linux/linux-5.18.11/drivers/crypto/keembay/ocs-hcu.c

841 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay OCS HCU Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <crypto/sha2.h>
#include "ocs-hcu.h"
/* Registers. */
#define OCS_HCU_MODE 0x00
#define OCS_HCU_CHAIN 0x04
#define OCS_HCU_OPERATION 0x08
#define OCS_HCU_KEY_0 0x0C
#define OCS_HCU_ISR 0x50
#define OCS_HCU_IER 0x54
#define OCS_HCU_STATUS 0x58
#define OCS_HCU_MSG_LEN_LO 0x60
#define OCS_HCU_MSG_LEN_HI 0x64
#define OCS_HCU_KEY_BYTE_ORDER_CFG 0x80
#define OCS_HCU_DMA_SRC_ADDR 0x400
#define OCS_HCU_DMA_SRC_SIZE 0x408
#define OCS_HCU_DMA_DST_SIZE 0x40C
#define OCS_HCU_DMA_DMA_MODE 0x410
#define OCS_HCU_DMA_NEXT_SRC_DESCR 0x418
#define OCS_HCU_DMA_MSI_ISR 0x480
#define OCS_HCU_DMA_MSI_IER 0x484
#define OCS_HCU_DMA_MSI_MASK 0x488
/* Register bit definitions. */
#define HCU_MODE_ALGO_SHIFT 16
#define HCU_MODE_HMAC_SHIFT 22
#define HCU_STATUS_BUSY BIT(0)
#define HCU_BYTE_ORDER_SWAP BIT(0)
#define HCU_IRQ_HASH_DONE BIT(2)
#define HCU_IRQ_HASH_ERR_MASK (BIT(3) | BIT(1) | BIT(0))
#define HCU_DMA_IRQ_SRC_DONE BIT(0)
#define HCU_DMA_IRQ_SAI_ERR BIT(2)
#define HCU_DMA_IRQ_BAD_COMP_ERR BIT(3)
#define HCU_DMA_IRQ_INBUF_RD_ERR BIT(4)
#define HCU_DMA_IRQ_INBUF_WD_ERR BIT(5)
#define HCU_DMA_IRQ_OUTBUF_WR_ERR BIT(6)
#define HCU_DMA_IRQ_OUTBUF_RD_ERR BIT(7)
#define HCU_DMA_IRQ_CRD_ERR BIT(8)
#define HCU_DMA_IRQ_ERR_MASK (HCU_DMA_IRQ_SAI_ERR | \
HCU_DMA_IRQ_BAD_COMP_ERR | \
HCU_DMA_IRQ_INBUF_RD_ERR | \
HCU_DMA_IRQ_INBUF_WD_ERR | \
HCU_DMA_IRQ_OUTBUF_WR_ERR | \
HCU_DMA_IRQ_OUTBUF_RD_ERR | \
HCU_DMA_IRQ_CRD_ERR)
#define HCU_DMA_SNOOP_MASK (0x7 << 28)
#define HCU_DMA_SRC_LL_EN BIT(25)
#define HCU_DMA_EN BIT(31)
#define OCS_HCU_ENDIANNESS_VALUE 0x2A
#define HCU_DMA_MSI_UNMASK BIT(0)
#define HCU_DMA_MSI_DISABLE 0
#define HCU_IRQ_DISABLE 0
#define OCS_HCU_START BIT(0)
#define OCS_HCU_TERMINATE BIT(1)
#define OCS_LL_DMA_FLAG_TERMINATE BIT(31)
#define OCS_HCU_HW_KEY_LEN_U32 (OCS_HCU_HW_KEY_LEN / sizeof(u32))
#define HCU_DATA_WRITE_ENDIANNESS_OFFSET 26
#define OCS_HCU_NUM_CHAINS_SHA256_224_SM3 (SHA256_DIGEST_SIZE / sizeof(u32))
#define OCS_HCU_NUM_CHAINS_SHA384_512 (SHA512_DIGEST_SIZE / sizeof(u32))
/*
* While polling on a busy HCU, wait maximum 200us between one check and the
* other.
*/
#define OCS_HCU_WAIT_BUSY_RETRY_DELAY_US 200
/* Wait on a busy HCU for maximum 1 second. */
#define OCS_HCU_WAIT_BUSY_TIMEOUT_US 1000000
/**
* struct ocs_hcu_dma_entry - An entry in an OCS DMA linked list.
* @src_addr: Source address of the data.
* @src_len: Length of data to be fetched.
* @nxt_desc: Next descriptor to fetch.
* @ll_flags: Flags (Freeze @ terminate) for the DMA engine.
*/
struct ocs_hcu_dma_entry {
u32 src_addr;
u32 src_len;
u32 nxt_desc;
u32 ll_flags;
};
/**
* struct ocs_hcu_dma_list - OCS-specific DMA linked list.
* @head: The head of the list (points to the array backing the list).
* @tail: The current tail of the list; NULL if the list is empty.
* @dma_addr: The DMA address of @head (i.e., the DMA address of the backing
* array).
* @max_nents: Maximum number of entries in the list (i.e., number of elements
* in the backing array).
*
* The OCS DMA list is an array-backed list of OCS DMA descriptors. The array
* backing the list is allocated with dma_alloc_coherent() and pointed by
* @head.
*/
struct ocs_hcu_dma_list {
struct ocs_hcu_dma_entry *head;
struct ocs_hcu_dma_entry *tail;
dma_addr_t dma_addr;
size_t max_nents;
};
static inline u32 ocs_hcu_num_chains(enum ocs_hcu_algo algo)
{
switch (algo) {
case OCS_HCU_ALGO_SHA224:
case OCS_HCU_ALGO_SHA256:
case OCS_HCU_ALGO_SM3:
return OCS_HCU_NUM_CHAINS_SHA256_224_SM3;
case OCS_HCU_ALGO_SHA384:
case OCS_HCU_ALGO_SHA512:
return OCS_HCU_NUM_CHAINS_SHA384_512;
default:
return 0;
};
}
static inline u32 ocs_hcu_digest_size(enum ocs_hcu_algo algo)
{
switch (algo) {
case OCS_HCU_ALGO_SHA224:
return SHA224_DIGEST_SIZE;
case OCS_HCU_ALGO_SHA256:
case OCS_HCU_ALGO_SM3:
/* SM3 shares the same block size. */
return SHA256_DIGEST_SIZE;
case OCS_HCU_ALGO_SHA384:
return SHA384_DIGEST_SIZE;
case OCS_HCU_ALGO_SHA512:
return SHA512_DIGEST_SIZE;
default:
return 0;
}
}
/**
* ocs_hcu_wait_busy() - Wait for HCU OCS hardware to became usable.
* @hcu_dev: OCS HCU device to wait for.
*
* Return: 0 if device free, -ETIMEOUT if device busy and internal timeout has
* expired.
*/
static int ocs_hcu_wait_busy(struct ocs_hcu_dev *hcu_dev)
{
long val;
return readl_poll_timeout(hcu_dev->io_base + OCS_HCU_STATUS, val,
!(val & HCU_STATUS_BUSY),
OCS_HCU_WAIT_BUSY_RETRY_DELAY_US,
OCS_HCU_WAIT_BUSY_TIMEOUT_US);
}
static void ocs_hcu_done_irq_en(struct ocs_hcu_dev *hcu_dev)
{
/* Clear any pending interrupts. */
writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_ISR);
hcu_dev->irq_err = false;
/* Enable error and HCU done interrupts. */
writel(HCU_IRQ_HASH_DONE | HCU_IRQ_HASH_ERR_MASK,
hcu_dev->io_base + OCS_HCU_IER);
}
static void ocs_hcu_dma_irq_en(struct ocs_hcu_dev *hcu_dev)
{
/* Clear any pending interrupts. */
writel(0xFFFFFFFF, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
hcu_dev->irq_err = false;
/* Only operating on DMA source completion and error interrupts. */
writel(HCU_DMA_IRQ_ERR_MASK | HCU_DMA_IRQ_SRC_DONE,
hcu_dev->io_base + OCS_HCU_DMA_MSI_IER);
/* Unmask */
writel(HCU_DMA_MSI_UNMASK, hcu_dev->io_base + OCS_HCU_DMA_MSI_MASK);
}
static void ocs_hcu_irq_dis(struct ocs_hcu_dev *hcu_dev)
{
writel(HCU_IRQ_DISABLE, hcu_dev->io_base + OCS_HCU_IER);
writel(HCU_DMA_MSI_DISABLE, hcu_dev->io_base + OCS_HCU_DMA_MSI_IER);
}
static int ocs_hcu_wait_and_disable_irq(struct ocs_hcu_dev *hcu_dev)
{
int rc;
rc = wait_for_completion_interruptible(&hcu_dev->irq_done);
if (rc)
goto exit;
if (hcu_dev->irq_err) {
/* Unset flag and return error. */
hcu_dev->irq_err = false;
rc = -EIO;
goto exit;
}
exit:
ocs_hcu_irq_dis(hcu_dev);
return rc;
}
/**
* ocs_hcu_get_intermediate_data() - Get intermediate data.
* @hcu_dev: The target HCU device.
* @data: Where to store the intermediate.
* @algo: The algorithm being used.
*
* This function is used to save the current hashing process state in order to
* continue it in the future.
*
* Note: once all data has been processed, the intermediate data actually
* contains the hashing result. So this function is also used to retrieve the
* final result of a hashing process.
*
* Return: 0 on success, negative error code otherwise.
*/
static int ocs_hcu_get_intermediate_data(struct ocs_hcu_dev *hcu_dev,
struct ocs_hcu_idata *data,
enum ocs_hcu_algo algo)
{
const int n = ocs_hcu_num_chains(algo);
u32 *chain;
int rc;
int i;
/* Data not requested. */
if (!data)
return -EINVAL;
chain = (u32 *)data->digest;
/* Ensure that the OCS is no longer busy before reading the chains. */
rc = ocs_hcu_wait_busy(hcu_dev);
if (rc)
return rc;
/*
* This loops is safe because data->digest is an array of
* SHA512_DIGEST_SIZE bytes and the maximum value returned by
* ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal
* to SHA512_DIGEST_SIZE / sizeof(u32).
*/
for (i = 0; i < n; i++)
chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN);
data->msg_len_lo = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_LO);
data->msg_len_hi = readl(hcu_dev->io_base + OCS_HCU_MSG_LEN_HI);
return 0;
}
/**
* ocs_hcu_set_intermediate_data() - Set intermediate data.
* @hcu_dev: The target HCU device.
* @data: The intermediate data to be set.
* @algo: The algorithm being used.
*
* This function is used to continue a previous hashing process.
*/
static void ocs_hcu_set_intermediate_data(struct ocs_hcu_dev *hcu_dev,
const struct ocs_hcu_idata *data,
enum ocs_hcu_algo algo)
{
const int n = ocs_hcu_num_chains(algo);
u32 *chain = (u32 *)data->digest;
int i;
/*
* This loops is safe because data->digest is an array of
* SHA512_DIGEST_SIZE bytes and the maximum value returned by
* ocs_hcu_num_chains() is OCS_HCU_NUM_CHAINS_SHA384_512 which is equal
* to SHA512_DIGEST_SIZE / sizeof(u32).
*/
for (i = 0; i < n; i++)
writel(chain[i], hcu_dev->io_base + OCS_HCU_CHAIN);
writel(data->msg_len_lo, hcu_dev->io_base + OCS_HCU_MSG_LEN_LO);
writel(data->msg_len_hi, hcu_dev->io_base + OCS_HCU_MSG_LEN_HI);
}
static int ocs_hcu_get_digest(struct ocs_hcu_dev *hcu_dev,
enum ocs_hcu_algo algo, u8 *dgst, size_t dgst_len)
{
u32 *chain;
int rc;
int i;
if (!dgst)
return -EINVAL;
/* Length of the output buffer must match the algo digest size. */
if (dgst_len != ocs_hcu_digest_size(algo))
return -EINVAL;
/* Ensure that the OCS is no longer busy before reading the chains. */
rc = ocs_hcu_wait_busy(hcu_dev);
if (rc)
return rc;
chain = (u32 *)dgst;
for (i = 0; i < dgst_len / sizeof(u32); i++)
chain[i] = readl(hcu_dev->io_base + OCS_HCU_CHAIN);
return 0;
}
/**
* ocs_hcu_hw_cfg() - Configure the HCU hardware.
* @hcu_dev: The HCU device to configure.
* @algo: The algorithm to be used by the HCU device.
* @use_hmac: Whether or not HW HMAC should be used.
*
* Return: 0 on success, negative error code otherwise.
*/
static int ocs_hcu_hw_cfg(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo,
bool use_hmac)
{
u32 cfg;
int rc;
if (algo != OCS_HCU_ALGO_SHA256 && algo != OCS_HCU_ALGO_SHA224 &&
algo != OCS_HCU_ALGO_SHA384 && algo != OCS_HCU_ALGO_SHA512 &&
algo != OCS_HCU_ALGO_SM3)
return -EINVAL;
rc = ocs_hcu_wait_busy(hcu_dev);
if (rc)
return rc;
/* Ensure interrupts are disabled. */
ocs_hcu_irq_dis(hcu_dev);
/* Configure endianness, hashing algorithm and HW HMAC (if needed) */
cfg = OCS_HCU_ENDIANNESS_VALUE << HCU_DATA_WRITE_ENDIANNESS_OFFSET;
cfg |= algo << HCU_MODE_ALGO_SHIFT;
if (use_hmac)
cfg |= BIT(HCU_MODE_HMAC_SHIFT);
writel(cfg, hcu_dev->io_base + OCS_HCU_MODE);
return 0;
}
/**
* ocs_hcu_clear_key() - Clear key stored in OCS HMAC KEY registers.
* @hcu_dev: The OCS HCU device whose key registers should be cleared.
*/
static void ocs_hcu_clear_key(struct ocs_hcu_dev *hcu_dev)
{
int reg_off;
/* Clear OCS_HCU_KEY_[0..15] */
for (reg_off = 0; reg_off < OCS_HCU_HW_KEY_LEN; reg_off += sizeof(u32))
writel(0, hcu_dev->io_base + OCS_HCU_KEY_0 + reg_off);
}
/**
* ocs_hcu_write_key() - Write key to OCS HMAC KEY registers.
* @hcu_dev: The OCS HCU device the key should be written to.
* @key: The key to be written.
* @len: The size of the key to write. It must be OCS_HCU_HW_KEY_LEN.
*
* Return: 0 on success, negative error code otherwise.
*/
static int ocs_hcu_write_key(struct ocs_hcu_dev *hcu_dev, const u8 *key, size_t len)
{
u32 key_u32[OCS_HCU_HW_KEY_LEN_U32];
int i;
if (len > OCS_HCU_HW_KEY_LEN)
return -EINVAL;
/* Copy key into temporary u32 array. */
memcpy(key_u32, key, len);
/*
* Hardware requires all the bytes of the HW Key vector to be
* written. So pad with zero until we reach OCS_HCU_HW_KEY_LEN.
*/
memzero_explicit((u8 *)key_u32 + len, OCS_HCU_HW_KEY_LEN - len);
/*
* OCS hardware expects the MSB of the key to be written at the highest
* address of the HCU Key vector; in other word, the key must be
* written in reverse order.
*
* Therefore, we first enable byte swapping for the HCU key vector;
* so that bytes of 32-bit word written to OCS_HCU_KEY_[0..15] will be
* swapped:
* 3 <---> 0, 2 <---> 1.
*/
writel(HCU_BYTE_ORDER_SWAP,
hcu_dev->io_base + OCS_HCU_KEY_BYTE_ORDER_CFG);
/*
* And then we write the 32-bit words composing the key starting from
* the end of the key.
*/
for (i = 0; i < OCS_HCU_HW_KEY_LEN_U32; i++)
writel(key_u32[OCS_HCU_HW_KEY_LEN_U32 - 1 - i],
hcu_dev->io_base + OCS_HCU_KEY_0 + (sizeof(u32) * i));
memzero_explicit(key_u32, OCS_HCU_HW_KEY_LEN);
return 0;
}
/**
* ocs_hcu_ll_dma_start() - Start OCS HCU hashing via DMA
* @hcu_dev: The OCS HCU device to use.
* @dma_list: The OCS DMA list mapping the data to hash.
* @finalize: Whether or not this is the last hashing operation and therefore
* the final hash should be compute even if data is not
* block-aligned.
*
* Return: 0 on success, negative error code otherwise.
*/
static int ocs_hcu_ll_dma_start(struct ocs_hcu_dev *hcu_dev,
const struct ocs_hcu_dma_list *dma_list,
bool finalize)
{
u32 cfg = HCU_DMA_SNOOP_MASK | HCU_DMA_SRC_LL_EN | HCU_DMA_EN;
int rc;
if (!dma_list)
return -EINVAL;
/*
* For final requests we use HCU_DONE IRQ to be notified when all input
* data has been processed by the HCU; however, we cannot do so for
* non-final requests, because we don't get a HCU_DONE IRQ when we
* don't terminate the operation.
*
* Therefore, for non-final requests, we use the DMA IRQ, which
* triggers when DMA has finishing feeding all the input data to the
* HCU, but the HCU may still be processing it. This is fine, since we
* will wait for the HCU processing to be completed when we try to read
* intermediate results, in ocs_hcu_get_intermediate_data().
*/
if (finalize)
ocs_hcu_done_irq_en(hcu_dev);
else
ocs_hcu_dma_irq_en(hcu_dev);
reinit_completion(&hcu_dev->irq_done);
writel(dma_list->dma_addr, hcu_dev->io_base + OCS_HCU_DMA_NEXT_SRC_DESCR);
writel(0, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE);
writel(0, hcu_dev->io_base + OCS_HCU_DMA_DST_SIZE);
writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION);
writel(cfg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE);
if (finalize)
writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION);
rc = ocs_hcu_wait_and_disable_irq(hcu_dev);
if (rc)
return rc;
return 0;
}
struct ocs_hcu_dma_list *ocs_hcu_dma_list_alloc(struct ocs_hcu_dev *hcu_dev,
int max_nents)
{
struct ocs_hcu_dma_list *dma_list;
dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
if (!dma_list)
return NULL;
/* Total size of the DMA list to allocate. */
dma_list->head = dma_alloc_coherent(hcu_dev->dev,
sizeof(*dma_list->head) * max_nents,
&dma_list->dma_addr, GFP_KERNEL);
if (!dma_list->head) {
kfree(dma_list);
return NULL;
}
dma_list->max_nents = max_nents;
dma_list->tail = NULL;
return dma_list;
}
void ocs_hcu_dma_list_free(struct ocs_hcu_dev *hcu_dev,
struct ocs_hcu_dma_list *dma_list)
{
if (!dma_list)
return;
dma_free_coherent(hcu_dev->dev,
sizeof(*dma_list->head) * dma_list->max_nents,
dma_list->head, dma_list->dma_addr);
kfree(dma_list);
}
/* Add a new DMA entry at the end of the OCS DMA list. */
int ocs_hcu_dma_list_add_tail(struct ocs_hcu_dev *hcu_dev,
struct ocs_hcu_dma_list *dma_list,
dma_addr_t addr, u32 len)
{
struct device *dev = hcu_dev->dev;
struct ocs_hcu_dma_entry *old_tail;
struct ocs_hcu_dma_entry *new_tail;
if (!len)
return 0;
if (!dma_list)
return -EINVAL;
if (addr & ~OCS_HCU_DMA_BIT_MASK) {
dev_err(dev,
"Unexpected error: Invalid DMA address for OCS HCU\n");
return -EINVAL;
}
old_tail = dma_list->tail;
new_tail = old_tail ? old_tail + 1 : dma_list->head;
/* Check if list is full. */
if (new_tail - dma_list->head >= dma_list->max_nents)
return -ENOMEM;
/*
* If there was an old tail (i.e., this is not the first element we are
* adding), un-terminate the old tail and make it point to the new one.
*/
if (old_tail) {
old_tail->ll_flags &= ~OCS_LL_DMA_FLAG_TERMINATE;
/*
* The old tail 'nxt_desc' must point to the DMA address of the
* new tail.
*/
old_tail->nxt_desc = dma_list->dma_addr +
sizeof(*dma_list->tail) * (new_tail -
dma_list->head);
}
new_tail->src_addr = (u32)addr;
new_tail->src_len = (u32)len;
new_tail->ll_flags = OCS_LL_DMA_FLAG_TERMINATE;
new_tail->nxt_desc = 0;
/* Update list tail with new tail. */
dma_list->tail = new_tail;
return 0;
}
/**
* ocs_hcu_hash_init() - Initialize hash operation context.
* @ctx: The context to initialize.
* @algo: The hashing algorithm to use.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_hcu_hash_init(struct ocs_hcu_hash_ctx *ctx, enum ocs_hcu_algo algo)
{
if (!ctx)
return -EINVAL;
ctx->algo = algo;
ctx->idata.msg_len_lo = 0;
ctx->idata.msg_len_hi = 0;
/* No need to set idata.digest to 0. */
return 0;
}
/**
* ocs_hcu_hash_update() - Perform a hashing iteration.
* @hcu_dev: The OCS HCU device to use.
* @ctx: The OCS HCU hashing context.
* @dma_list: The OCS DMA list mapping the input data to process.
*
* Return: 0 on success; negative error code otherwise.
*/
int ocs_hcu_hash_update(struct ocs_hcu_dev *hcu_dev,
struct ocs_hcu_hash_ctx *ctx,
const struct ocs_hcu_dma_list *dma_list)
{
int rc;
if (!hcu_dev || !ctx)
return -EINVAL;
/* Configure the hardware for the current request. */
rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false);
if (rc)
return rc;
/* If we already processed some data, idata needs to be set. */
if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi)
ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo);
/* Start linked-list DMA hashing. */
rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, false);
if (rc)
return rc;
/* Update idata and return. */
return ocs_hcu_get_intermediate_data(hcu_dev, &ctx->idata, ctx->algo);
}
/**
* ocs_hcu_hash_finup() - Update and finalize hash computation.
* @hcu_dev: The OCS HCU device to use.
* @ctx: The OCS HCU hashing context.
* @dma_list: The OCS DMA list mapping the input data to process.
* @dgst: The buffer where to save the computed digest.
* @dgst_len: The length of @dgst.
*
* Return: 0 on success; negative error code otherwise.
*/
int ocs_hcu_hash_finup(struct ocs_hcu_dev *hcu_dev,
const struct ocs_hcu_hash_ctx *ctx,
const struct ocs_hcu_dma_list *dma_list,
u8 *dgst, size_t dgst_len)
{
int rc;
if (!hcu_dev || !ctx)
return -EINVAL;
/* Configure the hardware for the current request. */
rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false);
if (rc)
return rc;
/* If we already processed some data, idata needs to be set. */
if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi)
ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo);
/* Start linked-list DMA hashing. */
rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true);
if (rc)
return rc;
/* Get digest and return. */
return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len);
}
/**
* ocs_hcu_hash_final() - Finalize hash computation.
* @hcu_dev: The OCS HCU device to use.
* @ctx: The OCS HCU hashing context.
* @dgst: The buffer where to save the computed digest.
* @dgst_len: The length of @dgst.
*
* Return: 0 on success; negative error code otherwise.
*/
int ocs_hcu_hash_final(struct ocs_hcu_dev *hcu_dev,
const struct ocs_hcu_hash_ctx *ctx, u8 *dgst,
size_t dgst_len)
{
int rc;
if (!hcu_dev || !ctx)
return -EINVAL;
/* Configure the hardware for the current request. */
rc = ocs_hcu_hw_cfg(hcu_dev, ctx->algo, false);
if (rc)
return rc;
/* If we already processed some data, idata needs to be set. */
if (ctx->idata.msg_len_lo || ctx->idata.msg_len_hi)
ocs_hcu_set_intermediate_data(hcu_dev, &ctx->idata, ctx->algo);
/*
* Enable HCU interrupts, so that HCU_DONE will be triggered once the
* final hash is computed.
*/
ocs_hcu_done_irq_en(hcu_dev);
reinit_completion(&hcu_dev->irq_done);
writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION);
rc = ocs_hcu_wait_and_disable_irq(hcu_dev);
if (rc)
return rc;
/* Get digest and return. */
return ocs_hcu_get_digest(hcu_dev, ctx->algo, dgst, dgst_len);
}
/**
* ocs_hcu_digest() - Compute hash digest.
* @hcu_dev: The OCS HCU device to use.
* @algo: The hash algorithm to use.
* @data: The input data to process.
* @data_len: The length of @data.
* @dgst: The buffer where to save the computed digest.
* @dgst_len: The length of @dgst.
*
* Return: 0 on success; negative error code otherwise.
*/
int ocs_hcu_digest(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo,
void *data, size_t data_len, u8 *dgst, size_t dgst_len)
{
struct device *dev = hcu_dev->dev;
dma_addr_t dma_handle;
u32 reg;
int rc;
/* Configure the hardware for the current request. */
rc = ocs_hcu_hw_cfg(hcu_dev, algo, false);
if (rc)
return rc;
dma_handle = dma_map_single(dev, data, data_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma_handle))
return -EIO;
reg = HCU_DMA_SNOOP_MASK | HCU_DMA_EN;
ocs_hcu_done_irq_en(hcu_dev);
reinit_completion(&hcu_dev->irq_done);
writel(dma_handle, hcu_dev->io_base + OCS_HCU_DMA_SRC_ADDR);
writel(data_len, hcu_dev->io_base + OCS_HCU_DMA_SRC_SIZE);
writel(OCS_HCU_START, hcu_dev->io_base + OCS_HCU_OPERATION);
writel(reg, hcu_dev->io_base + OCS_HCU_DMA_DMA_MODE);
writel(OCS_HCU_TERMINATE, hcu_dev->io_base + OCS_HCU_OPERATION);
rc = ocs_hcu_wait_and_disable_irq(hcu_dev);
if (rc)
return rc;
dma_unmap_single(dev, dma_handle, data_len, DMA_TO_DEVICE);
return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len);
}
/**
* ocs_hcu_hmac() - Compute HMAC.
* @hcu_dev: The OCS HCU device to use.
* @algo: The hash algorithm to use with HMAC.
* @key: The key to use.
* @dma_list: The OCS DMA list mapping the input data to process.
* @key_len: The length of @key.
* @dgst: The buffer where to save the computed HMAC.
* @dgst_len: The length of @dgst.
*
* Return: 0 on success; negative error code otherwise.
*/
int ocs_hcu_hmac(struct ocs_hcu_dev *hcu_dev, enum ocs_hcu_algo algo,
const u8 *key, size_t key_len,
const struct ocs_hcu_dma_list *dma_list,
u8 *dgst, size_t dgst_len)
{
int rc;
/* Ensure 'key' is not NULL. */
if (!key || key_len == 0)
return -EINVAL;
/* Configure the hardware for the current request. */
rc = ocs_hcu_hw_cfg(hcu_dev, algo, true);
if (rc)
return rc;
rc = ocs_hcu_write_key(hcu_dev, key, key_len);
if (rc)
return rc;
rc = ocs_hcu_ll_dma_start(hcu_dev, dma_list, true);
/* Clear HW key before processing return code. */
ocs_hcu_clear_key(hcu_dev);
if (rc)
return rc;
return ocs_hcu_get_digest(hcu_dev, algo, dgst, dgst_len);
}
irqreturn_t ocs_hcu_irq_handler(int irq, void *dev_id)
{
struct ocs_hcu_dev *hcu_dev = dev_id;
u32 hcu_irq;
u32 dma_irq;
/* Read and clear the HCU interrupt. */
hcu_irq = readl(hcu_dev->io_base + OCS_HCU_ISR);
writel(hcu_irq, hcu_dev->io_base + OCS_HCU_ISR);
/* Read and clear the HCU DMA interrupt. */
dma_irq = readl(hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
writel(dma_irq, hcu_dev->io_base + OCS_HCU_DMA_MSI_ISR);
/* Check for errors. */
if (hcu_irq & HCU_IRQ_HASH_ERR_MASK || dma_irq & HCU_DMA_IRQ_ERR_MASK) {
hcu_dev->irq_err = true;
goto complete;
}
/* Check for DONE IRQs. */
if (hcu_irq & HCU_IRQ_HASH_DONE || dma_irq & HCU_DMA_IRQ_SRC_DONE)
goto complete;
return IRQ_NONE;
complete:
complete(&hcu_dev->irq_done);
return IRQ_HANDLED;
}
MODULE_LICENSE("GPL");