169 lines
5.1 KiB
C
169 lines
5.1 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
* x86-64 work by Andi Kleen 2002
|
|
*/
|
|
|
|
#ifndef _ASM_X86_FPU_API_H
|
|
#define _ASM_X86_FPU_API_H
|
|
#include <linux/bottom_half.h>
|
|
|
|
#include <asm/fpu/types.h>
|
|
|
|
/*
|
|
* Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It
|
|
* disables preemption so be careful if you intend to use it for long periods
|
|
* of time.
|
|
* If you intend to use the FPU in irq/softirq you need to check first with
|
|
* irq_fpu_usable() if it is possible.
|
|
*/
|
|
|
|
/* Kernel FPU states to initialize in kernel_fpu_begin_mask() */
|
|
#define KFPU_387 _BITUL(0) /* 387 state will be initialized */
|
|
#define KFPU_MXCSR _BITUL(1) /* MXCSR will be initialized */
|
|
|
|
extern void kernel_fpu_begin_mask(unsigned int kfpu_mask);
|
|
extern void kernel_fpu_end(void);
|
|
extern bool irq_fpu_usable(void);
|
|
extern void fpregs_mark_activate(void);
|
|
|
|
/* Code that is unaware of kernel_fpu_begin_mask() can use this */
|
|
static inline void kernel_fpu_begin(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Any 64-bit code that uses 387 instructions must explicitly request
|
|
* KFPU_387.
|
|
*/
|
|
kernel_fpu_begin_mask(KFPU_MXCSR);
|
|
#else
|
|
/*
|
|
* 32-bit kernel code may use 387 operations as well as SSE2, etc,
|
|
* as long as it checks that the CPU has the required capability.
|
|
*/
|
|
kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Use fpregs_lock() while editing CPU's FPU registers or fpu->fpstate.
|
|
* A context switch will (and softirq might) save CPU's FPU registers to
|
|
* fpu->fpstate.regs and set TIF_NEED_FPU_LOAD leaving CPU's FPU registers in
|
|
* a random state.
|
|
*
|
|
* local_bh_disable() protects against both preemption and soft interrupts
|
|
* on !RT kernels.
|
|
*
|
|
* On RT kernels local_bh_disable() is not sufficient because it only
|
|
* serializes soft interrupt related sections via a local lock, but stays
|
|
* preemptible. Disabling preemption is the right choice here as bottom
|
|
* half processing is always in thread context on RT kernels so it
|
|
* implicitly prevents bottom half processing as well.
|
|
*
|
|
* Disabling preemption also serializes against kernel_fpu_begin().
|
|
*/
|
|
static inline void fpregs_lock(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
local_bh_disable();
|
|
else
|
|
preempt_disable();
|
|
}
|
|
|
|
static inline void fpregs_unlock(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
local_bh_enable();
|
|
else
|
|
preempt_enable();
|
|
}
|
|
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
extern void fpregs_assert_state_consistent(void);
|
|
#else
|
|
static inline void fpregs_assert_state_consistent(void) { }
|
|
#endif
|
|
|
|
/*
|
|
* Load the task FPU state before returning to userspace.
|
|
*/
|
|
extern void switch_fpu_return(void);
|
|
|
|
/*
|
|
* Query the presence of one or more xfeatures. Works on any legacy CPU as well.
|
|
*
|
|
* If 'feature_name' is set then put a human-readable description of
|
|
* the feature there as well - this can be used to print error (or success)
|
|
* messages.
|
|
*/
|
|
extern int cpu_has_xfeatures(u64 xfeatures_mask, const char **feature_name);
|
|
|
|
/* Trap handling */
|
|
extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
|
|
extern void fpu_sync_fpstate(struct fpu *fpu);
|
|
extern void fpu_reset_from_exception_fixup(void);
|
|
|
|
/* Boot, hotplug and resume */
|
|
extern void fpu__init_cpu(void);
|
|
extern void fpu__init_system(struct cpuinfo_x86 *c);
|
|
extern void fpu__init_check_bugs(void);
|
|
extern void fpu__resume_cpu(void);
|
|
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
extern void fpstate_init_soft(struct swregs_state *soft);
|
|
#else
|
|
static inline void fpstate_init_soft(struct swregs_state *soft) {}
|
|
#endif
|
|
|
|
/* State tracking */
|
|
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
/* Process cleanup */
|
|
#ifdef CONFIG_X86_64
|
|
extern void fpstate_free(struct fpu *fpu);
|
|
#else
|
|
static inline void fpstate_free(struct fpu *fpu) { }
|
|
#endif
|
|
|
|
/* fpstate-related functions which are exported to KVM */
|
|
extern void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature);
|
|
|
|
extern u64 xstate_get_guest_group_perm(void);
|
|
|
|
/* KVM specific functions */
|
|
extern bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu);
|
|
extern void fpu_free_guest_fpstate(struct fpu_guest *gfpu);
|
|
extern int fpu_swap_kvm_fpstate(struct fpu_guest *gfpu, bool enter_guest);
|
|
extern int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
extern void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd);
|
|
extern void fpu_sync_guest_vmexit_xfd_state(void);
|
|
#else
|
|
static inline void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) { }
|
|
static inline void fpu_sync_guest_vmexit_xfd_state(void) { }
|
|
#endif
|
|
|
|
extern void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf, unsigned int size, u32 pkru);
|
|
extern int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, u64 xcr0, u32 *vpkru);
|
|
|
|
static inline void fpstate_set_confidential(struct fpu_guest *gfpu)
|
|
{
|
|
gfpu->fpstate->is_confidential = true;
|
|
}
|
|
|
|
static inline bool fpstate_is_confidential(struct fpu_guest *gfpu)
|
|
{
|
|
return gfpu->fpstate->is_confidential;
|
|
}
|
|
|
|
/* prctl */
|
|
struct task_struct;
|
|
extern long fpu_xstate_prctl(struct task_struct *tsk, int option, unsigned long arg2);
|
|
|
|
#endif /* _ASM_X86_FPU_API_H */
|