linux/linux-5.18.11/arch/x86/kvm/vmx/sgx.c

497 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2021 Intel Corporation. */
#include <asm/sgx.h>
#include "cpuid.h"
#include "kvm_cache_regs.h"
#include "nested.h"
#include "sgx.h"
#include "vmx.h"
#include "x86.h"
bool __read_mostly enable_sgx = 1;
module_param_named(sgx, enable_sgx, bool, 0444);
/* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */
static u64 sgx_pubkey_hash[4] __ro_after_init;
/*
* ENCLS's memory operands use a fixed segment (DS) and a fixed
* address size based on the mode. Related prefixes are ignored.
*/
static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset,
int size, int alignment, gva_t *gva)
{
struct kvm_segment s;
bool fault;
/* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */
*gva = offset;
if (!is_long_mode(vcpu)) {
vmx_get_segment(vcpu, &s, VCPU_SREG_DS);
*gva += s.base;
}
if (!IS_ALIGNED(*gva, alignment)) {
fault = true;
} else if (likely(is_long_mode(vcpu))) {
fault = is_noncanonical_address(*gva, vcpu);
} else {
*gva &= 0xffffffff;
fault = (s.unusable) ||
(s.type != 2 && s.type != 3) ||
(*gva > s.limit) ||
((s.base != 0 || s.limit != 0xffffffff) &&
(((u64)*gva + size - 1) > s.limit + 1));
}
if (fault)
kvm_inject_gp(vcpu, 0);
return fault ? -EINVAL : 0;
}
static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr,
unsigned int size)
{
uint64_t data[2] = { addr, size };
__kvm_prepare_emulation_failure_exit(vcpu, data, ARRAY_SIZE(data));
}
static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data,
unsigned int size)
{
if (__copy_from_user(data, (void __user *)hva, size)) {
sgx_handle_emulation_failure(vcpu, hva, size);
return -EFAULT;
}
return 0;
}
static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write,
gpa_t *gpa)
{
struct x86_exception ex;
if (write)
*gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex);
else
*gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex);
if (*gpa == UNMAPPED_GVA) {
kvm_inject_emulated_page_fault(vcpu, &ex);
return -EFAULT;
}
return 0;
}
static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva)
{
*hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa));
if (kvm_is_error_hva(*hva)) {
sgx_handle_emulation_failure(vcpu, gpa, 1);
return -EFAULT;
}
*hva |= gpa & ~PAGE_MASK;
return 0;
}
static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr)
{
struct x86_exception ex;
/*
* A non-EPCM #PF indicates a bad userspace HVA. This *should* check
* for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC,
* but the error code isn't (yet) plumbed through the ENCLS helpers.
*/
if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) {
kvm_prepare_emulation_failure_exit(vcpu);
return 0;
}
/*
* If the guest thinks it's running on SGX2 hardware, inject an SGX
* #PF if the fault matches an EPCM fault signature (#GP on SGX1,
* #PF on SGX2). The assumption is that EPCM faults are much more
* likely than a bad userspace address.
*/
if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) &&
guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) {
memset(&ex, 0, sizeof(ex));
ex.vector = PF_VECTOR;
ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK |
PFERR_SGX_MASK;
ex.address = gva;
ex.error_code_valid = true;
ex.nested_page_fault = false;
kvm_inject_page_fault(vcpu, &ex);
} else {
kvm_inject_gp(vcpu, 0);
}
return 1;
}
static int __handle_encls_ecreate(struct kvm_vcpu *vcpu,
struct sgx_pageinfo *pageinfo,
unsigned long secs_hva,
gva_t secs_gva)
{
struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents;
struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1;
u64 attributes, xfrm, size;
u32 miscselect;
u8 max_size_log2;
int trapnr, ret;
sgx_12_0 = kvm_find_cpuid_entry(vcpu, 0x12, 0);
sgx_12_1 = kvm_find_cpuid_entry(vcpu, 0x12, 1);
if (!sgx_12_0 || !sgx_12_1) {
kvm_prepare_emulation_failure_exit(vcpu);
return 0;
}
miscselect = contents->miscselect;
attributes = contents->attributes;
xfrm = contents->xfrm;
size = contents->size;
/* Enforce restriction of access to the PROVISIONKEY. */
if (!vcpu->kvm->arch.sgx_provisioning_allowed &&
(attributes & SGX_ATTR_PROVISIONKEY)) {
if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY)
pr_warn_once("KVM: SGX PROVISIONKEY advertised but not allowed\n");
kvm_inject_gp(vcpu, 0);
return 1;
}
/* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */
if ((u32)miscselect & ~sgx_12_0->ebx ||
(u32)attributes & ~sgx_12_1->eax ||
(u32)(attributes >> 32) & ~sgx_12_1->ebx ||
(u32)xfrm & ~sgx_12_1->ecx ||
(u32)(xfrm >> 32) & ~sgx_12_1->edx) {
kvm_inject_gp(vcpu, 0);
return 1;
}
/* Enforce CPUID restriction on max enclave size. */
max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 :
sgx_12_0->edx;
if (size >= BIT_ULL(max_size_log2))
kvm_inject_gp(vcpu, 0);
/*
* sgx_virt_ecreate() returns:
* 1) 0: ECREATE was successful
* 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the
* exception number.
* 3) -EINVAL: access_ok() on @secs_hva failed. This should never
* happen as KVM checks host addresses at memslot creation.
* sgx_virt_ecreate() has already warned in this case.
*/
ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr);
if (!ret)
return kvm_skip_emulated_instruction(vcpu);
if (ret == -EFAULT)
return sgx_inject_fault(vcpu, secs_gva, trapnr);
return ret;
}
static int handle_encls_ecreate(struct kvm_vcpu *vcpu)
{
gva_t pageinfo_gva, secs_gva;
gva_t metadata_gva, contents_gva;
gpa_t metadata_gpa, contents_gpa, secs_gpa;
unsigned long metadata_hva, contents_hva, secs_hva;
struct sgx_pageinfo pageinfo;
struct sgx_secs *contents;
struct x86_exception ex;
int r;
if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) ||
sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva))
return 1;
/*
* Copy the PAGEINFO to local memory, its pointers need to be
* translated, i.e. we need to do a deep copy/translate.
*/
r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo,
sizeof(pageinfo), &ex);
if (r == X86EMUL_PROPAGATE_FAULT) {
kvm_inject_emulated_page_fault(vcpu, &ex);
return 1;
} else if (r != X86EMUL_CONTINUE) {
sgx_handle_emulation_failure(vcpu, pageinfo_gva,
sizeof(pageinfo));
return 0;
}
if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) ||
sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096,
&contents_gva))
return 1;
/*
* Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA.
* Resume the guest on failure to inject a #PF.
*/
if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) ||
sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) ||
sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa))
return 1;
/*
* ...and then to HVA. The order of accesses isn't architectural, i.e.
* KVM doesn't have to fully process one address at a time. Exit to
* userspace if a GPA is invalid.
*/
if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) ||
sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) ||
sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva))
return 0;
/*
* Copy contents into kernel memory to prevent TOCTOU attack. E.g. the
* guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and
* simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to
* enforce restriction of access to the PROVISIONKEY.
*/
contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT);
if (!contents)
return -ENOMEM;
/* Exit to userspace if copying from a host userspace address fails. */
if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) {
free_page((unsigned long)contents);
return 0;
}
pageinfo.metadata = metadata_hva;
pageinfo.contents = (u64)contents;
r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva);
free_page((unsigned long)contents);
return r;
}
static int handle_encls_einit(struct kvm_vcpu *vcpu)
{
unsigned long sig_hva, secs_hva, token_hva, rflags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
gva_t sig_gva, secs_gva, token_gva;
gpa_t sig_gpa, secs_gpa, token_gpa;
int ret, trapnr;
if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) ||
sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) ||
sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva))
return 1;
/*
* Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA.
* Resume the guest on failure to inject a #PF.
*/
if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) ||
sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) ||
sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa))
return 1;
/*
* ...and then to HVA. The order of accesses isn't architectural, i.e.
* KVM doesn't have to fully process one address at a time. Exit to
* userspace if a GPA is invalid. Note, all structures are aligned and
* cannot split pages.
*/
if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) ||
sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) ||
sgx_gpa_to_hva(vcpu, token_gpa, &token_hva))
return 0;
ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva,
(void __user *)secs_hva,
vmx->msr_ia32_sgxlepubkeyhash, &trapnr);
if (ret == -EFAULT)
return sgx_inject_fault(vcpu, secs_gva, trapnr);
/*
* sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva,
* @token_hva or @secs_hva. This should never happen as KVM checks host
* addresses at memslot creation. sgx_virt_einit() has already warned
* in this case, so just return.
*/
if (ret < 0)
return ret;
rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF |
X86_EFLAGS_AF | X86_EFLAGS_SF |
X86_EFLAGS_OF);
if (ret)
rflags |= X86_EFLAGS_ZF;
else
rflags &= ~X86_EFLAGS_ZF;
vmx_set_rflags(vcpu, rflags);
kvm_rax_write(vcpu, ret);
return kvm_skip_emulated_instruction(vcpu);
}
static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf)
{
if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX))
return false;
if (leaf >= ECREATE && leaf <= ETRACK)
return guest_cpuid_has(vcpu, X86_FEATURE_SGX1);
if (leaf >= EAUG && leaf <= EMODT)
return guest_cpuid_has(vcpu, X86_FEATURE_SGX2);
return false;
}
static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu)
{
const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED;
return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits;
}
int handle_encls(struct kvm_vcpu *vcpu)
{
u32 leaf = (u32)kvm_rax_read(vcpu);
if (!encls_leaf_enabled_in_guest(vcpu, leaf)) {
kvm_queue_exception(vcpu, UD_VECTOR);
} else if (!sgx_enabled_in_guest_bios(vcpu)) {
kvm_inject_gp(vcpu, 0);
} else {
if (leaf == ECREATE)
return handle_encls_ecreate(vcpu);
if (leaf == EINIT)
return handle_encls_einit(vcpu);
WARN(1, "KVM: unexpected exit on ENCLS[%u]", leaf);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS;
return 0;
}
return 1;
}
void setup_default_sgx_lepubkeyhash(void)
{
/*
* Use Intel's default value for Skylake hardware if Launch Control is
* not supported, i.e. Intel's hash is hardcoded into silicon, or if
* Launch Control is supported and enabled, i.e. mimic the reset value
* and let the guest write the MSRs at will. If Launch Control is
* supported but disabled, then use the current MSR values as the hash
* MSRs exist but are read-only (locked and not writable).
*/
if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) ||
rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) {
sgx_pubkey_hash[0] = 0xa6053e051270b7acULL;
sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL;
sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL;
sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL;
} else {
/* MSR_IA32_SGXLEPUBKEYHASH0 is read above */
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]);
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]);
rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]);
}
}
void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash,
sizeof(sgx_pubkey_hash));
}
/*
* ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM
* restrictions if the guest's allowed-1 settings diverge from hardware.
*/
static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *guest_cpuid;
u32 eax, ebx, ecx, edx;
if (!vcpu->kvm->arch.sgx_provisioning_allowed)
return true;
guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 0);
if (!guest_cpuid)
return true;
cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx);
if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx)
return true;
guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 1);
if (!guest_cpuid)
return true;
cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx);
if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx ||
guest_cpuid->ecx != ecx || guest_cpuid->edx != edx)
return true;
return false;
}
void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
/*
* There is no software enable bit for SGX that is virtualized by
* hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the
* guest (either by the host or by the guest's BIOS) but enabled in the
* host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate
* the expected system behavior for ENCLS.
*/
u64 bitmap = -1ull;
/* Nothing to do if hardware doesn't support SGX */
if (!cpu_has_vmx_encls_vmexit())
return;
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) &&
sgx_enabled_in_guest_bios(vcpu)) {
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) {
bitmap &= ~GENMASK_ULL(ETRACK, ECREATE);
if (sgx_intercept_encls_ecreate(vcpu))
bitmap |= (1 << ECREATE);
}
if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2))
bitmap &= ~GENMASK_ULL(EMODT, EAUG);
/*
* Trap and execute EINIT if launch control is enabled in the
* host using the guest's values for launch control MSRs, even
* if the guest's values are fixed to hardware default values.
* The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing
* the MSRs is extraordinarily expensive.
*/
if (boot_cpu_has(X86_FEATURE_SGX_LC))
bitmap |= (1 << EINIT);
if (!vmcs12 && is_guest_mode(vcpu))
vmcs12 = get_vmcs12(vcpu);
if (vmcs12 && nested_cpu_has_encls_exit(vmcs12))
bitmap |= vmcs12->encls_exiting_bitmap;
}
vmcs_write64(ENCLS_EXITING_BITMAP, bitmap);
}