linux/linux-5.18.11/drivers/firmware/arm_scmi/optee.c

568 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019-2021 Linaro Ltd.
*/
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/tee_drv.h>
#include <linux/uuid.h>
#include <uapi/linux/tee.h>
#include "common.h"
#define SCMI_OPTEE_MAX_MSG_SIZE 128
enum scmi_optee_pta_cmd {
/*
* PTA_SCMI_CMD_CAPABILITIES - Get channel capabilities
*
* [out] value[0].a: Capability bit mask (enum pta_scmi_caps)
* [out] value[0].b: Extended capabilities or 0
*/
PTA_SCMI_CMD_CAPABILITIES = 0,
/*
* PTA_SCMI_CMD_PROCESS_SMT_CHANNEL - Process SCMI message in SMT buffer
*
* [in] value[0].a: Channel handle
*
* Shared memory used for SCMI message/response exhange is expected
* already identified and bound to channel handle in both SCMI agent
* and SCMI server (OP-TEE) parts.
* The memory uses SMT header to carry SCMI meta-data (protocol ID and
* protocol message ID).
*/
PTA_SCMI_CMD_PROCESS_SMT_CHANNEL = 1,
/*
* PTA_SCMI_CMD_PROCESS_SMT_CHANNEL_MESSAGE - Process SMT/SCMI message
*
* [in] value[0].a: Channel handle
* [in/out] memref[1]: Message/response buffer (SMT and SCMI payload)
*
* Shared memory used for SCMI message/response is a SMT buffer
* referenced by param[1]. It shall be 128 bytes large to fit response
* payload whatever message playload size.
* The memory uses SMT header to carry SCMI meta-data (protocol ID and
* protocol message ID).
*/
PTA_SCMI_CMD_PROCESS_SMT_CHANNEL_MESSAGE = 2,
/*
* PTA_SCMI_CMD_GET_CHANNEL - Get channel handle
*
* SCMI shm information are 0 if agent expects to use OP-TEE regular SHM
*
* [in] value[0].a: Channel identifier
* [out] value[0].a: Returned channel handle
* [in] value[0].b: Requested capabilities mask (enum pta_scmi_caps)
*/
PTA_SCMI_CMD_GET_CHANNEL = 3,
};
/*
* OP-TEE SCMI service capabilities bit flags (32bit)
*
* PTA_SCMI_CAPS_SMT_HEADER
* When set, OP-TEE supports command using SMT header protocol (SCMI shmem) in
* shared memory buffers to carry SCMI protocol synchronisation information.
*/
#define PTA_SCMI_CAPS_NONE 0
#define PTA_SCMI_CAPS_SMT_HEADER BIT(0)
/**
* struct scmi_optee_channel - Description of an OP-TEE SCMI channel
*
* @channel_id: OP-TEE channel ID used for this transport
* @tee_session: TEE session identifier
* @caps: OP-TEE SCMI channel capabilities
* @mu: Mutex protection on channel access
* @cinfo: SCMI channel information
* @shmem: Virtual base address of the shared memory
* @tee_shm: Reference to TEE shared memory or NULL if using static shmem
* @link: Reference in agent's channel list
*/
struct scmi_optee_channel {
u32 channel_id;
u32 tee_session;
u32 caps;
struct mutex mu;
struct scmi_chan_info *cinfo;
struct scmi_shared_mem __iomem *shmem;
struct tee_shm *tee_shm;
struct list_head link;
};
/**
* struct scmi_optee_agent - OP-TEE transport private data
*
* @dev: Device used for communication with TEE
* @tee_ctx: TEE context used for communication
* @caps: Supported channel capabilities
* @mu: Mutex for protection of @channel_list
* @channel_list: List of all created channels for the agent
*/
struct scmi_optee_agent {
struct device *dev;
struct tee_context *tee_ctx;
u32 caps;
struct mutex mu;
struct list_head channel_list;
};
/* There can be only 1 SCMI service in OP-TEE we connect to */
static struct scmi_optee_agent *scmi_optee_private;
/* Forward reference to scmi_optee transport initialization */
static int scmi_optee_init(void);
/* Open a session toward SCMI OP-TEE service with REE_KERNEL identity */
static int open_session(struct scmi_optee_agent *agent, u32 *tee_session)
{
struct device *dev = agent->dev;
struct tee_client_device *scmi_pta = to_tee_client_device(dev);
struct tee_ioctl_open_session_arg arg = { };
int ret;
memcpy(arg.uuid, scmi_pta->id.uuid.b, TEE_IOCTL_UUID_LEN);
arg.clnt_login = TEE_IOCTL_LOGIN_REE_KERNEL;
ret = tee_client_open_session(agent->tee_ctx, &arg, NULL);
if (ret < 0 || arg.ret) {
dev_err(dev, "Can't open tee session: %d / %#x\n", ret, arg.ret);
return -EOPNOTSUPP;
}
*tee_session = arg.session;
return 0;
}
static void close_session(struct scmi_optee_agent *agent, u32 tee_session)
{
tee_client_close_session(agent->tee_ctx, tee_session);
}
static int get_capabilities(struct scmi_optee_agent *agent)
{
struct tee_ioctl_invoke_arg arg = { };
struct tee_param param[1] = { };
u32 caps;
u32 tee_session;
int ret;
ret = open_session(agent, &tee_session);
if (ret)
return ret;
arg.func = PTA_SCMI_CMD_CAPABILITIES;
arg.session = tee_session;
arg.num_params = 1;
param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT;
ret = tee_client_invoke_func(agent->tee_ctx, &arg, param);
close_session(agent, tee_session);
if (ret < 0 || arg.ret) {
dev_err(agent->dev, "Can't get capabilities: %d / %#x\n", ret, arg.ret);
return -EOPNOTSUPP;
}
caps = param[0].u.value.a;
if (!(caps & PTA_SCMI_CAPS_SMT_HEADER)) {
dev_err(agent->dev, "OP-TEE SCMI PTA doesn't support SMT\n");
return -EOPNOTSUPP;
}
agent->caps = caps;
return 0;
}
static int get_channel(struct scmi_optee_channel *channel)
{
struct device *dev = scmi_optee_private->dev;
struct tee_ioctl_invoke_arg arg = { };
struct tee_param param[1] = { };
unsigned int caps = PTA_SCMI_CAPS_SMT_HEADER;
int ret;
arg.func = PTA_SCMI_CMD_GET_CHANNEL;
arg.session = channel->tee_session;
arg.num_params = 1;
param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT;
param[0].u.value.a = channel->channel_id;
param[0].u.value.b = caps;
ret = tee_client_invoke_func(scmi_optee_private->tee_ctx, &arg, param);
if (ret || arg.ret) {
dev_err(dev, "Can't get channel with caps %#x: %d / %#x\n", caps, ret, arg.ret);
return -EOPNOTSUPP;
}
/* From now on use channel identifer provided by OP-TEE SCMI service */
channel->channel_id = param[0].u.value.a;
channel->caps = caps;
return 0;
}
static int invoke_process_smt_channel(struct scmi_optee_channel *channel)
{
struct tee_ioctl_invoke_arg arg = { };
struct tee_param param[2] = { };
int ret;
arg.session = channel->tee_session;
param[0].attr = TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT;
param[0].u.value.a = channel->channel_id;
if (channel->tee_shm) {
param[1].attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT;
param[1].u.memref.shm = channel->tee_shm;
param[1].u.memref.size = SCMI_OPTEE_MAX_MSG_SIZE;
arg.num_params = 2;
arg.func = PTA_SCMI_CMD_PROCESS_SMT_CHANNEL_MESSAGE;
} else {
arg.num_params = 1;
arg.func = PTA_SCMI_CMD_PROCESS_SMT_CHANNEL;
}
ret = tee_client_invoke_func(scmi_optee_private->tee_ctx, &arg, param);
if (ret < 0 || arg.ret) {
dev_err(scmi_optee_private->dev, "Can't invoke channel %u: %d / %#x\n",
channel->channel_id, ret, arg.ret);
return -EIO;
}
return 0;
}
static int scmi_optee_link_supplier(struct device *dev)
{
if (!scmi_optee_private) {
if (scmi_optee_init())
dev_dbg(dev, "Optee bus not yet ready\n");
/* Wait for optee bus */
return -EPROBE_DEFER;
}
if (!device_link_add(dev, scmi_optee_private->dev, DL_FLAG_AUTOREMOVE_CONSUMER)) {
dev_err(dev, "Adding link to supplier optee device failed\n");
return -ECANCELED;
}
return 0;
}
static bool scmi_optee_chan_available(struct device *dev, int idx)
{
u32 channel_id;
return !of_property_read_u32_index(dev->of_node, "linaro,optee-channel-id",
idx, &channel_id);
}
static void scmi_optee_clear_channel(struct scmi_chan_info *cinfo)
{
struct scmi_optee_channel *channel = cinfo->transport_info;
shmem_clear_channel(channel->shmem);
}
static int setup_static_shmem(struct device *dev, struct scmi_chan_info *cinfo,
struct scmi_optee_channel *channel)
{
struct device_node *np;
resource_size_t size;
struct resource res;
int ret;
np = of_parse_phandle(cinfo->dev->of_node, "shmem", 0);
if (!of_device_is_compatible(np, "arm,scmi-shmem")) {
ret = -ENXIO;
goto out;
}
ret = of_address_to_resource(np, 0, &res);
if (ret) {
dev_err(dev, "Failed to get SCMI Tx shared memory\n");
goto out;
}
size = resource_size(&res);
channel->shmem = devm_ioremap(dev, res.start, size);
if (!channel->shmem) {
dev_err(dev, "Failed to ioremap SCMI Tx shared memory\n");
ret = -EADDRNOTAVAIL;
goto out;
}
ret = 0;
out:
of_node_put(np);
return ret;
}
static int setup_shmem(struct device *dev, struct scmi_chan_info *cinfo,
struct scmi_optee_channel *channel)
{
if (of_find_property(cinfo->dev->of_node, "shmem", NULL))
return setup_static_shmem(dev, cinfo, channel);
else
return -ENOMEM;
}
static int scmi_optee_chan_setup(struct scmi_chan_info *cinfo, struct device *dev, bool tx)
{
struct scmi_optee_channel *channel;
uint32_t channel_id;
int ret;
if (!tx)
return -ENODEV;
channel = devm_kzalloc(dev, sizeof(*channel), GFP_KERNEL);
if (!channel)
return -ENOMEM;
ret = of_property_read_u32_index(cinfo->dev->of_node, "linaro,optee-channel-id",
0, &channel_id);
if (ret)
return ret;
cinfo->transport_info = channel;
channel->cinfo = cinfo;
channel->channel_id = channel_id;
mutex_init(&channel->mu);
ret = setup_shmem(dev, cinfo, channel);
if (ret)
return ret;
ret = open_session(scmi_optee_private, &channel->tee_session);
if (ret)
goto err_free_shm;
ret = get_channel(channel);
if (ret)
goto err_close_sess;
/* Enable polling */
cinfo->no_completion_irq = true;
mutex_lock(&scmi_optee_private->mu);
list_add(&channel->link, &scmi_optee_private->channel_list);
mutex_unlock(&scmi_optee_private->mu);
return 0;
err_close_sess:
close_session(scmi_optee_private, channel->tee_session);
err_free_shm:
if (channel->tee_shm)
tee_shm_free(channel->tee_shm);
return ret;
}
static int scmi_optee_chan_free(int id, void *p, void *data)
{
struct scmi_chan_info *cinfo = p;
struct scmi_optee_channel *channel = cinfo->transport_info;
mutex_lock(&scmi_optee_private->mu);
list_del(&channel->link);
mutex_unlock(&scmi_optee_private->mu);
close_session(scmi_optee_private, channel->tee_session);
if (channel->tee_shm) {
tee_shm_free(channel->tee_shm);
channel->tee_shm = NULL;
}
cinfo->transport_info = NULL;
channel->cinfo = NULL;
scmi_free_channel(cinfo, data, id);
return 0;
}
static struct scmi_shared_mem __iomem *
get_channel_shm(struct scmi_optee_channel *chan, struct scmi_xfer *xfer)
{
if (!chan)
return NULL;
return chan->shmem;
}
static int scmi_optee_send_message(struct scmi_chan_info *cinfo,
struct scmi_xfer *xfer)
{
struct scmi_optee_channel *channel = cinfo->transport_info;
struct scmi_shared_mem __iomem *shmem = get_channel_shm(channel, xfer);
int ret;
mutex_lock(&channel->mu);
shmem_tx_prepare(shmem, xfer);
ret = invoke_process_smt_channel(channel);
if (ret)
mutex_unlock(&channel->mu);
return ret;
}
static void scmi_optee_fetch_response(struct scmi_chan_info *cinfo,
struct scmi_xfer *xfer)
{
struct scmi_optee_channel *channel = cinfo->transport_info;
struct scmi_shared_mem __iomem *shmem = get_channel_shm(channel, xfer);
shmem_fetch_response(shmem, xfer);
}
static void scmi_optee_mark_txdone(struct scmi_chan_info *cinfo, int ret,
struct scmi_xfer *__unused)
{
struct scmi_optee_channel *channel = cinfo->transport_info;
mutex_unlock(&channel->mu);
}
static struct scmi_transport_ops scmi_optee_ops = {
.link_supplier = scmi_optee_link_supplier,
.chan_available = scmi_optee_chan_available,
.chan_setup = scmi_optee_chan_setup,
.chan_free = scmi_optee_chan_free,
.send_message = scmi_optee_send_message,
.mark_txdone = scmi_optee_mark_txdone,
.fetch_response = scmi_optee_fetch_response,
.clear_channel = scmi_optee_clear_channel,
};
static int scmi_optee_ctx_match(struct tee_ioctl_version_data *ver, const void *data)
{
return ver->impl_id == TEE_IMPL_ID_OPTEE;
}
static int scmi_optee_service_probe(struct device *dev)
{
struct scmi_optee_agent *agent;
struct tee_context *tee_ctx;
int ret;
/* Only one SCMI OP-TEE device allowed */
if (scmi_optee_private) {
dev_err(dev, "An SCMI OP-TEE device was already initialized: only one allowed\n");
return -EBUSY;
}
tee_ctx = tee_client_open_context(NULL, scmi_optee_ctx_match, NULL, NULL);
if (IS_ERR(tee_ctx))
return -ENODEV;
agent = devm_kzalloc(dev, sizeof(*agent), GFP_KERNEL);
if (!agent) {
ret = -ENOMEM;
goto err;
}
agent->dev = dev;
agent->tee_ctx = tee_ctx;
INIT_LIST_HEAD(&agent->channel_list);
mutex_init(&agent->mu);
ret = get_capabilities(agent);
if (ret)
goto err;
/* Ensure agent resources are all visible before scmi_optee_private is */
smp_mb();
scmi_optee_private = agent;
return 0;
err:
tee_client_close_context(tee_ctx);
return ret;
}
static int scmi_optee_service_remove(struct device *dev)
{
struct scmi_optee_agent *agent = scmi_optee_private;
if (!scmi_optee_private)
return -EINVAL;
if (!list_empty(&scmi_optee_private->channel_list))
return -EBUSY;
/* Ensure cleared reference is visible before resources are released */
smp_store_mb(scmi_optee_private, NULL);
tee_client_close_context(agent->tee_ctx);
return 0;
}
static const struct tee_client_device_id scmi_optee_service_id[] = {
{
UUID_INIT(0xa8cfe406, 0xd4f5, 0x4a2e,
0x9f, 0x8d, 0xa2, 0x5d, 0xc7, 0x54, 0xc0, 0x99)
},
{ }
};
MODULE_DEVICE_TABLE(tee, scmi_optee_service_id);
static struct tee_client_driver scmi_optee_driver = {
.id_table = scmi_optee_service_id,
.driver = {
.name = "scmi-optee",
.bus = &tee_bus_type,
.probe = scmi_optee_service_probe,
.remove = scmi_optee_service_remove,
},
};
static int scmi_optee_init(void)
{
return driver_register(&scmi_optee_driver.driver);
}
static void scmi_optee_exit(void)
{
if (scmi_optee_private)
driver_unregister(&scmi_optee_driver.driver);
}
const struct scmi_desc scmi_optee_desc = {
.transport_exit = scmi_optee_exit,
.ops = &scmi_optee_ops,
.max_rx_timeout_ms = 30,
.max_msg = 20,
.max_msg_size = SCMI_OPTEE_MAX_MSG_SIZE,
.sync_cmds_completed_on_ret = true,
};