linux/linux-5.18.11/drivers/crypto/hisilicon/sec2/sec_main.c

1173 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <linux/acpi.h>
#include <linux/aer.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <linux/topology.h>
#include <linux/uacce.h>
#include "sec.h"
#define SEC_VF_NUM 63
#define SEC_QUEUE_NUM_V1 4096
#define PCI_DEVICE_ID_HUAWEI_SEC_PF 0xa255
#define SEC_BD_ERR_CHK_EN0 0xEFFFFFFF
#define SEC_BD_ERR_CHK_EN1 0x7ffff7fd
#define SEC_BD_ERR_CHK_EN3 0xffffbfff
#define SEC_SQE_SIZE 128
#define SEC_SQ_SIZE (SEC_SQE_SIZE * QM_Q_DEPTH)
#define SEC_PF_DEF_Q_NUM 256
#define SEC_PF_DEF_Q_BASE 0
#define SEC_CTX_Q_NUM_DEF 2
#define SEC_CTX_Q_NUM_MAX 32
#define SEC_CTRL_CNT_CLR_CE 0x301120
#define SEC_CTRL_CNT_CLR_CE_BIT BIT(0)
#define SEC_CORE_INT_SOURCE 0x301010
#define SEC_CORE_INT_MASK 0x301000
#define SEC_CORE_INT_STATUS 0x301008
#define SEC_CORE_SRAM_ECC_ERR_INFO 0x301C14
#define SEC_ECC_NUM 16
#define SEC_ECC_MASH 0xFF
#define SEC_CORE_INT_DISABLE 0x0
#define SEC_CORE_INT_ENABLE 0x7c1ff
#define SEC_CORE_INT_CLEAR 0x7c1ff
#define SEC_SAA_ENABLE 0x17f
#define SEC_RAS_CE_REG 0x301050
#define SEC_RAS_FE_REG 0x301054
#define SEC_RAS_NFE_REG 0x301058
#define SEC_RAS_CE_ENB_MSK 0x88
#define SEC_RAS_FE_ENB_MSK 0x0
#define SEC_RAS_NFE_ENB_MSK 0x7c177
#define SEC_OOO_SHUTDOWN_SEL 0x301014
#define SEC_RAS_DISABLE 0x0
#define SEC_MEM_START_INIT_REG 0x301100
#define SEC_MEM_INIT_DONE_REG 0x301104
/* clock gating */
#define SEC_CONTROL_REG 0x301200
#define SEC_DYNAMIC_GATE_REG 0x30121c
#define SEC_CORE_AUTO_GATE 0x30212c
#define SEC_DYNAMIC_GATE_EN 0x7bff
#define SEC_CORE_AUTO_GATE_EN GENMASK(3, 0)
#define SEC_CLK_GATE_ENABLE BIT(3)
#define SEC_CLK_GATE_DISABLE (~BIT(3))
#define SEC_TRNG_EN_SHIFT 8
#define SEC_AXI_SHUTDOWN_ENABLE BIT(12)
#define SEC_AXI_SHUTDOWN_DISABLE 0xFFFFEFFF
#define SEC_INTERFACE_USER_CTRL0_REG 0x301220
#define SEC_INTERFACE_USER_CTRL1_REG 0x301224
#define SEC_SAA_EN_REG 0x301270
#define SEC_BD_ERR_CHK_EN_REG0 0x301380
#define SEC_BD_ERR_CHK_EN_REG1 0x301384
#define SEC_BD_ERR_CHK_EN_REG3 0x30138c
#define SEC_USER0_SMMU_NORMAL (BIT(23) | BIT(15))
#define SEC_USER1_SMMU_NORMAL (BIT(31) | BIT(23) | BIT(15) | BIT(7))
#define SEC_USER1_ENABLE_CONTEXT_SSV BIT(24)
#define SEC_USER1_ENABLE_DATA_SSV BIT(16)
#define SEC_USER1_WB_CONTEXT_SSV BIT(8)
#define SEC_USER1_WB_DATA_SSV BIT(0)
#define SEC_USER1_SVA_SET (SEC_USER1_ENABLE_CONTEXT_SSV | \
SEC_USER1_ENABLE_DATA_SSV | \
SEC_USER1_WB_CONTEXT_SSV | \
SEC_USER1_WB_DATA_SSV)
#define SEC_USER1_SMMU_SVA (SEC_USER1_SMMU_NORMAL | SEC_USER1_SVA_SET)
#define SEC_USER1_SMMU_MASK (~SEC_USER1_SVA_SET)
#define SEC_INTERFACE_USER_CTRL0_REG_V3 0x302220
#define SEC_INTERFACE_USER_CTRL1_REG_V3 0x302224
#define SEC_USER1_SMMU_NORMAL_V3 (BIT(23) | BIT(17) | BIT(11) | BIT(5))
#define SEC_USER1_SMMU_MASK_V3 0xFF79E79E
#define SEC_CORE_INT_STATUS_M_ECC BIT(2)
#define SEC_PREFETCH_CFG 0x301130
#define SEC_SVA_TRANS 0x301EC4
#define SEC_PREFETCH_ENABLE (~(BIT(0) | BIT(1) | BIT(11)))
#define SEC_PREFETCH_DISABLE BIT(1)
#define SEC_SVA_DISABLE_READY (BIT(7) | BIT(11))
#define SEC_DELAY_10_US 10
#define SEC_POLL_TIMEOUT_US 1000
#define SEC_DBGFS_VAL_MAX_LEN 20
#define SEC_SINGLE_PORT_MAX_TRANS 0x2060
#define SEC_SQE_MASK_OFFSET 64
#define SEC_SQE_MASK_LEN 48
#define SEC_SHAPER_TYPE_RATE 400
struct sec_hw_error {
u32 int_msk;
const char *msg;
};
struct sec_dfx_item {
const char *name;
u32 offset;
};
static const char sec_name[] = "hisi_sec2";
static struct dentry *sec_debugfs_root;
static struct hisi_qm_list sec_devices = {
.register_to_crypto = sec_register_to_crypto,
.unregister_from_crypto = sec_unregister_from_crypto,
};
static const struct sec_hw_error sec_hw_errors[] = {
{
.int_msk = BIT(0),
.msg = "sec_axi_rresp_err_rint"
},
{
.int_msk = BIT(1),
.msg = "sec_axi_bresp_err_rint"
},
{
.int_msk = BIT(2),
.msg = "sec_ecc_2bit_err_rint"
},
{
.int_msk = BIT(3),
.msg = "sec_ecc_1bit_err_rint"
},
{
.int_msk = BIT(4),
.msg = "sec_req_trng_timeout_rint"
},
{
.int_msk = BIT(5),
.msg = "sec_fsm_hbeat_rint"
},
{
.int_msk = BIT(6),
.msg = "sec_channel_req_rng_timeout_rint"
},
{
.int_msk = BIT(7),
.msg = "sec_bd_err_rint"
},
{
.int_msk = BIT(8),
.msg = "sec_chain_buff_err_rint"
},
{
.int_msk = BIT(14),
.msg = "sec_no_secure_access"
},
{
.int_msk = BIT(15),
.msg = "sec_wrapping_key_auth_err"
},
{
.int_msk = BIT(16),
.msg = "sec_km_key_crc_fail"
},
{
.int_msk = BIT(17),
.msg = "sec_axi_poison_err"
},
{
.int_msk = BIT(18),
.msg = "sec_sva_err"
},
{}
};
static const char * const sec_dbg_file_name[] = {
[SEC_CLEAR_ENABLE] = "clear_enable",
};
static struct sec_dfx_item sec_dfx_labels[] = {
{"send_cnt", offsetof(struct sec_dfx, send_cnt)},
{"recv_cnt", offsetof(struct sec_dfx, recv_cnt)},
{"send_busy_cnt", offsetof(struct sec_dfx, send_busy_cnt)},
{"recv_busy_cnt", offsetof(struct sec_dfx, recv_busy_cnt)},
{"err_bd_cnt", offsetof(struct sec_dfx, err_bd_cnt)},
{"invalid_req_cnt", offsetof(struct sec_dfx, invalid_req_cnt)},
{"done_flag_cnt", offsetof(struct sec_dfx, done_flag_cnt)},
};
static const struct debugfs_reg32 sec_dfx_regs[] = {
{"SEC_PF_ABNORMAL_INT_SOURCE ", 0x301010},
{"SEC_SAA_EN ", 0x301270},
{"SEC_BD_LATENCY_MIN ", 0x301600},
{"SEC_BD_LATENCY_MAX ", 0x301608},
{"SEC_BD_LATENCY_AVG ", 0x30160C},
{"SEC_BD_NUM_IN_SAA0 ", 0x301670},
{"SEC_BD_NUM_IN_SAA1 ", 0x301674},
{"SEC_BD_NUM_IN_SEC ", 0x301680},
{"SEC_ECC_1BIT_CNT ", 0x301C00},
{"SEC_ECC_1BIT_INFO ", 0x301C04},
{"SEC_ECC_2BIT_CNT ", 0x301C10},
{"SEC_ECC_2BIT_INFO ", 0x301C14},
{"SEC_BD_SAA0 ", 0x301C20},
{"SEC_BD_SAA1 ", 0x301C24},
{"SEC_BD_SAA2 ", 0x301C28},
{"SEC_BD_SAA3 ", 0x301C2C},
{"SEC_BD_SAA4 ", 0x301C30},
{"SEC_BD_SAA5 ", 0x301C34},
{"SEC_BD_SAA6 ", 0x301C38},
{"SEC_BD_SAA7 ", 0x301C3C},
{"SEC_BD_SAA8 ", 0x301C40},
};
static int sec_pf_q_num_set(const char *val, const struct kernel_param *kp)
{
return q_num_set(val, kp, PCI_DEVICE_ID_HUAWEI_SEC_PF);
}
static const struct kernel_param_ops sec_pf_q_num_ops = {
.set = sec_pf_q_num_set,
.get = param_get_int,
};
static u32 pf_q_num = SEC_PF_DEF_Q_NUM;
module_param_cb(pf_q_num, &sec_pf_q_num_ops, &pf_q_num, 0444);
MODULE_PARM_DESC(pf_q_num, "Number of queues in PF(v1 2-4096, v2 2-1024)");
static int sec_ctx_q_num_set(const char *val, const struct kernel_param *kp)
{
u32 ctx_q_num;
int ret;
if (!val)
return -EINVAL;
ret = kstrtou32(val, 10, &ctx_q_num);
if (ret)
return -EINVAL;
if (!ctx_q_num || ctx_q_num > SEC_CTX_Q_NUM_MAX || ctx_q_num & 0x1) {
pr_err("ctx queue num[%u] is invalid!\n", ctx_q_num);
return -EINVAL;
}
return param_set_int(val, kp);
}
static const struct kernel_param_ops sec_ctx_q_num_ops = {
.set = sec_ctx_q_num_set,
.get = param_get_int,
};
static u32 ctx_q_num = SEC_CTX_Q_NUM_DEF;
module_param_cb(ctx_q_num, &sec_ctx_q_num_ops, &ctx_q_num, 0444);
MODULE_PARM_DESC(ctx_q_num, "Queue num in ctx (2 default, 2, 4, ..., 32)");
static const struct kernel_param_ops vfs_num_ops = {
.set = vfs_num_set,
.get = param_get_int,
};
static u32 vfs_num;
module_param_cb(vfs_num, &vfs_num_ops, &vfs_num, 0444);
MODULE_PARM_DESC(vfs_num, "Number of VFs to enable(1-63), 0(default)");
void sec_destroy_qps(struct hisi_qp **qps, int qp_num)
{
hisi_qm_free_qps(qps, qp_num);
kfree(qps);
}
struct hisi_qp **sec_create_qps(void)
{
int node = cpu_to_node(smp_processor_id());
u32 ctx_num = ctx_q_num;
struct hisi_qp **qps;
int ret;
qps = kcalloc(ctx_num, sizeof(struct hisi_qp *), GFP_KERNEL);
if (!qps)
return NULL;
ret = hisi_qm_alloc_qps_node(&sec_devices, ctx_num, 0, node, qps);
if (!ret)
return qps;
kfree(qps);
return NULL;
}
static const struct kernel_param_ops sec_uacce_mode_ops = {
.set = uacce_mode_set,
.get = param_get_int,
};
/*
* uacce_mode = 0 means sec only register to crypto,
* uacce_mode = 1 means sec both register to crypto and uacce.
*/
static u32 uacce_mode = UACCE_MODE_NOUACCE;
module_param_cb(uacce_mode, &sec_uacce_mode_ops, &uacce_mode, 0444);
MODULE_PARM_DESC(uacce_mode, UACCE_MODE_DESC);
static const struct pci_device_id sec_dev_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_SEC_PF) },
{ PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_SEC_VF) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, sec_dev_ids);
static void sec_set_endian(struct hisi_qm *qm)
{
u32 reg;
reg = readl_relaxed(qm->io_base + SEC_CONTROL_REG);
reg &= ~(BIT(1) | BIT(0));
if (!IS_ENABLED(CONFIG_64BIT))
reg |= BIT(1);
if (!IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
reg |= BIT(0);
writel_relaxed(reg, qm->io_base + SEC_CONTROL_REG);
}
static void sec_engine_sva_config(struct hisi_qm *qm)
{
u32 reg;
if (qm->ver > QM_HW_V2) {
reg = readl_relaxed(qm->io_base +
SEC_INTERFACE_USER_CTRL0_REG_V3);
reg |= SEC_USER0_SMMU_NORMAL;
writel_relaxed(reg, qm->io_base +
SEC_INTERFACE_USER_CTRL0_REG_V3);
reg = readl_relaxed(qm->io_base +
SEC_INTERFACE_USER_CTRL1_REG_V3);
reg &= SEC_USER1_SMMU_MASK_V3;
reg |= SEC_USER1_SMMU_NORMAL_V3;
writel_relaxed(reg, qm->io_base +
SEC_INTERFACE_USER_CTRL1_REG_V3);
} else {
reg = readl_relaxed(qm->io_base +
SEC_INTERFACE_USER_CTRL0_REG);
reg |= SEC_USER0_SMMU_NORMAL;
writel_relaxed(reg, qm->io_base +
SEC_INTERFACE_USER_CTRL0_REG);
reg = readl_relaxed(qm->io_base +
SEC_INTERFACE_USER_CTRL1_REG);
reg &= SEC_USER1_SMMU_MASK;
if (qm->use_sva)
reg |= SEC_USER1_SMMU_SVA;
else
reg |= SEC_USER1_SMMU_NORMAL;
writel_relaxed(reg, qm->io_base +
SEC_INTERFACE_USER_CTRL1_REG);
}
}
static void sec_open_sva_prefetch(struct hisi_qm *qm)
{
u32 val;
int ret;
if (qm->ver < QM_HW_V3)
return;
/* Enable prefetch */
val = readl_relaxed(qm->io_base + SEC_PREFETCH_CFG);
val &= SEC_PREFETCH_ENABLE;
writel(val, qm->io_base + SEC_PREFETCH_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + SEC_PREFETCH_CFG,
val, !(val & SEC_PREFETCH_DISABLE),
SEC_DELAY_10_US, SEC_POLL_TIMEOUT_US);
if (ret)
pci_err(qm->pdev, "failed to open sva prefetch\n");
}
static void sec_close_sva_prefetch(struct hisi_qm *qm)
{
u32 val;
int ret;
if (qm->ver < QM_HW_V3)
return;
val = readl_relaxed(qm->io_base + SEC_PREFETCH_CFG);
val |= SEC_PREFETCH_DISABLE;
writel(val, qm->io_base + SEC_PREFETCH_CFG);
ret = readl_relaxed_poll_timeout(qm->io_base + SEC_SVA_TRANS,
val, !(val & SEC_SVA_DISABLE_READY),
SEC_DELAY_10_US, SEC_POLL_TIMEOUT_US);
if (ret)
pci_err(qm->pdev, "failed to close sva prefetch\n");
}
static void sec_enable_clock_gate(struct hisi_qm *qm)
{
u32 val;
if (qm->ver < QM_HW_V3)
return;
val = readl_relaxed(qm->io_base + SEC_CONTROL_REG);
val |= SEC_CLK_GATE_ENABLE;
writel_relaxed(val, qm->io_base + SEC_CONTROL_REG);
val = readl(qm->io_base + SEC_DYNAMIC_GATE_REG);
val |= SEC_DYNAMIC_GATE_EN;
writel(val, qm->io_base + SEC_DYNAMIC_GATE_REG);
val = readl(qm->io_base + SEC_CORE_AUTO_GATE);
val |= SEC_CORE_AUTO_GATE_EN;
writel(val, qm->io_base + SEC_CORE_AUTO_GATE);
}
static void sec_disable_clock_gate(struct hisi_qm *qm)
{
u32 val;
/* Kunpeng920 needs to close clock gating */
val = readl_relaxed(qm->io_base + SEC_CONTROL_REG);
val &= SEC_CLK_GATE_DISABLE;
writel_relaxed(val, qm->io_base + SEC_CONTROL_REG);
}
static int sec_engine_init(struct hisi_qm *qm)
{
int ret;
u32 reg;
/* disable clock gate control before mem init */
sec_disable_clock_gate(qm);
writel_relaxed(0x1, qm->io_base + SEC_MEM_START_INIT_REG);
ret = readl_relaxed_poll_timeout(qm->io_base + SEC_MEM_INIT_DONE_REG,
reg, reg & 0x1, SEC_DELAY_10_US,
SEC_POLL_TIMEOUT_US);
if (ret) {
pci_err(qm->pdev, "fail to init sec mem\n");
return ret;
}
reg = readl_relaxed(qm->io_base + SEC_CONTROL_REG);
reg |= (0x1 << SEC_TRNG_EN_SHIFT);
writel_relaxed(reg, qm->io_base + SEC_CONTROL_REG);
sec_engine_sva_config(qm);
writel(SEC_SINGLE_PORT_MAX_TRANS,
qm->io_base + AM_CFG_SINGLE_PORT_MAX_TRANS);
writel(SEC_SAA_ENABLE, qm->io_base + SEC_SAA_EN_REG);
/* HW V2 enable sm4 extra mode, as ctr/ecb */
if (qm->ver < QM_HW_V3)
writel_relaxed(SEC_BD_ERR_CHK_EN0,
qm->io_base + SEC_BD_ERR_CHK_EN_REG0);
/* Enable sm4 xts mode multiple iv */
writel_relaxed(SEC_BD_ERR_CHK_EN1,
qm->io_base + SEC_BD_ERR_CHK_EN_REG1);
writel_relaxed(SEC_BD_ERR_CHK_EN3,
qm->io_base + SEC_BD_ERR_CHK_EN_REG3);
/* config endian */
sec_set_endian(qm);
sec_enable_clock_gate(qm);
return 0;
}
static int sec_set_user_domain_and_cache(struct hisi_qm *qm)
{
/* qm user domain */
writel(AXUSER_BASE, qm->io_base + QM_ARUSER_M_CFG_1);
writel(ARUSER_M_CFG_ENABLE, qm->io_base + QM_ARUSER_M_CFG_ENABLE);
writel(AXUSER_BASE, qm->io_base + QM_AWUSER_M_CFG_1);
writel(AWUSER_M_CFG_ENABLE, qm->io_base + QM_AWUSER_M_CFG_ENABLE);
writel(WUSER_M_CFG_ENABLE, qm->io_base + QM_WUSER_M_CFG_ENABLE);
/* qm cache */
writel(AXI_M_CFG, qm->io_base + QM_AXI_M_CFG);
writel(AXI_M_CFG_ENABLE, qm->io_base + QM_AXI_M_CFG_ENABLE);
/* disable FLR triggered by BME(bus master enable) */
writel(PEH_AXUSER_CFG, qm->io_base + QM_PEH_AXUSER_CFG);
writel(PEH_AXUSER_CFG_ENABLE, qm->io_base + QM_PEH_AXUSER_CFG_ENABLE);
/* enable sqc,cqc writeback */
writel(SQC_CACHE_ENABLE | CQC_CACHE_ENABLE | SQC_CACHE_WB_ENABLE |
CQC_CACHE_WB_ENABLE | FIELD_PREP(SQC_CACHE_WB_THRD, 1) |
FIELD_PREP(CQC_CACHE_WB_THRD, 1), qm->io_base + QM_CACHE_CTL);
return sec_engine_init(qm);
}
/* sec_debug_regs_clear() - clear the sec debug regs */
static void sec_debug_regs_clear(struct hisi_qm *qm)
{
int i;
/* clear sec dfx regs */
writel(0x1, qm->io_base + SEC_CTRL_CNT_CLR_CE);
for (i = 0; i < ARRAY_SIZE(sec_dfx_regs); i++)
readl(qm->io_base + sec_dfx_regs[i].offset);
/* clear rdclr_en */
writel(0x0, qm->io_base + SEC_CTRL_CNT_CLR_CE);
hisi_qm_debug_regs_clear(qm);
}
static void sec_master_ooo_ctrl(struct hisi_qm *qm, bool enable)
{
u32 val1, val2;
val1 = readl(qm->io_base + SEC_CONTROL_REG);
if (enable) {
val1 |= SEC_AXI_SHUTDOWN_ENABLE;
val2 = SEC_RAS_NFE_ENB_MSK;
} else {
val1 &= SEC_AXI_SHUTDOWN_DISABLE;
val2 = 0x0;
}
if (qm->ver > QM_HW_V2)
writel(val2, qm->io_base + SEC_OOO_SHUTDOWN_SEL);
writel(val1, qm->io_base + SEC_CONTROL_REG);
}
static void sec_hw_error_enable(struct hisi_qm *qm)
{
if (qm->ver == QM_HW_V1) {
writel(SEC_CORE_INT_DISABLE, qm->io_base + SEC_CORE_INT_MASK);
pci_info(qm->pdev, "V1 not support hw error handle\n");
return;
}
/* clear SEC hw error source if having */
writel(SEC_CORE_INT_CLEAR, qm->io_base + SEC_CORE_INT_SOURCE);
/* enable RAS int */
writel(SEC_RAS_CE_ENB_MSK, qm->io_base + SEC_RAS_CE_REG);
writel(SEC_RAS_FE_ENB_MSK, qm->io_base + SEC_RAS_FE_REG);
writel(SEC_RAS_NFE_ENB_MSK, qm->io_base + SEC_RAS_NFE_REG);
/* enable SEC block master OOO when nfe occurs on Kunpeng930 */
sec_master_ooo_ctrl(qm, true);
/* enable SEC hw error interrupts */
writel(SEC_CORE_INT_ENABLE, qm->io_base + SEC_CORE_INT_MASK);
}
static void sec_hw_error_disable(struct hisi_qm *qm)
{
/* disable SEC hw error interrupts */
writel(SEC_CORE_INT_DISABLE, qm->io_base + SEC_CORE_INT_MASK);
/* disable SEC block master OOO when nfe occurs on Kunpeng930 */
sec_master_ooo_ctrl(qm, false);
/* disable RAS int */
writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_CE_REG);
writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_FE_REG);
writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_NFE_REG);
}
static u32 sec_clear_enable_read(struct hisi_qm *qm)
{
return readl(qm->io_base + SEC_CTRL_CNT_CLR_CE) &
SEC_CTRL_CNT_CLR_CE_BIT;
}
static int sec_clear_enable_write(struct hisi_qm *qm, u32 val)
{
u32 tmp;
if (val != 1 && val)
return -EINVAL;
tmp = (readl(qm->io_base + SEC_CTRL_CNT_CLR_CE) &
~SEC_CTRL_CNT_CLR_CE_BIT) | val;
writel(tmp, qm->io_base + SEC_CTRL_CNT_CLR_CE);
return 0;
}
static ssize_t sec_debug_read(struct file *filp, char __user *buf,
size_t count, loff_t *pos)
{
struct sec_debug_file *file = filp->private_data;
char tbuf[SEC_DBGFS_VAL_MAX_LEN];
struct hisi_qm *qm = file->qm;
u32 val;
int ret;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
spin_lock_irq(&file->lock);
switch (file->index) {
case SEC_CLEAR_ENABLE:
val = sec_clear_enable_read(qm);
break;
default:
goto err_input;
}
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
ret = snprintf(tbuf, SEC_DBGFS_VAL_MAX_LEN, "%u\n", val);
return simple_read_from_buffer(buf, count, pos, tbuf, ret);
err_input:
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
return -EINVAL;
}
static ssize_t sec_debug_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct sec_debug_file *file = filp->private_data;
char tbuf[SEC_DBGFS_VAL_MAX_LEN];
struct hisi_qm *qm = file->qm;
unsigned long val;
int len, ret;
if (*pos != 0)
return 0;
if (count >= SEC_DBGFS_VAL_MAX_LEN)
return -ENOSPC;
len = simple_write_to_buffer(tbuf, SEC_DBGFS_VAL_MAX_LEN - 1,
pos, buf, count);
if (len < 0)
return len;
tbuf[len] = '\0';
if (kstrtoul(tbuf, 0, &val))
return -EFAULT;
ret = hisi_qm_get_dfx_access(qm);
if (ret)
return ret;
spin_lock_irq(&file->lock);
switch (file->index) {
case SEC_CLEAR_ENABLE:
ret = sec_clear_enable_write(qm, val);
if (ret)
goto err_input;
break;
default:
ret = -EINVAL;
goto err_input;
}
ret = count;
err_input:
spin_unlock_irq(&file->lock);
hisi_qm_put_dfx_access(qm);
return ret;
}
static const struct file_operations sec_dbg_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = sec_debug_read,
.write = sec_debug_write,
};
static int sec_debugfs_atomic64_get(void *data, u64 *val)
{
*val = atomic64_read((atomic64_t *)data);
return 0;
}
static int sec_debugfs_atomic64_set(void *data, u64 val)
{
if (val)
return -EINVAL;
atomic64_set((atomic64_t *)data, 0);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(sec_atomic64_ops, sec_debugfs_atomic64_get,
sec_debugfs_atomic64_set, "%lld\n");
static int sec_regs_show(struct seq_file *s, void *unused)
{
hisi_qm_regs_dump(s, s->private);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(sec_regs);
static int sec_core_debug_init(struct hisi_qm *qm)
{
struct sec_dev *sec = container_of(qm, struct sec_dev, qm);
struct device *dev = &qm->pdev->dev;
struct sec_dfx *dfx = &sec->debug.dfx;
struct debugfs_regset32 *regset;
struct dentry *tmp_d;
int i;
tmp_d = debugfs_create_dir("sec_dfx", qm->debug.debug_root);
regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
if (!regset)
return -ENOMEM;
regset->regs = sec_dfx_regs;
regset->nregs = ARRAY_SIZE(sec_dfx_regs);
regset->base = qm->io_base;
regset->dev = dev;
if (qm->pdev->device == PCI_DEVICE_ID_HUAWEI_SEC_PF)
debugfs_create_file("regs", 0444, tmp_d, regset, &sec_regs_fops);
for (i = 0; i < ARRAY_SIZE(sec_dfx_labels); i++) {
atomic64_t *data = (atomic64_t *)((uintptr_t)dfx +
sec_dfx_labels[i].offset);
debugfs_create_file(sec_dfx_labels[i].name, 0644,
tmp_d, data, &sec_atomic64_ops);
}
return 0;
}
static int sec_debug_init(struct hisi_qm *qm)
{
struct sec_dev *sec = container_of(qm, struct sec_dev, qm);
int i;
if (qm->pdev->device == PCI_DEVICE_ID_HUAWEI_SEC_PF) {
for (i = SEC_CLEAR_ENABLE; i < SEC_DEBUG_FILE_NUM; i++) {
spin_lock_init(&sec->debug.files[i].lock);
sec->debug.files[i].index = i;
sec->debug.files[i].qm = qm;
debugfs_create_file(sec_dbg_file_name[i], 0600,
qm->debug.debug_root,
sec->debug.files + i,
&sec_dbg_fops);
}
}
return sec_core_debug_init(qm);
}
static int sec_debugfs_init(struct hisi_qm *qm)
{
struct device *dev = &qm->pdev->dev;
int ret;
qm->debug.debug_root = debugfs_create_dir(dev_name(dev),
sec_debugfs_root);
qm->debug.sqe_mask_offset = SEC_SQE_MASK_OFFSET;
qm->debug.sqe_mask_len = SEC_SQE_MASK_LEN;
hisi_qm_debug_init(qm);
ret = sec_debug_init(qm);
if (ret)
goto failed_to_create;
return 0;
failed_to_create:
debugfs_remove_recursive(sec_debugfs_root);
return ret;
}
static void sec_debugfs_exit(struct hisi_qm *qm)
{
debugfs_remove_recursive(qm->debug.debug_root);
}
static void sec_log_hw_error(struct hisi_qm *qm, u32 err_sts)
{
const struct sec_hw_error *errs = sec_hw_errors;
struct device *dev = &qm->pdev->dev;
u32 err_val;
while (errs->msg) {
if (errs->int_msk & err_sts) {
dev_err(dev, "%s [error status=0x%x] found\n",
errs->msg, errs->int_msk);
if (SEC_CORE_INT_STATUS_M_ECC & errs->int_msk) {
err_val = readl(qm->io_base +
SEC_CORE_SRAM_ECC_ERR_INFO);
dev_err(dev, "multi ecc sram num=0x%x\n",
((err_val) >> SEC_ECC_NUM) &
SEC_ECC_MASH);
}
}
errs++;
}
}
static u32 sec_get_hw_err_status(struct hisi_qm *qm)
{
return readl(qm->io_base + SEC_CORE_INT_STATUS);
}
static void sec_clear_hw_err_status(struct hisi_qm *qm, u32 err_sts)
{
writel(err_sts, qm->io_base + SEC_CORE_INT_SOURCE);
}
static void sec_open_axi_master_ooo(struct hisi_qm *qm)
{
u32 val;
val = readl(qm->io_base + SEC_CONTROL_REG);
writel(val & SEC_AXI_SHUTDOWN_DISABLE, qm->io_base + SEC_CONTROL_REG);
writel(val | SEC_AXI_SHUTDOWN_ENABLE, qm->io_base + SEC_CONTROL_REG);
}
static void sec_err_info_init(struct hisi_qm *qm)
{
struct hisi_qm_err_info *err_info = &qm->err_info;
err_info->ce = QM_BASE_CE;
err_info->fe = 0;
err_info->ecc_2bits_mask = SEC_CORE_INT_STATUS_M_ECC;
err_info->dev_ce_mask = SEC_RAS_CE_ENB_MSK;
err_info->msi_wr_port = BIT(0);
err_info->acpi_rst = "SRST";
err_info->nfe = QM_BASE_NFE | QM_ACC_DO_TASK_TIMEOUT |
QM_ACC_WB_NOT_READY_TIMEOUT;
}
static const struct hisi_qm_err_ini sec_err_ini = {
.hw_init = sec_set_user_domain_and_cache,
.hw_err_enable = sec_hw_error_enable,
.hw_err_disable = sec_hw_error_disable,
.get_dev_hw_err_status = sec_get_hw_err_status,
.clear_dev_hw_err_status = sec_clear_hw_err_status,
.log_dev_hw_err = sec_log_hw_error,
.open_axi_master_ooo = sec_open_axi_master_ooo,
.open_sva_prefetch = sec_open_sva_prefetch,
.close_sva_prefetch = sec_close_sva_prefetch,
.err_info_init = sec_err_info_init,
};
static int sec_pf_probe_init(struct sec_dev *sec)
{
struct hisi_qm *qm = &sec->qm;
int ret;
qm->err_ini = &sec_err_ini;
qm->err_ini->err_info_init(qm);
ret = sec_set_user_domain_and_cache(qm);
if (ret)
return ret;
sec_open_sva_prefetch(qm);
hisi_qm_dev_err_init(qm);
sec_debug_regs_clear(qm);
return 0;
}
static int sec_qm_init(struct hisi_qm *qm, struct pci_dev *pdev)
{
int ret;
qm->pdev = pdev;
qm->ver = pdev->revision;
qm->algs = "cipher\ndigest\naead";
qm->mode = uacce_mode;
qm->sqe_size = SEC_SQE_SIZE;
qm->dev_name = sec_name;
qm->fun_type = (pdev->device == PCI_DEVICE_ID_HUAWEI_SEC_PF) ?
QM_HW_PF : QM_HW_VF;
if (qm->fun_type == QM_HW_PF) {
qm->qp_base = SEC_PF_DEF_Q_BASE;
qm->qp_num = pf_q_num;
qm->debug.curr_qm_qp_num = pf_q_num;
qm->qm_list = &sec_devices;
} else if (qm->fun_type == QM_HW_VF && qm->ver == QM_HW_V1) {
/*
* have no way to get qm configure in VM in v1 hardware,
* so currently force PF to uses SEC_PF_DEF_Q_NUM, and force
* to trigger only one VF in v1 hardware.
* v2 hardware has no such problem.
*/
qm->qp_base = SEC_PF_DEF_Q_NUM;
qm->qp_num = SEC_QUEUE_NUM_V1 - SEC_PF_DEF_Q_NUM;
}
/*
* WQ_HIGHPRI: SEC request must be low delayed,
* so need a high priority workqueue.
* WQ_UNBOUND: SEC task is likely with long
* running CPU intensive workloads.
*/
qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
WQ_UNBOUND, num_online_cpus(),
pci_name(qm->pdev));
if (!qm->wq) {
pci_err(qm->pdev, "fail to alloc workqueue\n");
return -ENOMEM;
}
ret = hisi_qm_init(qm);
if (ret)
destroy_workqueue(qm->wq);
return ret;
}
static void sec_qm_uninit(struct hisi_qm *qm)
{
hisi_qm_uninit(qm);
}
static int sec_probe_init(struct sec_dev *sec)
{
u32 type_rate = SEC_SHAPER_TYPE_RATE;
struct hisi_qm *qm = &sec->qm;
int ret;
if (qm->fun_type == QM_HW_PF) {
ret = sec_pf_probe_init(sec);
if (ret)
return ret;
/* enable shaper type 0 */
if (qm->ver >= QM_HW_V3) {
type_rate |= QM_SHAPER_ENABLE;
qm->type_rate = type_rate;
}
}
return 0;
}
static void sec_probe_uninit(struct hisi_qm *qm)
{
hisi_qm_dev_err_uninit(qm);
destroy_workqueue(qm->wq);
}
static void sec_iommu_used_check(struct sec_dev *sec)
{
struct iommu_domain *domain;
struct device *dev = &sec->qm.pdev->dev;
domain = iommu_get_domain_for_dev(dev);
/* Check if iommu is used */
sec->iommu_used = false;
if (domain) {
if (domain->type & __IOMMU_DOMAIN_PAGING)
sec->iommu_used = true;
dev_info(dev, "SMMU Opened, the iommu type = %u\n",
domain->type);
}
}
static int sec_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct sec_dev *sec;
struct hisi_qm *qm;
int ret;
sec = devm_kzalloc(&pdev->dev, sizeof(*sec), GFP_KERNEL);
if (!sec)
return -ENOMEM;
qm = &sec->qm;
ret = sec_qm_init(qm, pdev);
if (ret) {
pci_err(pdev, "Failed to init SEC QM (%d)!\n", ret);
return ret;
}
sec->ctx_q_num = ctx_q_num;
sec_iommu_used_check(sec);
ret = sec_probe_init(sec);
if (ret) {
pci_err(pdev, "Failed to probe!\n");
goto err_qm_uninit;
}
ret = hisi_qm_start(qm);
if (ret) {
pci_err(pdev, "Failed to start sec qm!\n");
goto err_probe_uninit;
}
ret = sec_debugfs_init(qm);
if (ret)
pci_warn(pdev, "Failed to init debugfs!\n");
if (qm->qp_num >= ctx_q_num) {
ret = hisi_qm_alg_register(qm, &sec_devices);
if (ret < 0) {
pr_err("Failed to register driver to crypto.\n");
goto err_qm_stop;
}
} else {
pci_warn(qm->pdev,
"Failed to use kernel mode, qp not enough!\n");
}
if (qm->uacce) {
ret = uacce_register(qm->uacce);
if (ret) {
pci_err(pdev, "failed to register uacce (%d)!\n", ret);
goto err_alg_unregister;
}
}
if (qm->fun_type == QM_HW_PF && vfs_num) {
ret = hisi_qm_sriov_enable(pdev, vfs_num);
if (ret < 0)
goto err_alg_unregister;
}
hisi_qm_pm_init(qm);
return 0;
err_alg_unregister:
if (qm->qp_num >= ctx_q_num)
hisi_qm_alg_unregister(qm, &sec_devices);
err_qm_stop:
sec_debugfs_exit(qm);
hisi_qm_stop(qm, QM_NORMAL);
err_probe_uninit:
sec_probe_uninit(qm);
err_qm_uninit:
sec_qm_uninit(qm);
return ret;
}
static void sec_remove(struct pci_dev *pdev)
{
struct hisi_qm *qm = pci_get_drvdata(pdev);
hisi_qm_pm_uninit(qm);
hisi_qm_wait_task_finish(qm, &sec_devices);
if (qm->qp_num >= ctx_q_num)
hisi_qm_alg_unregister(qm, &sec_devices);
if (qm->fun_type == QM_HW_PF && qm->vfs_num)
hisi_qm_sriov_disable(pdev, true);
sec_debugfs_exit(qm);
(void)hisi_qm_stop(qm, QM_NORMAL);
if (qm->fun_type == QM_HW_PF)
sec_debug_regs_clear(qm);
sec_probe_uninit(qm);
sec_qm_uninit(qm);
}
static const struct dev_pm_ops sec_pm_ops = {
SET_RUNTIME_PM_OPS(hisi_qm_suspend, hisi_qm_resume, NULL)
};
static const struct pci_error_handlers sec_err_handler = {
.error_detected = hisi_qm_dev_err_detected,
.slot_reset = hisi_qm_dev_slot_reset,
.reset_prepare = hisi_qm_reset_prepare,
.reset_done = hisi_qm_reset_done,
};
static struct pci_driver sec_pci_driver = {
.name = "hisi_sec2",
.id_table = sec_dev_ids,
.probe = sec_probe,
.remove = sec_remove,
.err_handler = &sec_err_handler,
.sriov_configure = hisi_qm_sriov_configure,
.shutdown = hisi_qm_dev_shutdown,
.driver.pm = &sec_pm_ops,
};
struct pci_driver *hisi_sec_get_pf_driver(void)
{
return &sec_pci_driver;
}
EXPORT_SYMBOL_GPL(hisi_sec_get_pf_driver);
static void sec_register_debugfs(void)
{
if (!debugfs_initialized())
return;
sec_debugfs_root = debugfs_create_dir("hisi_sec2", NULL);
}
static void sec_unregister_debugfs(void)
{
debugfs_remove_recursive(sec_debugfs_root);
}
static int __init sec_init(void)
{
int ret;
hisi_qm_init_list(&sec_devices);
sec_register_debugfs();
ret = pci_register_driver(&sec_pci_driver);
if (ret < 0) {
sec_unregister_debugfs();
pr_err("Failed to register pci driver.\n");
return ret;
}
return 0;
}
static void __exit sec_exit(void)
{
pci_unregister_driver(&sec_pci_driver);
sec_unregister_debugfs();
}
module_init(sec_init);
module_exit(sec_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com>");
MODULE_AUTHOR("Longfang Liu <liulongfang@huawei.com>");
MODULE_AUTHOR("Kai Ye <yekai13@huawei.com>");
MODULE_AUTHOR("Wei Zhang <zhangwei375@huawei.com>");
MODULE_DESCRIPTION("Driver for HiSilicon SEC accelerator");