev_ext_attribute fme_perf_event_fab_##_name = { \
.attr = FME_EVENT_ATTR(fab_##_name), \
.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC), \
}
#define FME_EVENT_FABRIC_PORT(_name, _event) \
static struct dev_ext_attribute fme_perf_event_fab_port_##_name = { \
.attr = FME_EVENT_ATTR(fab_port_##_name), \
.var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_FABRIC), \
}
FME_EVENT_FABRIC(pcie0_read, FAB_EVNT_PCIE0_RD);
FME_EVENT_FABRIC(pcie0_write, FAB_EVNT_PCIE0_WR);
FME_EVENT_FABRIC(pcie1_read, FAB_EVNT_PCIE1_RD);
FME_EVENT_FABRIC(pcie1_write, FAB_EVNT_PCIE1_WR);
FME_EVENT_FABRIC(upi_read, FAB_EVNT_UPI_RD);
FME_EVENT_FABRIC(upi_write, FAB_EVNT_UPI_WR);
FME_EVENT_FABRIC(mmio_read, FAB_EVNT_MMIO_RD);
FME_EVENT_FABRIC(mmio_write, FAB_EVNT_MMIO_WR);
FME_EVENT_FABRIC_PORT(pcie0_read, FAB_EVNT_PCIE0_RD);
FME_EVENT_FABRIC_PORT(pcie0_write, FAB_EVNT_PCIE0_WR);
FME_EVENT_FABRIC_PORT(pcie1_read, FAB_EVNT_PCIE1_RD);
FME_EVENT_FABRIC_PORT(pcie1_write, FAB_EVNT_PCIE1_WR);
FME_EVENT_FABRIC_PORT(upi_read, FAB_EVNT_UPI_RD);
FME_EVENT_FABRIC_PORT(upi_write, FAB_EVNT_UPI_WR);
FME_EVENT_FABRIC_PORT(mmio_read, FAB_EVNT_MMIO_RD);
FME_EVENT_FABRIC_PORT(mmio_write, FAB_EVNT_MMIO_WR);
static struct attribute *fme_perf_fabric_events_attrs[] = {
&fme_perf_event_fab_pcie0_read.attr.attr,
&fme_perf_event_fab_pcie0_write.attr.attr,
&fme_perf_event_fab_pcie1_read.attr.attr,
&fme_perf_event_fab_pcie1_write.attr.attr,
&fme_perf_event_fab_upi_read.attr.attr,
&fme_perf_event_fab_upi_write.attr.attr,
&fme_perf_event_fab_mmio_read.attr.attr,
&fme_perf_event_fab_mmio_write.attr.attr,
&fme_perf_event_fab_port_pcie0_read.attr.attr,
&fme_perf_event_fab_port_pcie0_write.attr.attr,
&fme_perf_event_fab_port_pcie1_read.attr.attr,
&fme_perf_event_fab_port_pcie1_write.attr.attr,
&fme_perf_event_fab_port_upi_read.attr.attr,
&fme_perf_event_fab_port_upi_write.attr.attr,
&fme_perf_event_fab_port_mmio_read.attr.attr,
&fme_perf_event_fab_port_mmio_write.attr.attr,
NULL,
};
static umode_t fme_perf_fabric_events_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct pmu *pmu = dev_get_drvdata(kobj_to_dev(kobj));
struct fme_perf_priv *priv = to_fme_perf_priv(pmu);
struct dev_ext_attribute *eattr;
unsigned long var;
eattr = container_of(attr, struct dev_ext_attribute, attr.attr);
var = (unsigned long)eattr->var;
if (is_fabric_event_supported(priv, get_event(var), get_portid(var)))
return attr->mode;
return 0;
}
static const struct attribute_group fme_perf_fabric_events_group = {
.name = "events",
.attrs = fme_perf_fabric_events_attrs,
.is_visible = fme_perf_fabric_events_visible,
};
/* FME Perf VTD Events */
#define FME_EVENT_VTD_PORT(_name, _event) \
static struct dev_ext_attribute fme_perf_event_vtd_port_##_name = { \
.attr = FME_EVENT_ATTR(vtd_port_##_name), \
.var = FME_PORT_EVENT_CONFIG(_event, FME_EVTYPE_VTD), \
}
FME_EVENT_VTD_PORT(read_transaction, VTD_EVNT_AFU_MEM_RD_TRANS);
FME_EVENT_VTD_PORT(write_transaction, VTD_EVNT_AFU_MEM_WR_TRANS);
FME_EVENT_VTD_PORT(devtlb_read_hit, VTD_EVNT_AFU_DEVTLB_RD_HIT);
FME_EVENT_VTD_PORT(devtlb_write_hit, VTD_EVNT_AFU_DEVTLB_WR_HIT);
FME_EVENT_VTD_PORT(devtlb_4k_fill, VTD_EVNT_DEVTLB_4K_FILL);
FME_EVENT_VTD_PORT(devtlb_2m_fill, VTD_EVNT_DEVTLB_2M_FILL);
FME_EVENT_VTD_PORT(devtlb_1g_fill, VTD_EVNT_DEVTLB_1G_FILL);
static struct attribute *fme_perf_vtd_events_attrs[] = {
&fme_perf_event_vtd_port_read_transaction.attr.attr,
&fme_perf_event_vtd_port_write_transaction.attr.attr,
&fme_perf_event_vtd_port_devtlb_read_hit.attr.attr,
&fme_perf_event_vtd_port_devtlb_write_hit.attr.attr,
&fme_perf_event_vtd_port_devtlb_4k_fill.attr.attr,
&fme_perf_event_vtd_port_devtlb_2m_fill.attr.attr,
&fme_perf_event_vtd_port_devtlb_1g_fill.attr.attr,
NULL,
};
static const struct attribute_group fme_perf_vtd_events_group = {
.name = "events",
.attrs = fme_perf_vtd_events_attrs,
.is_visible = fme_perf_events_visible,
};
/* FME Perf VTD SIP Events */
#define FME_EVENT_VTD_SIP(_name, _event) \
static struct dev_ext_attribute fme_perf_event_vtd_sip_##_name = { \
.attr = FME_EVENT_ATTR(vtd_sip_##_name), \
.var = FME_EVENT_CONFIG(_event, FME_EVTYPE_VTD_SIP), \
}
FME_EVENT_VTD_SIP(iotlb_4k_hit, VTD_SIP_EVNT_IOTLB_4K_HIT);
FME_EVENT_VTD_SIP(iotlb_2m_hit, VTD_SIP_EVNT_IOTLB_2M_HIT);
FME_EVENT_VTD_SIP(iotlb_1g_hit, VTD_SIP_EVNT_IOTLB_1G_HIT);
FME_EVENT_VTD_SIP(slpwc_l3_hit, VTD_SIP_EVNT_SLPWC_L3_HIT);
FME_EVENT_VTD_SIP(slpwc_l4_hit, VTD_SIP_EVNT_SLPWC_L4_HIT);
FME_EVENT_VTD_SIP(rcc_hit, VTD_SIP_EVNT_RCC_HIT);
FME_EVENT_VTD_SIP(iotlb_4k_miss, VTD_SIP_EVNT_IOTLB_4K_MISS);
FME_EVENT_VTD_SIP(iotlb_2m_miss, VTD_SIP_EVNT_IOTLB_2M_MISS);
FME_EVENT_VTD_SIP(iotlb_1g_miss, VTD_SIP_EVNT_IOTLB_1G_MISS);
FME_EVENT_VTD_SIP(slpwc_l3_miss, VTD_SIP_EVNT_SLPWC_L3_MISS);
FME_EVENT_VTD_SIP(slpwc_l4_miss, VTD_SIP_EVNT_SLPWC_L4_MISS);
FME_EVENT_VTD_SIP(rcc_miss, VTD_SIP_EVNT_RCC_MISS);
static struct attribute *fme_perf_vtd_sip_events_attrs[] = {
&fme_perf_event_vtd_sip_iotlb_4k_hit.attr.attr,
&fme_perf_event_vtd_sip_iotlb_2m_hit.attr.attr,
&fme_perf_event_vtd_sip_iotlb_1g_hit.attr.attr,
&fme_perf_event_vtd_sip_slpwc_l3_hit.attr.attr,
&fme_perf_event_vtd_sip_slpwc_l4_hit.attr.attr,
&fme_perf_event_vtd_sip_rcc_hit.attr.attr,
&fme_perf_event_vtd_sip_iotlb_4k_miss.attr.attr,
&fme_perf_event_vtd_sip_iotlb_2m_miss.attr.attr,
&fme_perf_event_vtd_sip_iotlb_1g_miss.attr.attr,
&fme_perf_event_vtd_sip_slpwc_l3_miss.attr.attr,
&fme_perf_event_vtd_sip_slpwc_l4_miss.attr.attr,
&fme_perf_event_vtd_sip_rcc_miss.attr.attr,
NULL,
};
static const struct attribute_group fme_perf_vtd_sip_events_group = {
.name = "events",
.attrs = fme_perf_vtd_sip_events_attrs,
.is_visible = fme_perf_events_visible,
};
static const struct attribute_group *fme_perf_events_groups[] = {
&fme_perf_basic_events_group,
&fme_perf_cache_events_group,
&fme_perf_fabric_events_group,
&fme_perf_vtd_events_group,
&fme_perf_vtd_sip_events_group,
NULL,
};
static struct fme_perf_event_ops *get_event_ops(u32 evtype)
{
if (evtype > FME_EVTYPE_MAX)
return NULL;
return &fme_perf_event_ops[evtype];
}
static void fme_perf_event_destroy(struct perf_event *event)
{
struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
if (ops->event_destroy)
ops->event_destroy(priv, event->hw.idx, event->hw.config_base);
}
static int fme_perf_event_init(struct perf_event *event)
{
struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct fme_perf_event_ops *ops;
u32 eventid, evtype, portid;
/* test the event attr type check for PMU enumeration */
if (event->attr.type != event->pmu->type)
return -ENOENT;
/*
* fme counters are shared across all cores.
* Therefore, it does not support per-process mode.
* Also, it does not support event sampling mode.
*/
if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
return -EINVAL;
if (event->cpu < 0)
return -EINVAL;
if (event->cpu != priv->cpu)
return -EINVAL;
eventid = get_event(event->attr.config);
portid = get_portid(event->attr.config);
evtype = get_evtype(event->attr.config);
if (evtype > FME_EVTYPE_MAX)
return -EINVAL;
hwc->event_base = evtype;
hwc->idx = (int)eventid;
hwc->config_base = portid;
event->destroy = fme_perf_event_destroy;
dev_dbg(priv->dev, "%s event=0x%x, evtype=0x%x, portid=0x%x,\n",
__func__, eventid, evtype, portid);
ops = get_event_ops(evtype);
if (ops->event_init)
return ops->event_init(priv, eventid, portid);
return 0;
}
static void fme_perf_event_update(struct perf_event *event)
{
struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 now, prev, delta;
now = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base);
prev = local64_read(&hwc->prev_count);
delta = now - prev;
local64_add(delta, &event->count);
}
static void fme_perf_event_start(struct perf_event *event, int flags)
{
struct fme_perf_event_ops *ops = get_event_ops(event->hw.event_base);
struct fme_perf_priv *priv = to_fme_perf_priv(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 count;
count = ops->read_counter(priv, (u32)hwc->idx, hwc->config_base);
local64_set(&hwc->prev_count, count);
}
static void fme_perf_event_stop(struct perf_event *event, int flags)
{
fme_perf_event_update(event);
}
static int fme_perf_event_add(struct perf_event *event, int flags)
{
if (flags & PERF_EF_START)
fme_perf_event_start(event, flags);
return 0;
}
static void fme_perf_event_del(struct perf_event *event, int flags)
{
fme_perf_event_stop(event, PERF_EF_UPDATE);
}
static void fme_perf_event_read(struct perf_event *event)
{
fme_perf_event_update(event);
}
static void fme_perf_setup_hardware(struct fme_perf_priv *priv)
{
void __iomem *base = priv->ioaddr;
u64 v;
/* read and save current working mode for fabric counters */
v = readq(base + FAB_CTRL);
if (FIELD_GET(FAB_PORT_FILTER, v) == FAB_PORT_FILTER_DISABLE)
priv->fab_port_id = FME_PORTID_ROOT;
else
priv->fab_port_id = FIELD_GET(FAB_PORT_ID, v);
}
static int fme_perf_pmu_register(struct platform_device *pdev,
struct fme_perf_priv *priv)
{
struct pmu *pmu = &priv->pmu;
char *name;
int ret;
spin_lock_init(&priv->fab_lock);
fme_perf_setup_hardware(priv);
pmu->task_ctx_nr = perf_invalid_context;
pmu->attr_groups = fme_perf_groups;
pmu->attr_update = fme_perf_events_groups;
pmu->event_init = fme_perf_event_init;
pmu->add = fme_perf_event_add;
pmu->del = fme_perf_event_del;
pmu->start = fme_perf_event_start;
pmu->stop = fme_perf_event_stop;
pmu->read = fme_perf_event_read;
pmu->capabilities = PERF_PMU_CAP_NO_INTERRUPT |
PERF_PMU_CAP_NO_EXCLUDE;
name = devm_kasprintf(priv->dev, GFP_KERNEL, "dfl_fme%d", pdev->id);
ret = perf_pmu_register(pmu, name, -1);
if (ret)
return ret;
return 0;
}
static void fme_perf_pmu_unregister(struct fme_perf_priv *priv)
{
perf_pmu_unregister(&priv->pmu);
}
static int fme_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
{
struct fme_perf_priv *priv;
int target;
priv = hlist_entry_safe(node, struct fme_perf_priv, node);
if (cpu != priv->cpu)
return 0;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target >= nr_cpu_ids)
return 0;
priv->cpu = target;
perf_pmu_migrate_context(&priv->pmu, cpu, target);
return 0;
}
static int fme_perf_init(struct platform_device *pdev,
struct dfl_feature *feature)
{
struct fme_perf_priv *priv;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = &pdev->dev;
priv->ioaddr = feature->ioaddr;
priv->id = feature->id;
priv->cpu = raw_smp_processor_id();
ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
"perf/fpga/dfl_fme:online",
NULL, fme_perf_offline_cpu);
if (ret < 0)
return ret;
priv->cpuhp_state = ret;
/* Register the pmu instance for cpu hotplug */
ret = cpuhp_state_add_instance_nocalls(priv->cpuhp_state, &priv->node);
if (ret)
goto cpuhp_instance_err;
ret = fme_perf_pmu_register(pdev, priv);
if (ret)
goto pmu_register_err;
feature->priv = priv;
return 0;
pmu_register_err:
cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node);
cpuhp_instance_err:
cpuhp_remove_multi_state(priv->cpuhp_state);
return ret;
}
static void fme_perf_uinit(struct platform_device *pdev,
struct dfl_feature *feature)
{
struct fme_perf_priv *priv = feature->priv;
fme_perf_pmu_unregister(priv);
cpuhp_state_remove_instance_nocalls(priv->cpuhp_state, &priv->node);
cpuhp_remove_multi_state(priv->cpuhp_state);
}
const struct dfl_feature_id fme_perf_id_table[] = {
{.id = FME_FEATURE_ID_GLOBAL_IPERF,},
{.id = FME_FEATURE_ID_GLOBAL_DPERF,},
{0,}
};
const struct dfl_feature_ops fme_perf_ops = {
.init = fme_perf_init,
.uinit = fme_perf_uinit,
};